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Abstract: SPL (SQUAMOSA promoter binding protein-like), as one family of plant transcription
factors, plays an important function in plant growth and development and in response to envi-
ronmental stresses. Despite SPL gene families having been identified in various plant species, the
understanding of this gene family in peanuts remains insufficient. In this study, thirty-eight genes
(AhSPL1-AhSPL38) were identified and classified into seven groups based on a phylogenetic analysis.
In addition, a thorough analysis indicated that the AhSPL genes experienced segmental duplications.
The analysis of the gene structure and protein motif patterns revealed similarities in the structure of
exons and introns, as well as the organization of the motifs within the same group, thereby providing
additional support to the conclusions drawn from the phylogenetic analysis. The analysis of the
regulatory elements and RNA-seq data suggested that the AhSPL genes might be widely involved
in peanut growth and development, as well as in response to environmental stresses. Furthermore,
the expression of some AhSPL genes, including AhSPL5, AhSPL16, AhSPL25, and AhSPL36, were
induced by drought and salt stresses. Notably, the expression of the AhSPL genes might potentially
be regulated by regulatory factors with distinct functionalities, such as transcription factors ERF,
WRKY, MYB, and Dof, and microRNAs, like ahy-miR156. Notably, the overexpression of AhSPL5
can enhance salt tolerance in transgenic Arabidopsis by enhancing its ROS-scavenging capability and
positively regulating the expression of stress-responsive genes. These results provide insight into the
evolutionary origin of plant SPL genes and how they enhance plant tolerance to salt stress.

Keywords: peanut; SPL; AhSPL5; salt; gene family

1. Introduction

The peanut (Arachis hypogaea L.) is an important global oil crop, currently grown in
over 100 countries worldwide. The peanut is a type of tetraploid legume that originated
approximately 9400 years ago. Nevertheless, abiotic stresses like salt, drought, cold, and
heat greatly limit the quality and productivity of peanuts. With the development of
bioinformatics, there have been many reports on the functional genomics of peanuts [1–3].
When analyzing the genetic basis of peanuts, it becomes very important to explore and
analyze the functions of important genes.

Transcription factors, as important proteins in gene expression regulation, can recog-
nize and bind to homeopathic elements to activate or inhibit downstream gene expression.
This process is essential for various aspects of plant biology, including growth, hormone
metabolism, and the response to stress. Currently, many transcription factors have been dis-
covered and identified in plants, including WRKY, NAC, MYB, and so on [4]. For example,
the salt-induced gene MsWRKY33 can confer salt tolerance to alfalfa (Medicago sativa L.)
by activating MsERF5 and enhancing the ROS-scavenging ability [5]. The sweet potato
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(Ipomoea batatas) IbNAC3 transcription factor is involved in salt and drought compound
stress responses by integrating multiple regulatory networks and ABA-dependent signaling
pathways [6]. In tobacco (Nicotiana tabacum L.), 246 R2R3-MYB members have been identi-
fied, with the overexpression of NtMYB102 improving salt and drought stress tolerance in
transgenic tobacco [7]. SQUAMOSA promoter binding protein-like (SPL) proteins contain
a highly conserved DNA binding domain, which encompasses two independent zinc finger
structures, Zn-1 (Cys3His or Cys4) and Zn-2 (Cys2HisCys). SPL can recognize the GTAC
element of the gene promoter to regulate the expression of downstream genes [8]. SBP
was first successfully cloned from a Antirrhinum majus cDNA library [9]. Subsequently,
SPL genes have been found in multiple species, including rice (Oryza sativa) [10], maize
(Zea mays) [11], sweet cherry (Prunus avium) [12], quinoa (Chenopodium quinoa) [13], millet
(Setaria italica) [8], and Arabidopsis [10].

It has been reported that SPL transcription factors are involved in plant growth and
development, including plant embryo development [14], vegetation growth [15], flower
development [16], transformations in the different developmental stages of plants [17], and
maintaining plant fertility [18]. Furthermore, studies have also found that, in addition
to controlling plant morphology, SPL also affects fruit quality and biomass [19–22]. No-
tably, SPLs are involved in plant hormone secretion and responses to biotic and abiotic
stresses [23–25]. For example, AtSPL6 can significantly improve the resistance of Arabidopsis
to the tobacco mosaic virus [26]. Arabidopsis spl1-1 spl12-1 double mutant plants exhibit a
sensitive phenotype under high-temperature treatment [27]. The miR156/SPL9 module en-
hances the freezing tolerance by activating the expression of C-REPEAT BINDING FACTOR
2 (CBF2) in Arabidopsis [28]. TaSPL6, a transcription factor in wheat, plays a negative role in
regulating the response to drought stress [29]. In rice, OsSPL10 plays an important role in
the regulation of drought tolerance by directly regulating OsNAC2 expression and ROS
production [30]. The overexpression of OsmiR529a can enhance oxidative stress resistance
by targeting the OsSPL2 and OsSPL14 genes [31]. In apples, salt stress tolerance is regulated
by the miR156a/SPL13 module through activation of MdWRKY100 expression [32].

The yield of peanuts is often affected by multiple abiotic stresses, especially drought
and salt stresses. Increasing resistance to salt and drought is a key focus in the development
of peanut varieties. Several peanut gene families have been studied, due to the peanut
genome database being accessible [33–35]. Although the SPL family has been discovered
and identified in various plants, there is still limited research on the SPL gene family in
the peanut. For example, there are fifteen full-length cDNAs of SPLs, and their genomic
DNA sequences have been cloned and analyzed in peanuts, revealing that the SPL gene
is involved in the regulation of peanut growth and development [36]. In this study, we
conducted a systematic analysis of the structure, location, domain, cis-acting elements, and
expression patterns of thirty-eight peanut SPL genes in order to provide technical reserves
for functional research on the SPL gene in peanuts. In addition, the overexpression of
AhSPL5 in Arabidopsis improved its ability to withstand high levels of salt. These findings
indicate that the AhSPL members could have significant functions in peanut growth and in
how peanuts react to salt and drought pressures. Moreover, these findings also provide
more technical support for improving peanut yield and quality, and enhancing peanut
resistance to abiotic stresses.

2. Results
2.1. Identification of the AhSPL Gene Family in Peanuts

A total of thirty-eight AhSPL genes were discovered through an analysis of the peanut
genome database, and were subsequently designated as AhSPL1-AhSPL38 based on their
chromosomal positions (Supplementary Table S1). The physicochemical characteristics
of the amino acid sequences suggest that the thirty-eight AhSPL genes encode proteins
with amino acid (AA) lengths ranging from 131 (AhSPL16) to 1101 (AhSPL18), molecular
weights (Mws) ranging from 15,333.8 (AhSPL16) to 122,210.08 Da (AhSPL18), and isoelectric
points (pIs) ranging from 5.71 (AhSPL25) to 9.78 (AhSPL14).
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2.2. Phylogenetic Analysis

Seventeen Arabidopsis SPL proteins were chosen to create a neighbor-joining phyloge-
netic tree, along with thirty-eight peanut SPL proteins, using MEGA 6.0 software to study
the evolutionary relationship of the peanut SPL family. The phylogenetic analysis showed
that all of the SPL proteins were clustered into seven groups (from I to VII), and each group
consisted of a minimum of one SPL protein derived from two distinct species (Arabidopsis
and peanut) (Figure 1). The implication was that the separation between Arabidopsis and
the peanut occurred following the divergence of the SPL gene family. Specifically, group I
included the largest number of peanut SPL proteins (nine). Meanwhile, groups II, III, IV, V,
VI, and VII consisted of five, three, five, eight, two, and six AhSPL members, respectively.
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Figure 1. Phylogenetic analysis of AhSPL members. The phylogenetic tree was constructed using the
neighbor-joining (NJ) method, aligning the SPL proteins from the peanut and Arabidopsis, followed
by performing 1000 bootstrap replicates. Fourteen groups were created to classify the peanut SPL
members and their homologs in Arabidopsis.

2.3. Conserved Motif and Gene Structure Analysis

The analysis of the gene structure of the thirty-eight AhSPL genes was conducted using
GSDS 2.0 (Figure 2). The number of introns for the thirty-eight AhSPL genes ranged from
one to ten. Ten and twelve AhSPL genes had one and two introns, respectively; seven AhSPL
genes had nine introns; the remaining AhSPL genes, AhSPL3/7/21/22/27, AhSPL6/26, and
AhSPL18/23, had three, five, and ten introns, respectively. Furthermore, the structure of
the AhSPL genes in the same group was similar. Additionally, we analyzed the conserved
motifs of the AhSPL proteins, with the MEME software (version 5.5.3) utilized for motif
prediction, while the visualization of the structural protein domains was performed using
Tbtools (version 1.120) (Figure 2). A total of ten motifs were identified in the AhSPL
members. Among of them, motif 1 and motif 2 contained two Zn finger-like structures.
Motif 2 contained nuclear localization signal (NLS) segments (Supplementary Figure S1).
Notably, the members belonging to the same group had a similar motif architecture.

The multiple alignment of all thirty-eight AhSPL proteins was conducted using DNA-
MAN version 6, and the SBP domain structures were subsequently presented in a detailed
manner. Thirty-six AhSPL proteins possess two zinc finger-like structures (Zn_1 and Zn_2),
and all the AhSPL proteins possess NLS. AhSPL11 and AhSPL23 only possess one zinc
finger-like structure (Zn_2). The first zinc finger-like structure (Zn_1, Cys3His), the second
zinc finger-like structure (Zn_2, Cys2HisCys), and the conserved NLS are indicated in
Figure 3B. The SBP domain motif logo and protein sequence are shown in Figure 3A.
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proteins. (B) Multiple alignments of the AhSPL proteins. Zn_1 and Zn_2 represent the zinc finger-like
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2.4. Chromosomal Localization, Duplication Events, and Syntenic Analysis

To improve our understanding of the specific genomic organization of the genes on
the chromosomes, we constructed chromosome distribution maps for the SPL gene family
in the peanut. The findings from our analysis of chromosome localization revealed that
sixteen chromosomes in peanuts contain a total of thirty-eight AhSPL genes (Figure 4A).
Among these chromosomes, Chr13 harbors the highest number of four AhSPL genes; Chr3,
Chr6, Chr10, Chr16, and Chr20 contain three AhSPL genes; Chr1, Chr4, Chr5, Chr8, Chr11,
Chr12, Chr14, Chr15, and Chr18 contain two AhSPL genes; while Chr2 only possesses
one AhSPL gene. It is worth noting that no instances of tandem duplication events were
observed within the peanut SPL gene family.
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Figure 4. The chromosomal distribution, duplication events, and syntenic analysis of the AhSPL
genes. (A) Sixteen chromosomes contained thirty-eight AhSPL genes that were mapped. (B) An
MCScanX was used to analyze the segmental duplications of the twenty-four pairs of AhSPL genes,
which are linked by the red lines. (C) The syntenic analysis of the SPL genes in the peanut and
Arabidopsis, soybean, tomato, and rice using synteny. The collinear blocks between the peanut and
the four other plant species are represented by the gray line in the background, whereas the red lines
show the syntenic SPL gene pairs.

To explore the evolutionary connections among the SPL genes, an analysis of duplica-
tion events was conducted on the AhSPL genes. Among a collection of thirty-three AhSPL
genes, twenty-four pairs of segmental duplication genes were identified (Figure 4B). The
results of the duplication analysis suggest that some AhSPL genes may have been created
through gene duplication, with segmental duplication events possibly playing a key role
in the evolution of the AhSPL genes. It is widely accepted that a Ka/Ks ratio greater than
one indicates positive selection, a Ka/Ks ratio equal to one indicates neutral selection,
and a Ka/Ks ratio less than one indicates purification selection. Our findings demon-
strate that all twenty-four gene pairs exhibited a Ka/Ks ratio less than 1, implying that
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the AhSPL genes underwent purification selection throughout the course of evolution
(Supplementary Table S2).

Additionally, a syntenic map was constructed for the peanut, Arabidopsis, soybean,
tomato, and rice to enhance comprehension of the evolutionary relationship among the SPL
genes (Figure 4C). The analysis unveiled that a total of thirty-two AhSPL genes displayed
a syntenic association with the SPL genes found in soybeans, followed by the tomato
with twenty-one genes, Arabidopsis with seventeen genes, and rice with eight genes. The
identified orthologous pairs between soybeans, tomato, Arabidopsis, and rice were found
to be eighty-seven, twenty-four, twenty-one, and nine, respectively. Moreover, it was
found that some AhSPL genes, such as AhSPL4, AhSPL5, AhSPL12, and AhSPL15, exhibit a
minimum of four collinear gene pairs with soybeans. The results suggest the importance of
these genes during the evolution of the peanut SPL gene family. Notably, AhSPL8, AhSPL12,
AhSPL28, and AhSPL31 show collinear relationships with the SPL genes from soybeans,
tomato, Arabidopsis, and rice, indicating that these SPL genes may have existed before the
separation of these five plant species (Supplementary Table S3).

2.5. Cis-Acting Elements Analysis

The promoters of the AhSPL genes were analyzed for putative cis-acting elements using
PlantCARE (version 1), for the upstream sequences of the thirty-eight AhSPL genes (2 kb
upstream of the start codon). A total of twenty-four different types of these cis-elements
were identified, including eight phytohormone responsive elements (ABRE, CGTCA-motif,
ERE, P-box, TCA-element, TGA-element, TGACG-motif, and GARE), twelve abiotic and
biotic stress-responsive elements (ARE, AS-1, LTR, MBS, MBSI, MYB, MYC, STRE, TC-
rich repeats, W-box, WRE3, and WUN-motif), and four development-related elements
(AAGAA-motif, AT-rich element, CAT-box, and CCAAT-box). Furthermore, AhSPL27
contained the largest number of cis-acting elements (thirty-eight), followed by AhSPL7 and
AhSPL31, which contained thirty-seven elements. AhSPL9 and AhSPL29 contained the least
number of cis-acting elements (twelve). Notably, all the AhSPL genes contained at least one
abiotic and biotic stress-response cis-acting elements (Figure 5). These results indicate the
significant contributions of the AhSPL genes to various biological processes, as well as their
involvement in the response to abiotic/biotic stresses and plant hormones in peanuts.

1 
 

 
Figure 5. Promoter regions of AhSPL genes contain cis-acting elements.
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2.6. Expression Pattern Analysis

To comprehend the purported roles of the AhSPL genes, an analysis was conducted
on the expression profiles of all thirty-eight identified AhSPL genes. This analysis uti-
lized the presently accessible RNA-seq data for the peanut (cultivar “Tifrunner”), includ-
ing twenty-two different tissues and organs: leaf, shoot, root, nodule, perianth, stamen,
pistil, peg.tip, peg.tip.Pat, fruit.Pat, pericarp.Pat, and seed.Pat (Figure 6A). Eight SPL
genes, AhSPL4/14/15/16/24/34/35/36, were highly expressed in repr.shoot; AhSPL12
and AhSPL31 were highly expressed in veg.shoot; thirty-two SPL genes, such as Ah-
SPL8/21/22/23/28/37, were found to be highly expressed in fruit.Pat and pericarp.Pat;
and AhSPL29 was expressed at a low level in all tissues. However, AhSPL9 was not detected
in all the tested tissues (not reflected in the heat map). The varied gene expression profiles
indicate that the AhSPL genes involved in peanut growth and development potentially
possess a wide range of functions.
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FPKM values of each AhSPL gene.

Furthermore, in order to gain additional understanding regarding the reaction of the
AhSPL genes to abiotic stresses, the RNA-seq data pertaining to drought and salt stresses
were acquired from the NCBI database. The cultivars J11 and Fenghua3 were used for
drought and salt treatment, respectively. The results suggest that the response of the AhSPL
genes to drought and salt treatments exhibited a noticeable disparity (Figure 6B). Under
conditions of drought stress, a significant majority of the AhSPL genes, specifically 44.7%
(seventeen out of thirty-eight), exhibited up-regulation. Conversely, the up-regulation of
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genes under salt stress was comparatively lower, with only 18.4% (seven out of thirty-eight)
of the AhSPL genes displaying this response. AhSPL1, AhSPL10, AhSPL13, and AhSPL19
exhibited insensitivity to salt treatment, while displaying significant induction in response
to drought treatment. Significantly, AhSPL2, AhSPL3, AhSPL6, AhSPL7, AhSPL16, AhSPL25,
and AhSPL36 showed increased expression when exposed to drought and salt treatments,
indicating that these seven AhSPL genes potentially have significant implications in the
peanut’s ability to respond to salt and drought stresses.

2.7. Prediction of Regulatory Network

We used the PlantRegMap server to predict potential regulatory interactions between
the transcription factors and AhSPL genes. The analysis yielded a comprehensive set of
twenty-nine transcription factors that were identified as potential regulators of AhSPL
genes expression. The binding of these transcription factors to the promoters of the Ah-
SPL genes were quantified and visualized through the utilization of TBtools (Figure 7).
MYB, Dof, MIKC_MADS, AP2, and BBR-BPC transcription factors have the potential to
regulate a significant portion of almost all of the AhSPL genes. The regulatory patterns
of AhSPL4, AhSPL21, AhSPL22, and AhSPL24 demonstrated a resemblance, suggesting
that these four genes could potentially be regulated by C2H2, NAC, GATA, C3H, TALE,
MYB, Dof, MIKC_MADS, AP2, and BBR-BPC transcription factors. Notably, AhSPL8 exhib-
ited regulation by the highest number of transcription factors (forty-one), while AhSPL35
displayed the lowest regulation, with only six transcription factors.

1 
 

 
Figure 7. Possible transcription regulators of AhSPL gene expression.

Previous studies have shown that microRNAs (miRNAs) are able to play an important
role in plant responses to abiotic stresses by the direct regulation of the SPL genes [37].
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Therefore, we analyzed the miRNAs that may regulate AhSPL genes expression by using
the psRNATarget server (https://www.zhaolab.org/psRNATarget/, version 2, accessed on
26 September 2023). The results show that a total of eleven peanut miRNAs are predicted to
be regulators of the AhSPL genes (Figure 8). Among of them, ahy-miR156a, ahy-miR156b,
and ahy-miR156c regulate a maximum number of sixteen AhSPL genes, followed by ahy-
miR3520-5p, which regulates six AhSPL genes. However, ahy-miR3508 regulates only the
AhSPL18 gene.

Plants 2024, 13, x FOR PEER REVIEW 10 of 21 
 

 

Previous studies have shown that microRNAs (miRNAs) are able to play an im-
portant role in plant responses to abiotic stresses by the direct regulation of the SPL genes 
[37]. Therefore, we analyzed the miRNAs that may regulate AhSPL genes expression by 
using the psRNATarget server (https://www.zhaolab.org/psRNATarget/, version 2, ac-
cessed on 26 September 2023). The results show that a total of eleven peanut miRNAs are 
predicted to be regulators of the AhSPL genes (Figure 8). Among of them, ahy-miR156a, 
ahy-miR156b, and ahy-miR156c regulate a maximum number of sixteen AhSPL genes, fol-
lowed by ahy-miR3520-5p, which regulates six AhSPL genes. However, ahy-miR3508 reg-
ulates only the AhSPL18 gene. 

 
Figure 8. Possible microRNA regulators of AhSPL genes. 

2.8. GO Enrichment Analysis 
We further explored the potential biological functions of the AhSPL genes by using a 

GO enrichment analysis. Three terms in the molecular function (MF), two terms in the 
cellular component (CC), and fifteen terms in the biological process (BF) were selected for 
presentation in Figure 9. The analysis of the MF, CC, and BP annotations suggested that 
the major function of these AhSPL genes is related to DNA-binding transcription factor 
activity (GO:0003700), the intracellular membrane-bounded organelle (GO:0043231), the 
regulation of gene expression (GO:0010468), the regulation of cellular metabolic processes 
(GO:0031323), the positive regulation of macromolecule biosynthetic processes 
(GO:0010557), the positive regulation of metabolic processes (GO:0009893), the positive 
regulation of cellular processes (GO:0048522), and responses to external stimuli 
(GO:0009605). 

Figure 8. Possible microRNA regulators of AhSPL genes.

2.8. GO Enrichment Analysis

We further explored the potential biological functions of the AhSPL genes by using
a GO enrichment analysis. Three terms in the molecular function (MF), two terms in the
cellular component (CC), and fifteen terms in the biological process (BF) were selected
for presentation in Figure 9. The analysis of the MF, CC, and BP annotations suggested
that the major function of these AhSPL genes is related to DNA-binding transcription
factor activity (GO:0003700), the intracellular membrane-bounded organelle (GO:0043231),
the regulation of gene expression (GO:0010468), the regulation of cellular metabolic pro-
cesses (GO:0031323), the positive regulation of macromolecule biosynthetic processes
(GO:0010557), the positive regulation of metabolic processes (GO:0009893), the positive reg-
ulation of cellular processes (GO:0048522), and responses to external stimuli (GO:0009605).

2.9. Overexpression of AhSPL5 Enhanced Salt Tolerance

To investigate the functions of AhSPL5 in the context of the salt stress response,
transgenic Arabidopsis plants were developed to overexpress AhSPL5. A total of ten T0
transgenic lines were confirmed through normal PCR. Subsequently, homozygous T3
transgenic lines were identified and subjected to qRT-PCR to measure the expression levels
of AhSPL5. Two transgenic lines (OE3 and OE7) exhibiting elevated levels of AhSPL5
expression were chosen for a subsequent phenotypic characterization (Figure 10B).

Germination assays were employed to assess the salt tolerance of the AhSPL5-OE
lines. The results indicate that the AhSPL5-OE lines exhibited higher rates of germination
than the wild type when cultivated on 1/2 MS media with an addition of 100 mM NaCl
(Figure 10A,C).

https://www.zhaolab.org/psRNATarget/
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Figure 10. Evaluating seed germination in AhSPL5-OE lines and wild-type Arabidopsis when exposed
to salt stress conditions. (A) Comparison of seed germination rates between AhSPL5-OE lines and
wild-type Arabidopsis plants exposed to 100 mM NaCl treatments. Germination rates of seeds were
documented after six days of sowing. (B) Expression levels of AhSPL5 gene in AhSPL5-OE lines
and wild-type Arabidopsis. (C) Measurement of main root lengths under control conditions and after
treatment with 100 mM NaCl. WT, wild type. The data are means ± SD from three independent
replications. *** p < 0.001 (t-tests).

Furthermore, a test was conducted to observe how the AhSPL5-OE lines reacted to
salt stress by measuring root elongation. Following seven days of growth on 1/2 MS
media supplemented with 100 and 150 mM NaCl, it was observed that the primary roots
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of the AhSPL5-OE lines exhibited a significantly greater length compared to those of the
wild-type (WT) plants (Figure 11). Collectively, the findings from the salt treatment assays
indicate that the overexpression of AhSPL5 enhances salt stress tolerance in transgenic
Arabidopsis plants.
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Figure 11. Evaluating the root development of the AhSPL5-OE lines and wild-type Arabidopsis
when exposed to salt stress treatments of 100 and 150 mM NaCl. The length of the primary root
was measured after seven days of growth. WT, wild-type. The data are the means ± SD from
three independent replications. * p < 0.05, ** p < 0.01, *** p < 0.001 (t-tests).

2.10. AhSPL5 Enhances ROS-Scavenging Capability and Regulates the Expression of
Stress-Responsive Genes

Alterations in reactive oxygen species (ROS) levels are frequently linked to plant
responses to abiotic stresses. To ascertain if variations in the antioxidant capacity are
correlated with enhanced tolerance to salt stress in AhSPL5-OE plants, we assessed the
stress-related physiological parameters of the AhSPL5-OE lines and wild-type (WT) plants
with or without a salt stress treatment over a three-day period (Figure 12A). Under salt stress
conditions, the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase
(CAT) in the AhSPL5-OE lines and wild-type (WT) plants were found to increase. Notably,
the AhSPL5-OE plants exhibited a more pronounced enhancement of ROS-scavenging
activities compared to the WT plants. Additionally, a significant decrease in dialdehyde
(MDA) levels was observed in the AhSPL5-OE plants under salt stress conditions. The
findings indicate that AhSPL5 transgenic Arabidopsis plants may exhibit improved salt stress
tolerance as a result of heightened ROS-scavenging capacity.

The function of AhSPL5 in controlling the salt response through the regulation of stress-
responsive genes was examined using a qRT-PCR analysis. Under salt stress conditions, the
stress-responsive genes were observed to be increased in expression in both the AhSPL5-OE
lines and WT plants. Nevertheless, the AhSPL5-OE lines exhibited significantly higher
expression levels of the stress-responsive genes compared to the WT plants (Figure 12B).
These findings indicate that AhSPL5 transgenic Arabidopsis might enhance salt tolerance by
activating stress-responsive genes transcription.
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Figure 12. Variations in levels of antioxidant enzyme activity, MDA contents (A), and stress-
responsive genes expression (B) in AhSPL5-OE lines and wild-type Arabidopsis following exposure
to salt stress. MDA, malonic dialdehyde; CAT, catalase; POD, peroxidase; SOD; superoxide; WT,
wild-type. The data are means ± SD from three independent replications. * p < 0.05, ** p < 0.01,
*** p < 0.001 (t-tests).

3. Discussion

SPL proteins, a group of particular transcription factors found in plants, are crucial for
plant development, growth, and adaptation to environmental stresses [23]. Furthermore,
the SPL gene family has been identified in several plant species, such as the potato and
tomato (fifteen members) [38,39], Arabidopsis and rice (seventeen and nineteen members,
respectively) [10], and soybeans (forty-one members) [40]. However, the identification and
analysis of the SPL gene family have not been reported on in an important oil crop, the
peanut (Arachis hypogaea L.). The peanut is also susceptible to multiple abiotic stresses,
such as drought and high salinity. Therefore, it is important to identify and analyze
the peanut SPL genes in response to multiple abiotic stresses. In this study, a total of
thirty-eight AhSPL genes were identified from the peanut genome and divided into seven
groups, together with the Arabidopsis SPL genes (Figure 1). The number of AhSPL genes
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was overrepresented compared to that of Arabidopsis, which could be due to the fact that
the peanut is an allotetraploid. All of the AhSPL members contained at least one zinc finger
structure (Figure 3). Furthermore, the localization of all thirty-eight AhSPL proteins in
the nucleus was predicted (Supplementary Table S1), with results comparable to those of
the Arabidopsis SPL proteins [18]. Notably, a phylogenetic analysis, conserved motif, gene
structure, chromosomal localization, duplication analysis, cis-acting elements analysis, and
expression patterns analysis, as well as the prediction of the regulatory network and GO
enrichment analysis, were performed for the peanut SPL family members.

The analysis of the conserved motifs and gene structure could help in understand-
ing the evolution of the SPL family genes [41,42]. The analysis results show that the
peanut SPL members within the same group have a similar motif arrangement and gene
structure (Figure 2), supporting the reliability of the phylogenetic analysis and the evo-
lutionarily conserved features of the peanut SPL family. Other plant species, such as the
potato [38], tomato [39], and soybean [40], have been reported to exhibit a comparable
gene structure and evolutionary relationship among the SPLs. A previous study showed
that gene duplication events (segmental and tandem duplication) play a major role in
gene family expansion [43]. In the present study, segmental duplication events were the
main sources of the SPL family expansion in the peanut, rather than tandem duplication
events (Figure 4B). Comparable results have also been obtained in other plant SPL gene
groups, including maize [11], potato [38], and rice [10]. In addition, the twenty-four pairs
of AhSPL genes all exhibited Ka/Ks values less than one (Supplementary Table S2), sug-
gesting that purifying selection may have influenced the evolution of these AhSPL genes
in the peanut. Furthermore, duplicated AhSPL genes were found to be present in the
same evolutionary groups, such as AhSPL4/AhSPL24 and AhSPL8/AhSPL28 in group I,
AhSPL3/AhSPL21 and AhSPL11/AhSPL32 in group II, and AhSPL15/AhSPL35 in group III.
However, duplication gene pairs for five SPL genes (AhSPL13, AhSPL22, AhSPL23, AhSPL33,
and AhSPL36) were not found. This might be due to the loss during the evolution process
of the AhSPL genes. Notably, two segmental duplication gene pairs (AhSPL11/AhSPL32
and AhSPL12/AhSPL31) showed high expression levels in the pistil and veg.shoot of the
peanut, respectively (Figure 6A).

In order to gain a deeper understanding of the potential biological functions of the
SPL genes in peanut growth, development, and responses to biotic/abiotic stresses, a
comprehensive analysis of the cis-acting regulatory elements of the AhSPL genes was
conducted. This is helpful to better understand the expression of the AhSPL genes and their
response to biotic/abiotic stresses. We found that the promoter regions of the AhSPL genes
possess multiple regulatory elements (Figure 5). It has been reported that the abscisic acid
response element (ABRE) may be involved in multiple abiotic stresses [44–46]. Notably, the
presence of an ABRE element in the AhSPL gene promoters was partially associated with
gene expression levels under abiotic stresses. For instance, the transcriptomic (RNA-seq)
data indicate that AhSPL16, AhSPL25, and AhSPL36 were up-regulated under drought and
salt stresses (Figure 6B). Moreover, 86.8% (thirty-three of thirty-eight) of the AhSPL genes
contain an unequal number of anaerobic stimulation elements (AREs). The AREs were
first identified in the maize Adh-1 gene promoter, and are induced by drought and cold
stresses [47]. A total of 73.7% (twenty-eight of thirty-eight) of the AhSPL genes contain
ethylene response elements (EREs), suggesting that these AhSPL genes may be involved
in the peanut’s defense responses. Recent studies have shown that SPL transcription
factors are capable of regulating immune responses in plants [48]. However, further
experiments are needed to determine whether SPL proteins regulate peanut plant immunity.
Furthermore, almost all the AhSPL genes contain development-related elements, such as
the AAGAA motif. Taken together, the promoter analysis suggests that the AhSPL genes
may functions in regulating peanut development and biotic/abiotic stresses.

The expression patterns in different tissues and under abiotic stresses can better reveal
the potential biological functions of the AhSPL genes in the peanut. The results show that
the AhSPL genes exhibited different tissue expression patterns (Figure 6A), implying the
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functional diversity of these genes during peanut growth and development. What is more,
eighteen AhSPL genes were up-regulated under drought conditions, and five genes were
up-regulated under salt conditions (Figure 6B). These findings align with prior studies that
have shown an increased expression of multiple SPL genes in response to various stressors.
For example, some SPL genes in alfalfa (Medicago sativa L.) are induced by drought, salt,
and methyl jasmonate (Me JA) [49]. Several genes encoding SPL transcription factors
demonstrated a notable increase in expression levels in Fraxinus mandshurica when exposed
to ABA, cold, and salt treatments [50]. In addition, some AhSPL genes were also enriched
for pathways acting in response to external stimulus (GO:0009605) (Figure 9). These results
suggest the functional conservation of SPL genes in the regulation of environmental stresses.

Transcription factors are able to regulate gene expression at the transcriptional level.
In Arabidopsis, the WRKY53 transcription factor can regulate leaf senescence progression
by inhibiting the expression level of the SENRK1 gene [51]. AhbHLH121 improves salt
tolerance in the peanut by activating the expression of AhPOD, AhCAT, and AhSOD [52].
Significantly, it was observed that the AhSPL genes’ promoter regions contained multiple
anticipated binding sites for transcription factors, such as ERF, NAC, MYB, Dof, and
MICK_MADS (Figure 7). MicroRNAs (miRNAs) may also be implicated in SPL-regulated
gene networks. Ten of the seventeen SPL genes discovered in Arabidopsis were identified as
possible targets of miR156/157 [53]. Eighteen SPL genes in populus have been identified
as potential targets of miR156 [54]. In this study, a total of twenty-seven identified AhSPL
genes were potentially targeted by eleven miRNAs in the peanut (Figure 8). Among these,
most of the AhSPLs are ahy-miR156 potential targets. Notably, salt and drought stress
treatments can significantly induce the expression of AhSPL5 (Figure 6B), suggesting that
AhSPL5 might play a role in the response to salt and drought stresses. Further experiments
indicated that the overexpression of AhSPL5 can enhance salt tolerance in transgenic
Arabidopsis (Figures 10 and 11). Moreover, the overexpression of AhSPL5 can enhance
ROS-scavenging capability and promote the activation of stress-related genes (Figure 12),
supporting the potential role of more AhSPL genes in the response to stresses.

4. Materials and Methods
4.1. Identification and Annotation of SPL Transcription Factor Family in Peanuts

The sequences of the sequenced peanut species were downloaded from the Peanut-
Base (https://legacy.peanutbase.org/peanut_genome, accessed on 22 September 2023).
The SPL protein sequence data for Arabidopsis thaliana were obtained from the Arabidop-
sis Information Resource (TAIR, http://www.arabidopsis.org, accessed on 22 Septem-
ber 2023). First, the protein sequences of the Arabidopsis SPLs were utilized as queries
in the BLASTP program against the peanut genome, employing an E-value threshold
of 0.0001. Second, the HMM profiles of the SBP domain (PF03110) for SQUAMOSA-
PROMOTER BINDING PROTEIN were employed to identify the peanut SPL protein
sequences using HMMER (version 3.0), employing an E-value threshold of 0.0001. Each
output peanut SPL gene was further examined using Pfam (http://pfam.xfam.org/search,
accessed on 23 September 2023) [55] and SMART (http://smart.embl-heidelberg.de/, ver-
sion 9, accessed on 23 September 2023) [56]. The theoretical isoelectric point (pI) and
molecular weight (Mw) of the AhSPLs were examined using Expasy (http://web.expasy.
org/protparam/, accessed on 24 September 2023) [57].

4.2. Multiple Sequence Alignment and Analysis of Phylogenetics

A multiple sequence alignment (MSA) of the SBP domain in the AhSPL proteins was
performed using the DNAMAN tool (version 6, Lynnon Biosoft) [58]. A phylogenetic tree
was created using MEGA software (version 6.06) [59] with 1000 bootstrap tests, based on
the alignment result of the AhSPL and AtSPL protein sequences.

https://legacy.peanutbase.org/peanut_genome
http://www.arabidopsis.org
http://pfam.xfam.org/search
http://smart.embl-heidelberg.de/
http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
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4.3. Gene Structure and Conserved Domains

The genetic composition of the AhSPL genes, encompassing coding sequences and in-
trons, was examined through GSDS 2.0 software (http://gsds.cbi.pku.edu.cn/, accessed on
29 September 2023) [60]. The protein conserved domains were identified using the MEME
program (version 5.5.3, https://meme-suite.org/, accessed on 29 September 2023) [61]. The
maximum number of motifs was 10, with motif widths varying from 6 to 50 amino acids.

4.4. Chromosomal Location and Gene Duplication

The location data for the AhSPL genes were extracted from the peanut genome and
TBtools (version 1.120) [62] was employed to perform the mapping of the AhSPL genes
onto their respective chromosomes. The identification of tandem and segmental gene
duplications was conducted using the MCScanX program [63], and the visualization of the
obtained results was achieved through the utilization of Circos [64]. The syntenic analysis
of orthologous genes between the peanut and four other plant species was conducted
using TBtools (version 1.120) [62]. Subsequently, the rates of nonsynonymous (Ka) and
synonymous (Ks) substitutions (Ka/Ks) were calculated using DnaSP (version 5.0) [65],
considering the identification results of duplicated AhSPL genes.

4.5. Analysis of Cis-Acting Elements

The promoter sequences, located 2 kb upstream of the start codon (ATG), for thirty-eight
AhSPL genes were obtained from the peanut genome. The PlantCARE (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/, accessed on 25 September 2023) [66] database was
utilized to identify potential cis-acting elements.

4.6. Expression Pattern Analysis

The RNA-seq data (accession number: PRJNA291488, SRR8177741, and SRP093341)
were obtained from NCBI to analyze the AhSPL genes’ expression in 22 tissues and under
salt and drought stress conditions [67–69]. The expression levels (FPKMs) of the AhSPL
genes were transformed using log2. Subsequently, the expression patterns were visualized
using TBtools (version 1.120) [62].

4.7. Prediction of Factors Involved in Regulating AhSPLs’ Expression

To explore the regulation of AhSPL gene expression by factors, the transcription factors
(TFs) and miRNAs were predicted. The 2.0 kb promoter sequences of the AhSPL genes
were submitted to the PlantRegMap website (http://plantregmap.gao-lab.org/, accessed
on 26 September 2023) [70] to investigate the potential binding sites for the TFs. All the
potential TFs were then visualized using TBtools (version 1.120) [62]. In addition, the
coding region sequences of all the AhSPL genes were submitted to the psRNATarget server
(http://plantgrn.noble.org/psRNATarget/, accessed on 26 September 2023) [71] for predict-
ing the miRNAs. Cytoscape (version 3.9.1) [72] was used to generate the regulatory map.

4.8. GO (Gene Ontology) Enrichment Analysis

All the AhSPL protein sequences were submitted to the eggNOG website (http://
eggnog-mapper.embl.de/, accessed on 27 September 2023) to perform the GO annotation
analysis [73]. GO enrichment was then visualized using TBtools (version 1.120) [62].

4.9. RNA Extraction and qRT-PCR

RNA samples from Arabidopsis leaves were extracted with an Ultrapure RNA Kit
from cwbiotech in Beijing, China, and then converted into cDNA using a PrimeScript™RT
reagent Kit (TaKaRa). The determination of the expression levels of four stress-related genes
from Arabidopsis, DREB1A (AB013815.1), ERD11 (D17672.1), ERF5 (NM_124094.3), and
RAB18 (X68042.1), was conducted. The Arabidopsis Act2 gene served as the reference for the
internal controls during the qRT-PCR reactions, which were carried out with 40 cycles on a
Roche LightCycler 480 Real-Time PCR machine. Data from three replicates were obtained

http://gsds.cbi.pku.edu.cn/
https://meme-suite.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://plantregmap.gao-lab.org/
http://plantgrn.noble.org/psRNATarget/
http://eggnog-mapper.embl.de/
http://eggnog-mapper.embl.de/
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and analyzed using the 2−∆∆CT method. The primer sequences used in the current study
are listed in Supplementary Table S4.

4.10. Generation of AhSPL5 Transgenic Arabidopsis Plants

To study the overexpression, the complete coding sequence (CDS) of AhSPL5 was
amplified with PCR, and then inserted to the pCHF3 vector at the Sac I site using In-
fusion (Clontech) technology, leading to the development of plasmid 35S::AhSPL5 after
confirmation through sequencing. The constructed plasmid was then introduced into
Agrobacterium GV3101 competent cells. Positive Agrobacterium colonies were identified and
used to transform Arabidopsis Col-0 plants using the floral dip technique [74]. To produce
AhSPL5 overexpression plants, the T0 generation seeds were screened on 1/2 MS media
containing 50 mg/L kanamycin. Following this, T3 lines with homozygous genotypes were
chosen for additional phenotypic assessment.

4.11. Seedling Growth Assays

In the seed germination assays, Arabidopsis seeds were initially sterilized with 75%
alcohol and subsequently distributed evenly onto 1/2 MS media supplemented with
100 mM NaCl. The seeds were subjected to stratification at 4 ◦C in darkness for 2 days
before being transferred to a growth chamber set at 23 ◦C under continuous light conditions.
Following a cultivation period of 6 days, the germination rates were determined with
three replicates.

The Arabidopsis seedlings were first grown on 1/2 MS medium for a week prior to
being moved to 1/2 MS medium with the addition of 100 mM and 150 mM NaCl. After
an additional 7-day period of incubation, the primary root length was measured using
three replicates.

4.12. Physiological Measurements

The physiological parameters were assessed for fully expanded leaves sourced from
the plants subjected to salt-stressed conditions. The levels of malondialdehyde (MDA)
and the enzymatic activities of superoxide dismutase (SOD), peroxidase (POD), and cata-
lase (CAT) were quantified following established protocols [75], with three biological
replicates conducted.

5. Conclusions

In this study, the peanut SPL gene family was investigated through the utilization of
bioinformatics analysis, and a total of thirty-eight AhSPL members were identified. These
members were classified into seven groups, along with their Arabidopsis homologs. The
results offer an understanding of the different facets of the peanut SPL gene family, such
as their physical and chemical characteristics, evolutionary connections, distribution of
domains, location on chromosomes, composition of motifs, structure of genes, and patterns
of expression. Moreover, a number of genes, including AhSPL5, AhSPL16, AhSPL25, and
AhSPL36, showed increased expression levels in response to drought and salt conditions.
The overexpression of AhSPL5 is able to improve the ability of transgenic Arabidopsis to
tolerate salt by enhancing its capacity to remove ROS and by promoting the activation
of stress-related genes. The findings suggest that the AhSPL genes play a crucial role
in controlling the peanut’s reactions to environmental stresses and growth. The precise
function of each AhSPL gene in peanut growth and its reaction to stress needs to be
confirmed in future research through the utilization of advanced genome editing and
functional genomics techniques. This research establishes a theoretical basis for future
studies on the roles of the SPL genes in enhancing the peanut’s resistance to abiotic stresses.
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Supplementary Materials: The following supporting information can be downloaded at https://
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AhSPL proteins; Table S1: Detailed information about the identified peanut SPL family members;
Table S2: Detailed information about the segmental duplication gene pairs; Table S3: The syntenic
pairs between the peanut and other four plant species; Table S4: The primers used in this study.
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