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Abstract: Citrus is the largest fruit crop around the world, while high nitrogen (N) application
in citrus orchards is widespread in many countries, which results not only in yield, quality and
environmental issues but also slows down the establishment of citrus canopies in newly cultivated
orchards. Thus, the objective of this study was to investigate the physiological inhibitory mechanism
of excessive N application on the growth of citrus seedlings. A pot experiment with the citrus
variety Orah (Orah/Citrus junos) at four N fertilization rates (0, 50, 100, and 400 mg N/kg dry soil,
denoted as N0, N50, N100, and N400, respectively) was performed to evaluate the changes of root
morphology, biomass, N accumulation, enzyme activities, and so on. The results showed that the
N400 application significantly reduced the total biomass (from 14.24 to 6.95 g/Plant), N accumulation
(from 0.65 to 0.33 g/Plant) and N use efficiency (92.69%) in citrus seedlings when compared to the
N100 treatment. The partial least squares pathway model further showed that the decline of biomass
and N accumulation by high N application were largely attributed to the reduction of root growth
through direct and indirect effects (the goodness of fit under the model was 0.733.) rather than
just soil N transformation and activity of root N uptake. These results are useful to optimize N
management through a synergistic N absorption and utilization by citrus seedlings.

Keywords: excessive nitrogen application; nitrogen uptake; root morphology characteristics

1. Introduction

Citrus is one of the most important economic crops in the world. Currently, the planting
area and yield of citrus in China are increasing in trend, and they are now ranked first in the
world [1]. According to the Food and Agriculture Organization survey statistics, China’s
citrus planting area was 3.03 × 107 hectares, with a yield of approximately 4.67 × 108 tons in
2021 [2]. Fertilizer, as the “grain” of food, is known as the “life element” of plants. Nitrogen
is not only a macromolecular component of plant nucleic acids, proteins, chlorophyll,
hormones, and various vitamins, which plays a crucial role in the growth, yield, and quality
of citrus trees [3], but also a signaling substance that regulates many plant processes, such
as resistance to biotic and abiotic stresses, root development, dormancy, flowering, leaf
expansion, seed germination, hormone signaling, and the below-ground traits related to
root architecture, etc. [4–6]. In particular, NO affects plant root conformation and nutrient
acquisition. Previous studies have demonstrated that the regulation of root structure and
morphology is partly controlled by the effective free inter-root NO, and that inter-root
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NO also influences the rate of N cycling between plant and soil through nitrification
and denitrification processes [7,8]. Therefore, farmers seek high yields and abundant
harvests by applying large amounts of chemical fertilizers, particularly chemical nitrogen
(N) fertilizer [9]. However, the negative effects of excessive N application on citrus plants
are manifested as growth inhibition and metabolic dysregulation in the form of decreased
biomass, morphological abnormalities, and reduced growth rates [10]. Previous studies
have shown that a nitrogen application of 0.6 kg plant−1 significantly increased fruit
yield and quality in citrus orchards in China [11]. At the same time, reducing N fertilizer
application not only does not reduce yield but also improves citrus yield and quality,
reduces NO3

− content in the product which is harmful to consumers [12,13], and also
reduces soil and water pollution problems in agricultural areas [14]. Therefore, reducing
the application of N fertilizer is essential for citrus.

Urea, as one of the most commonly used N fertilizers in the world, cannot be directly
absorbed and utilized by plants when applied to soil. It is mainly utilized by crops through
urease catalysis and hydrolysis [15]. Citrus roots mainly absorb soil NH4

+-N and NO3
−-N for

the synthesis of amino acids through various enzymes [16]. Nitrate reductase (NR) is one of the
key enzymes in plant N assimilation and root structural remodeling [17], which is responsible
for the reduction of NO3

− to NO2
− in plant cells [18]. Nitrite reductase is the second enzyme

involved in NO3
− reduction process, which to some extent directly reflects the nutritional

status and N assimilation level of plants [19]. Glutamine synthetase and glutamate synthetase
are the two main enzymes of NH4

+ assimilation, with glutamine synthetase catalyzing the
first step of N assimilation in plant cells [20]. Among them, the activity of nitrate reductase
(NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT),
and other key enzymes involved in N metabolism have been used to evaluate representative
biochemical indicators for plant absorption, transportation, and assimilation of N [21]. In
recent years, most studies have been conducted on N transformation in citrus orchard soil [22],
root N absorption, and assimilation [23,24]. Previous studies have shown that a significant
correlation between the soil ammonia oxidation rate and the abundance of ammonia-oxidizing
archaea (AOA) or ammonia-oxidizing bacteria (AOB) was found in the response of acidic red
soils to fertilization in southern China [25]. N uptake and the utilization efficiency of citrus
seedlings decreased with increasing N applications [13], and either high or low N reduced
plant root uptake and root N concentration, destroying plant nutrition and growth [26];
whereas, optimized fertilization promoted root growth and nutrient uptake for healthy and
sustainable orchard development [24]. Therefore, the amount of N applied plays an important
role in soil N transformation and root N uptake and utilization.

However, there are few reports on the effects of excessive N application on the growth
and N accumulation of citrus seedlings. We assumed that excessive N application could be
the main factor leading to a decrease in root growth and N accumulation. The aim of this
study was to investigate the activity of N metabolism enzymes and related N indicators
in plants and soil under unbalanced N application rates in order to clarify the soil N
transformation process, citrus seedling growth, and N accumulation characteristics for a
rational N application to citrus seedlings.

2. Results
2.1. Effects of Different N Application Rates on Soil N Conversion-Related Enzymes and
Microorganisms

Under different N application levels, soil urease activity (Figure 1a) ranged from 0.07 to
0.17 mg d−1g−1 and showed a trend of first increasing and then decreasing with the increase
of N application rates. Compared with the N400 application, N50 and N100 application
rates significantly increased soil urease activity by 228.6% and 242.9%, respectively. The
gene copies of soil AOA (Figure 1b) and AOB (Figure 1c) also showed a trend of first
increasing and then decreasing with an increase of N applications, and the highest values
were 8.25 × 107 and 4.62 × 106 (gene copies/g soil) in the N100 application, respectively.
Compared with the N50 and N100 applications, the N400 application significantly inhibited
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the gene copies of soil AOA and AOB, which decreased by 77.3% and 62.1%, respectively,
compared to the optimized N application. In addition, the gene copy numbers of AOA
were 10 times than these of AOB. Therefore, excessive N application (N400) significantly
inhibited soil N transformation-related enzyme activities and microorganisms.
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Figure 1. Effects of N fertilization on soil urease activity (a), gene copies of AOA (b), ammonia-
oxidizing archaea) and AOB (c), ammonia-oxidizing bacteria. N0, N50, N100, and N400 represent N
fertilization rates at mg/kg dry soil. Data (means ± SD, n = 3) followed by different letters represent
significant differences between treatments at p < 0.05.

2.2. Effects of Different N Application Rates on Soil N Content

Soil total N, NH4
+-N, NO3

−-N, and soil inorganic N all increased with the increase of
N application rates. Soil N was the lowest at 0.48 k/kg under N0 (Figure 2a), 0.53 mg/kg
under N0 (Figure 2b), 0.37 mg/kg under N0 (Figure 2c), and 0.90 mg/kg under N0
(Figure 2d), respectively. Soil total N, NH4

+-N, NO3
−-N, and soil inorganic N content

were the highest at 0.63 k/kg (Figure 2a), 12.05 mg/kg (Figure 2b), 39.34 mg/kg (Figure 2c),
and 51.40 mg/kg (Figure 2d), respectively. Compared with the N100 application, the N400
application significantly increased the content of soil total N, NH4

+-N, NO3
−-N, and soil

inorganic N, increasing by 21.1% (Figure 2a), 1573.6% (Figure 2b), 97.2% (Figure 2c), and
148.6% (Figure 2d), respectively. Compared with other N treatments, the N400 application
significantly increased the soil NH4

+-N and NO3
−-N contents, which were 16.74 (Figure 2b)

and 1.97 (Figure 2c) times higher than those under the N100 application, respectively.
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Figure 2. Effects of N fertilization on soil total N content (a), soil NH4
+-N content (b), soil NO3

−-N
content (c), and soil inorganic N (d). N0, N50, N100, and N400 represent N fertilization rates at mg/kg
dry soil. Data (means ± SD, n = 3) followed by different letters represent significant differences
between treatments at p < 0.05.

2.3. Effects of Different N Application Rates on Root N Content

Under different N fertilization levels, root total N (Figure 3a), shoot total N (Figure 3a),
root NH4

+-N (Figure 3b), and NO3
−-N (Figure 3b) showed a trend of first increasing

and then decreasing with an increase of N applications in the range of 8.66~25.13 g kg−1,
23.47~44.96 g kg−1, 75.53~113.54 mg kg−1, and 195.91~228.41 mg kg−1, respectively, and
the shoot total N content was greater than root total N (Figure 3a). Compared with the
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N400 application, the N100 application increased root and branch total N by 24.10% and
8.86%, respectively (Figure 3a). The N100 treatment had the highest root total N, while
the lowest root total N was under N0 (Figure 3b). Except for N0, root NO3

−-N had higher
values than all other N fertilization rates, compared to root NH4

+-N (Figure 3b). Compared
with the N100 application, the N400 application significantly inhibited root absorption of
NH4

+-N and NO3
−-N by 33.48% and 11.44%, respectively (Figure 3b). Compared with the

N50 application, the N100 application significantly increased root NO3
−-N from 195.91

to 228.42 mg/kg (Figure 3b). Compared with the N0, root NH4
+-N was significantly

increased under all other N fertilization rates, while there was no significant root NH4
+-N

difference between N50 and N100 (Figure 3b). Thus, excessive N application can decrease
root N content.
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2.4. Effects of Different N Application Rates on Enzymes Related to Root N Transformation

Under different N applications, root NR and NiR activities showed a trend of first
decreasing and then increasing with the increase of the N rate (Figure 4a,b), while root
GS and GOGAT activities showed a trend of first increasing and then decreasing with the
N rate (Figure 4c,d). There were significant differences in root NR (Figure 4a) and NiR
(Figure 4b) activities among different N applications. Compared with the N100 application,
the N400 application significantly increased the activity of root NR (Figure 4a) and NiR
(Figure 4b) by 143.16 and 9.31 µmol/h/g, respectively, which were 26.57% and 144.36%
higher than the N100 application treatment. Among the root GS and GOGAT activities,
the N100 application treatment had the highest GS and GOGAT activities at 7.01 and
0.060 µmol/h/g, respectively. Root GS and GOGAT activities were lowest at 5.47 and
0.03 µmol/h/g, under N0, respectively. Compared with the N100 application, the N400
application inhibited the enzyme activity of root GS and GOGAT.
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Figure 4. Effects of N fertilization on nitrate reductase activity ((a), NR), nitrite reductase activity
((b), NiR), glutamine synthetase activity ((c), GS), and glutamate synthase activity ((d), GOGAT). N0,
N50, N100, and N400 represent N fertilization rates at mg/kg dry soil. Data (means ± SD, n = 3)
followed by different letters represent significant differences between treatments at p < 0.05.
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2.5. Effects of Different N Application Rates on the Development of Citrus Root Systems

Under different N applications, the total root length, root surface area, root volume,
and total biomass of citrus seedlings showed a trend of first increasing and then decreasing
with an increase of the N rate (Table 1). Among them, the total root length, root surface
area, root volume, total root length, and total root biomass were the highest under the
N100 application treatment. Compared with the N100 application, the N400 application
significantly inhibited total root length, root surface area, root volume, and total root
biomass, reducing them by 48.08%, 43.27%, 43.52%, and 51.19%, respectively. Among
various N rates, there was no significant difference in total root length, root surface area, root
volume, and total biomass between N0 and N50, while there was a significant difference
between other N treatments.

Table 1. Effects of different N levels on total root length (cm), root surface area (cm2), root volume
(cm3), and total biomass (g) of citrus seedlings. Data (means ± SD, n = 3) followed by different letters
represent significant differences between treatments at p < 0.05.

Total Root
Length

Root Surface
Area Root Volume Total Biomass

mg/kg cm cm² cm³ g/Plant DW

N0 2369 ± 180.40 ab 477 ± 110.24 ab 7.68 ± 1.10 b 9.88 ± 0.77 b
N50 2525 ± 245.79 ab 494 ± 60.36 ab 7.85 ± 0.57 b 11.47 ± 0.48 b

N100 3222 ± 249.72 a 587 ± 49.73 a 10.11 ± 0.61 a 14.24 ± 1.03 a
N400 1673 ± 384.24 c 333 ± 68.13 b 5.71 ± 0.92 c 6.95 ± 0.99 c

There were significant differences in the growth of citrus seedlings under different
N application rates (Figure 5). Compared with N50 and N100 treatments, under N0 and
N400 root growth was limited as the root system was sparse and short, and the overall root
length was short. Among them, the growth of citrus seedlings was the worst under N400,
while the best under N100.
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2.6. Effects of Different N Application Rates on the Growth of Citrus Seedlings

Under different N rates application, the shoot biomass trend of citrus seedlings in
each treatment was N100 > N50 > N0 > N400, and the biomass trend of various organs
in citrus seedlings was root > leaf > branch (Table 2). The biomass and root-to-shoot ratio
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of various parts of citrus seedlings showed a trend of first increasing and then decreasing
with an increase of the N rate. Compared with the N100 application, the N400 application
significantly reduced biomass production in roots, branches, and leaves, which were
51.19%, 20.75%, and 33.42% lower than with N100, respectively. Compared with the
N0 application, both the N50 and N100 applications increased the biomass production
of various organs in citrus seedlings. Among them, there was a significant difference
in biomass production between different parts of citrus seedlings treated with the N100
application and the N0 application. Under various N application levels, the root-to-shoot
ratio was lowest at 0.78 under the N400 application treatment and highest at 1.12 under the
N100 application treatment.

Table 2. Effects of different N levels on leaves, branches, roots, shoots, and the root/shoot relationship
of citrus seedlings. Data (means ± SD, n = 3) followed by different letters represent significant
differences between treatments at p < 0.05.

Treatment Leaf Branch Root Shoot Root/Shoot Ratio

mg/kg g/Plant DW g/Plant DW g/Plant DW g/Plant DW g/Plant DW

N0 5.54 ± 0.74 b 3.90 ± 0.79 b 9.88 ± 0.77 b 9.35 ± 0.17 c 1.06 ± 0.08 ab
N50 5.86 ± 0.49 b 4.97 ± 0.44 ab 11.47 ± 0.48 b 10.83 ± 0.72 b 1.06 ± 0.03 ab

N100 7.42 ± 0.89 a 5.30 ± 0.63 a 14.24 ± 1.03 a 12.72 ± 0.31 a 1.12 ± 0.07 a
N400 4.94 ± 0.49 b 4.20 ± 0.74 ab 6.95 ± 0.99 c 9.14 ± 1.22 c 0.78 ± 0.22 c

2.7. Effects of Different N Fertilizer Application Rates on N Uptake and Utilization Efficiency of
Citrus Seedlings

Under different N rates, the total N accumulation ranked as N100 > N50 > N400 > N0
(Table 3). Between different organs, N concentrations in citrus seedlings were leaf > root
> branch. While the total N content in different organs was root > leaf > branch. Total N
concentration and N accumulation between citrus organs showed a trend of first increasing
and then decreasing with an increase of N rates. Compared with the N100 application, the
N400 application significantly reduced the total N concentration and N accumulation in
the different organs of citrus seedlings. Compared with the N100 application, the total N
accumulation in the N400 application treatment decreased by 49.23%. Compared with the
N50 application, there was no significant difference in the N accumulation in the different
citrus organs, but there was in the whole seedling under the N400 application. Among
the various N rates, the highest N fertilizer utilization rate was under N100 at 56.60%, and
the lowest was 4.14% under N400, indicating a 13.67 times higher fertilizer utilization rate
under the N100 application treatment than under the N400 application treatment.

Table 3. Effects of different N levels on total N and N accumulation in roots, stems, and leaves of
citrus seedlings and N use efficiency (NUE) in plants. Data (means ± SD, n = 3) followed by different
letters represent significant differences between treatments at p < 0.05.

Treatment Root
Total N and N Accumulation

Stem
Total N and N Accumulation

Leave
Total N and N Accumulation

Total Plant N
Accumulation NUE

mg/kg g/kg DW g/Plant DW g/kg DW g/Plant DW g/kg DW g/Plant DW g/Plant DW %

N0 8.66 ± 0.52 d 0.09 ± 0.11 c 8.19 ± 0.31 d 0.03 ± 0.01 c 15.28 ± 0.18 d 0.08 ± 0.01 c 0.2 ± 0.01 d -
N50 15.30 ± 0.25 c 0.18 ± 0.01 b 14.51 ± 0.69 c 0.07 ± 0.01 b 25.34 ± 0.49 b 0.15 ± 0.01 b 0.4 ± 0.02 b 48.90
N100 25.13 ± 0.79 a 0.36 ± 0.06 a 18.04 ± 0.12 a 0.10 ± 0.01 a 26.92 ± 0.78 a 0.20 ± 0.03 a 0.65 ± 0.05 a 56.60
N400 20.25 ± 1.58 b 0.14 ± 0.03 b 16.27 ± 0.60 b 0.07 ± 0.01 b 25.03 ± 0.29 c 0.12 ± 0.01 b 0.33 ± 0.02 c 4.14

2.8. Correlation Analysis and Principal Component and Partial Least Squares Path Analysis of N
Absorption-Related Indicators

There was a significant correlation between soil N and root nitrogen transformation-
related enzymes activities, as well as between soil nitrogen transformation-related microbial
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and enzyme activities and root morphological characteristics (Figure 6). Soil total N, NH4
+-

N, NO3
−-N, or inorganic N is significantly positively correlated with metabolic indicators

such as root NR and NiR activity. In addition, there was a significantly positive correlation
between soil urease, AOA or AOB, and total root length, root surface area, root volume,
aboveground biomass, and root biomass production.
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Principal component analysis (PCA) was used to compare the similarity of N absorption-
related indicators in citrus seedlings under different N rates. The explanatory values of
the first and second principal component axes for citrus N absorption indicators were
53.12% and 36.93%, respectively (Figure 7). On the N level, according to the PCA1 axis, the
order ranked as N100 > N50 > N400 ≈ N0, indicating that N absorption-related indicators
changed significantly with an increase of the N rate and N100 had the most significant
impact on N absorption indicators. Among the principal components of PC1, the positive
load weights of soil AOA, AOB, total N accumulation, and root biomass were highest,
while the negative load weights of root NiR and soil ammonium N were highest. Among
the principal components of PC2, the positive load weights of soil total N, ammonium N,
nitrate N, and inorganic N were highest, while the negative load weights of soil urease,
root surface area, and root biomass were highest. Based on this, the above indicators can be
used as the core indicators for nitrogen absorption in citrus.

Finally, the relationships among the core indicators of citrus N uptake (soil N, soil N
transformation-related microbes and enzyme activities, root N metabolizing enzyme activi-
ties, root surface area and root biomass, and root total N and plant total N accumulation)
were analyzed under different N rates using the partial least squares path model (PLS-PM).
The overall fit of the model was GOF = 0.733 (Figure 8). Studies have shown that microbial
and enzyme activities related to soil N transformation and enzyme activities related to
root N metabolism have a significant effect on root growth; the soil nitrogen content had a
direct negative effect on root biomass (λ = −0.1194) and surface area (λ = −0.6371). As soil
nitrogen increased, it affected root enzyme activities through soil nitrogen transport-related
enzymes and microorganisms (λ = −0.576, p < 0.001) and indirectly affected root biomass
production and N accumulation. These processes can directly or indirectly affect N uptake
by roots and thus N accumulation in the plant organs.
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3. Discussion
3.1. Effects of N Application on Soil N Transformation and Supply

Soil enzyme activity reflects the amount of soil nutrients, and it is one of the important
indicators for evaluating soil fertility [27]. The results of this study showed that soil urease
activity increased and then decreased with the increase of N applications, in which the N50
and N100 applications increased soil urease activity, and the N400 application significantly
decreased soil urease activity. This is consistent with the changing pattern of urease ac-
tivity and diversity of urea bacterial community under long-term urea applications [28].
And compared with the control N0 treatment, soil urease activity under excess N appli-
cations was lower [29], which is consistent with the results of this study because excess
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nitrogen application led to an increase in soil NO3
−-N accumulation, and a high NO3

−-N
concentration could lead to a decrease in the activities of protease and urease [30].

Soil microorganisms, as an important part of the soil ecosystem, play a crucial role
in maintaining soil fertility, improving soil structure, and decomposing organic matter
and minerals that are not easily absorbed by plants [31]. Soil AOA and AOB not only
play an important role in global N cycling, but also their catalyzed ammonia oxidation
process is a first and rate-limiting step of the nitrification process [32]. In acidic agricultural
soils, the abundance of soil AOB was significantly lower than that of AOA [33,34], and the
application of urea significantly increased the abundance of soil for both AOA and AOB
genes, with a higher AOA abundance [35]. These are consistent with our findings, and
the reason may be that long-term N applications led to an increase in soil NH4

+-N and
NO3

−-N concentrations [36], which stimulated soil nitrification and consequently increased
the population of soil AOA and AOB [37]. In this study, total soil N, NH4

+-N, NO3
−-N and

soil inorganic N increased with increasing N applications. This is consistent with previous
studies on potato [38], corn [39], and tomato [40], where soil N content was significantly and
positively correlated with N applications and increased with N applications. It was found
that soil AOB gene abundance tended to increase and then decrease with the increase of
N fertilizer applications, with the highest number at the N100 rate. However, with the
increase of N application, the number of soil AOA gene copies decreased significantly, but
these values were higher than the number of AOB gene copies [41], which were consistent
with the N response of soil AOB, but not soil AOA in this study. The reason for this
difference might be due to different soil types and N rates. In addition, soil type is a major
determinant of AOA community structure [42], while soil AOB and AOA can have different
growth patterns under different soil N conditions in the same soil type [43].

3.2. Effects of N Application on N Uptake and Transport-Related Indicators in Citrus Roots

The activities of N-assimilating enzymes play a crucial role in maintaining plant
growth and development. Previous studies have shown that N supply can increase the
activity of key enzymes involved in N metabolism [44,45], e.g., low N resulted in enhanced
NR activity, but high N caused a decrease in NR activity [17]. These were consistent with the
results of the present study that NR and NiR activities were higher in roots under N0 than
under the N50 application, while GS and GOGAT showed a trend of increasing and then
decreasing with an increasing N rate, and that N400 significantly inhibited their activities.
The reason is that the activity of root GS/GOGAT gradually increased with the increase
of NH4

+ concentration, and when the NH4
+ concentration exceeded 3 mM, it would

inhibit the NH4
+-induced increase of GS/GOGAT activity [46], which caused the unique

GS/GOGAT pathway in the plant tissues to stop synchronizing its action [47], and thus
caused the GS and GOGAT activities to be reduced under excess N. The difference with the
trends of NR and NiR might be due to the fact that excessive N application stimulated the
activities of root NR and NiR although it inhibited the activities of GS/GOGAT pathways.
This is consistent with the results that appropriately increasing N levels can increase the
activities of N-assimilating enzymes such as NR and GS to reach a synchronous increase,
and that excessive N levels can increase NR but decrease the activity of GS [48]. Meanwhile,
high N stress also leads to the down-regulation of gene expressions of NR, NiR, GS, and
GOGAT [49]. Studies in yellow fruit citrus demonstrated that a moderate increase in N
fertilization significantly increased the activities of key N metabolizing enzymes (NR, NiR,)
and the expression of their related genes in roots, leaves, and fruits [23].

In summary, a moderate amount of N increased the activities of key enzymes for N
metabolism in roots, while excessive N inhibited their enzymatic activities. The above
results are also further demonstrated in Figure 3. Root NH4

+-N and NO3
−-N were high

under N100, while they were significantly reduced under N400.
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3.3. Effects of N Application on the Root Morphology of Citrus

The plant root system is the only one in direct contact with the soil and has a variety of
important physiological functions such as absorption, synthesis, secretion, and sensing and
plays a crucial role in crop yield, and any environmental factors and cultivation measures
affecting root growth will affect the growth and development of the whole plant [50–52].
Nitrogen is known as the “life element”, which is involved in the composition of a variety
of metabolic and active substances in plants, and a lack of N can lead to weakened root
growth, altered root structure, reduced plant biomass, and reduced photosynthesis. In
contrast, high N inhibits the elongation of primary roots and the formation of lateral
roots [48], and this growth inhibition will lead to a reduction in the biomass and root–
crown ratio of citrus [53], which in turn will result in the growth inhibition and metabolic
dysfunction of citrus plants, which is manifested as a decrease in biomass, morphological
abnormalities, and a reduction in growth rate [54]. In addition, excessive N application
may cause ammonium toxicity phenomena, such as reduced plant biomass, altered root
conformation, a decreased root–crown ratio, and leaf chlorosis [10]. The results of this study
show that the root growth of citrus seedlings differed significantly under different N rates.
Under the N400 application, the root growth was limited as sparse and short, and was best
under the N100 application. Meanwhile, the root length, root surface area, root volume,
root–crown ratio, and biomass of all organs, total N concentrations, and N accumulations
of citrus seedlings showed a tendency to first increase and then decrease with the increase
of N rates. These were in agreement with the results of previous studies on spruce [55],
cotton [56], and passion fruit [57]. The idea was further supported that the root dry weight,
root length, and root surface area of rice were increased with an increase of N within a
certain range of N applications [58]. However, when excess N is applied, it significantly
inhibits corn root elongation and leads to a reduction in root dry weight [59]. This is due to
the fact that high nitrate levels in the buds inhibit starch synthesis, which in turn reduces
root sugar levels [60]. This study found through principal component analysis (PCA) and
the partial least squares path model (PLS-PM) that N fertilizer application into soil directly
or indirectly affects root biomass and surface area through soil N transformation-related
microorganisms and enzyme activities, as well as root N assimilation-related enzyme
activities, thereby causing a significant impact on the total nitrogen accumulation of plants.
It can be inferred that under high-nitrogen conditions in the acidic red soil areas of southern
China, the nitrogen assimilation and utilization ability of citrus plants directly affects their
growth and development [61,62]. Previous studies also showed that excessive nitrogen
application suppressed the expression of nitrogen genes related to nitrogen transport and
genes for assimilation-related enzyme activities in the root system [10,23]. Therefore, an
excessive application of nitrogen fertilizer can inhibit root growth.

In summary, the N400 application inhibited the root growth of citrus seedlings, which
in turn led to a reduction of the root–shoot ratio, plant biomass production, and N ac-
cumulation. In contrast, the N100 application promoted the growth of citrus seedlings
and increased plant N uptake. In terms of N fertilizer utilization, the N100 application
treatment had the highest N utilization rate at 56.6%, followed by the N50 application, and
the N400 application treatment significantly inhibited plant N uptake of citrus seedlings.

4. Materials and Methods
4.1. Experimental Location

The pot experimental site was conducted at the Nation Purple Soil Fertility and
Fertilizer Effect Monitoring Base at the Southwest University campus (30◦26′31′′ N and
106◦26′45′′ E) in Beibei District, Chongqing, southwest China, which has a subtropical
monsoon humid climate. The soil is classified as a Eutric Regosol [63]. According to
the United States Department of Agriculture (USDA) soil taxonomy, the soil belongs to
entisol [64]. It is within a typical hill area with an elevation of about 385 m, a mean annual
rainfall of 400–500 mm, and a mean annual temperature of 15–22 ◦C.
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4.2. Experimental Design

A total of 60 one-year-old citrus seedlings of fertile orange (Orah) grafted on fragrant
orange (Citrus junos Sieb. ex Tanaka) rootstocks were planted in March 2021 in plastic
pots. The 60 citrus seedlings were each transplanted into pots (height 30 cm, diameter
25.5 cm) filled with 8 kg of purple soil. (The soil is classified as a Eutric Regosol [63], see
its basic physiochemical properties in Table 4 [65]). Four nitrogen (N, urea) fertilization
treatments were applied as (1) N0, zero-N control; (2) N50, 50 mg N/kg DW soil; (3) N100,
100 mg N/kg DW soil; and (4) N400, 400 mg N/kg DW soil [66]. A total of four N-level
treatments with 15 replicates per treatment and a total of 60 pots (1.5 m apart from each
other) were completely randomized and arranged in the experimental site. (Nation Purple
Soil Fertility and Fertilizer Effect Monitoring Base at the Southwest University campus.)
Among them, phosphorus and potash fertilizers were used as basal fertilizers mixed
with soil in plastic pots. Calcium superphosphate was used for phosphorus at a rate of
100 mg kg−1, and potassium sulfate was used for potassium at a rate of 50 mg kg−1 [67];
whereas, between March and October 2021, urea was sprayed uniformly, dissolved in water,
over 14 applications to the soil surface. (Fertilizer was applied every two weeks at the same
rate for each application.) The rest would be managed according to conventional citrus
planting practices, and the trial ended in March 2022.

Table 4. Basic physiochemical properties of the test soil.

pH Soil:Water = 1:2.5
Bulk Density OM TN NO3−-N NH4

+-N Olsen-P Available K

g/cm³ g/kg g/kg mg/kg mg/kg mg/kg mg/kg

5.47 1.43 8.82 0.57 12.5 2.95 37.4 161

Note: OM: Organic matter; TN: Total N.

4.3. Determination of Total N and Root Morphology in Plant Roots, Branches, and Leaves

Six pots were sampled for each treatment, with three pots for physiological determi-
nation and the other three pots for biomass determination, sampled separately as leaves,
branches, main roots, and lateral roots on 15 March 2022. The harvested plant tissues were
oven-dried at 65 ◦C for 72 h and ground into 1 mm powder which was digested with
H2SO4-H2O2; then, N concentrations were determined using the Kjeldahl method. The
remaining fresh plants and soil samples were quickly frozen in liquid N and stored in a −80
◦C refrigerator for the subsequent analysis of other parameters. Data of root volume, root
length, and root surface area were first scanned using a root scanner EPSON (Expression
10000XL 1.0, Epson Inc., Suwa City, Japan) and then analyzed using WinRHIZO Pro (S) v.
2004b software (Rcgcnt Instrument cnt Inc., Québec City, QC, Canada).

Total biomass (g tree−1) = shoot biomass + root biomass.

Root-to-shoot ratio = root biomass/shoot biomass.

Amount of N accumulation of each organ (g tree−1) = N concentration × total dry
mass of each organ.

N utilization efficiency (%) = (N accumulation under N application treatment − N accumulation under
no N application treatment)/amount of N applied × 100%.

4.4. Determination of Soil Urease, Ammonia Nitrate N, Root Enzyme Activity, and Ammonia
Nitrate N

Soil ammonium and nitrate N were analyzed and measured using a flow analyzer. Soil
urease (EC3.5.1.5), other enzyme activities, root ammonium, and nitrate N were measured
using commercial test kits (Comin Biotechnology Co., Ltd., Suzhou, China) according
to the manufacturer’s instructions. The measured enzymes included nitrate reductase
(NR, EC1.7.1.3), nitrite reductase (NiR, EC1.7.1.15), GS glutamine synthetase (EC6.3.1.2),
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and GOGAT glutamic acid synthetase (EC1.4.1.14) [68]. Fresh citrus roots were ground
at 4 ◦C, and the activities of different enzymes were determined with commercial assay
kits. NR and GOGAT activity of roots were extracted and determined according to the
method described by Li et al., and their activity was represented by an absorbance value at
340 nm [69]. NiR and GS activity of roots was extracted and determined according to the
method described by Zahoor et al., and their activity was represented by an absorbance
value at 540 nm [70].

4.5. Determination of Soil AOA and AOB

Soil DNA was extracted using PowerSoil® DNA isolation kits (MoBioInc., Carlsbad,
CA, USA), following the manufacturer’s instructions. Extracted DNA was quantified and
checked for purity with a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and by electrophoresis using a 1.5% agarose gel. Extracted DNA was
stored at −20 ◦C [25].

Real-time quantitative PCR (qPCR) was employed to quantify the abundance of
functional genes using primers published in previous studies (Table 5) in a Fluidigm
BioMark HD™ System [71]. Reaction volumes for qPCR were 20 µL and contained 10 µL of
EvaGreen Master Mix (Qiagen, Germantown, MD, USA), 1 µL each of forward and reverse
primer from stock solutions (10 µM), and 2 µL of DNA template (5 ng/µL). A program
with an initial 3 min at 95 ◦C followed by 40 cycles at 95 ◦C for 5 s and 57 ◦C for 20 s and
72 ◦C for 30 s was applied for the PCR.

Table 5. Primers for analyzing soil AOA and AOB expression.

Functional Genes Primers Primer Sequence Fragment Length

amoA amoAF 5′-STAATGGTCTGGCTTAGACG-3′ 600 bp
amoAR 5′-GCGGCCATCCATCTGTATGT-3′

bamoA bamoA-1F 5′-GGGGTTTCTACTGGTGGT-3′ 491 bp
bamoA-2R 5′-CCCCTCKGSAAAGCCTTCTTC-3′

4.6. Data Analysis

The experimental data (means ± SD, n = 3) were analyzed by one-way analysis of
variance (ANOVA) and the Tukey (p < 0.05) significant difference method using IBM
SPSS 26.0, and Pearson’s correlation of citrus nitrogen uptake-related indices using SPSS
software, with p < 0.05 indicating significant differences and p < 0.01 indicating highly
significant differences. Principal component analysis (PCA) for the relationships among
the soil N and its related microorganisms and enzyme activities, enzyme activity related
to root N assimilation and N content, and N accumulation in the various organs of plants
were performed using Canoco 5.0 software. The partial least squares path model (PLS-PM)
was used to demonstrate cause and effect relationships among the observed and latent
variables. The estimates of path coefficients and the significance p-value in the path model
were validated by R software (v. 4.3.2) using the “plspm” and “vegan” package. The above
data plots were drawn using GraphPad Prism 9.5.1 (San Diego, CA, USA) and PowerPoint
2019 (Microsoft, Redmond, WA, USA) software.

5. Conclusions

Soil N content ranged from 0 to 400 mg N/kg; DW soil increased with the increase of
N fertilization rates. Although the N400 application stimulated NR and NiR activities in
the roots, the N100 application significantly increased soil urease activity (162.12%), soil
AOA (337.36%) and AOB (164%) abundance, plant total N accumulation (96.97%), shoot
biomass (39.17%), root morphological characteristics (root length (48.76%), root surface area
(76.28%), and root volume (77.06%)), and root nitrogen assimilating enzyme (GS (5.52%)
and GOGAT (13.21%)) activities, as compared to the N400 treatment. Finally, the analysis
based on the partial least squares path model (PLS-PM) shows that the soil nitrogen content
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had a direct negative effect on root biomass (λ = −0.1194) and surface area (λ = −0.6371);
as soil nitrogen increased, it affected root enzyme activities through soil nitrogen transport-
related enzymes and microorganisms (λ = −0.576, p < 0.001) and indirectly affected root
biomass production and N accumulation. These processes can directly or indirectly affect
N uptake by roots and thus N accumulation in the plant organs. Overall, the N100 mg
N/kg dry soil was more suitable for the expression of enzymes related to N uptake and
metabolism in citrus roots, and thus plant growth.
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