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Abstract: Olive quick decline syndrome (OQDS) is a devastating plant disease caused by the bac-
terium Xylella fastidiosa (Xf ). Exploratory missions in the Salento area led to the identification of
putatively Xf -resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic
or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected
by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the
PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in
host tissues (by the fluorescent in situ hybridization technique—FISH) and the presence of secondary
metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower
than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem
vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood.
The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf
cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells
looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless
of hosts’ genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant
increase in compounds like salicylic acid, known as a signal molecule which mediates host responses
upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial
properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry
together with structural and chemical defenses are among the mechanisms operating to control Xf
infection and may represent a common resistance trait among different olive genotypes.

Keywords: xylem vessel anatomy; lignin; FISH-LSM; luteolin; salicylic acid; olive quick decline
syndrome

1. Introduction

Xylella fastidiosa (Wells) Raju (Xf ) is on the “list of priority pests” in Europe [1] since
it causes some severe diseases, some of which are olive quick decline syndrome (OQDS),
Pierce’s disease in grapevine and citrus variegated chlorosis. This Gram-negative bacterium
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is among the vascular wilt pathogens colonizing the xylem and causing major decline in
several host plants worldwide.

Bacterial vascular pathogens can enter host tissues passively, via wounds or natural
openings or, as for Xf, when they are delivered into the xylem by insect vectors, such
as sharpshooter leafhoppers and spittlebugs. After its entrance in the host plants, Xf
proliferates (degrading xylem cell wall components, parenchyma cells and pit membranes)
and produces exopolysaccharides, i.e., viscous macromolecules that contribute to biofilm
formation; as a result, the bacteria physically block water movement through xylem tissues,
causing wilting symptoms [2].

A host may respond to vascular infection using various strategies, some of them
species-specific and different in the host species, but one of the most common defense
strategies is the induction of structural barriers to restrict the spread of the pathogen
throughout the whole xylem. These barriers could act to limit vascular colonization
vertically or horizontally. Vertical restriction is achieved mainly by tyloses and gels secreted
by xylem parenchyma cells to create occlusions in the vessel lumen. The horizontal spread
of pathogens is somehow prevented by the reinforcement of the walls through vascular
coatings, mainly with lignin and suberin [3]. The anatomy of xylem vessels, for example,
a thick cell wall, also plays a role in enhancing pathogen compartmentalization by these
physical barriers [3].

As a long-lived tree species, the olive developed the production of specialized metabo-
lites as sophisticated defense mechanisms [4]. In fact, the resistance of plants against
vascular pathogens also occurs at the biochemical level through the production of sec-
ondary metabolites with antimicrobial properties such as phenolic compounds including
secoiridoids (oleuropein), phenolic alcohols (hydroxytyrosol and tyrosol), flavonoids (e.g.,
apigenin, catechin, epicatechin, kaempferol, luteolin, myricetin, naringin and quercetin),
hydroxybenzoic acids (e.g., gallic acid, protocatechuic acid, salicylic acid, syringic acid
and vanillic acid) and hydroxycinnamic acids (e.g., coumaric acid, caffeic acid, ferulic acid,
p-coumaric acid and sinapic acid) [4–6].

To date, there are some indications of common anatomical traits between resistant
olive cultivars [7,8], but this information regards only a few agronomically important
cultivars, Leccino and FS17 (also known as Favolosa). Also, even for the metabolites, no
clear metabolomic reference profile is associated with resistant cultivars [9,10]. In any case,
considerable information has been gathered on the metabolic profile of leaf extract, and only
some limited knowledge about twigs is available. In particular, mechanisms controlling
structural and chemical resistance in various Xf hosts are complex and, in olives, still need
to be fully understood.

To address this issue, a study with a multi-methodological approach was carried
out, which included dendrochronological analyses of the wood, histochemical investiga-
tions, fluorescent in situ hybridization coupled with confocal microscopical analyses, and
HPLC-MS analysis for the presence of secondary metabolites. This study was conducted
on a genetic diversity panel of putatively resistant olive genotypes, having similar symp-
tomatic profiles and different Xf concentrations, with the aim of understanding the plant
response to Xf and determining if there is a common colonization pattern between the
resistant genotypes.

2. Results
2.1. Vessel Diameter and Distribution

For each plant, both for the PRPs and for the symptomatic controls (CTRLs), the
panorama image reconstruction of the radial sections simplified the identification of the
xylem annual rings to proceed with the analysis of the vessel anatomical parameters by
using the software WinCellTM 2022.

The xylem vessels of the PRPs had an average diameter significantly lower than that
of CTRLs in all annual rings (from 2016 to 2020) of the wood (Figure 1).
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Figure 1. Mean diameter of xylem vessels in symptomatic control plants (CTRLs) and in the putatively
resistant plants (PRPs) for each annual ring (2016, 2017, 2018, 2019, 2020). Statistically significant
differences are highlighted according to Student’s t-test (*** p-value < 0.001).

More specifically, by classifying xylem vessels on the basis of the average diameters
into four classes (<15 µm; 16–30 µm; 31–45 µm; 46–60 µm), the symptomatic CTRLs in
all the five annual rings analyzed showed vessels predominantly in the class of diameter
‘31–45 µm’ while the PRPs, with a more heterogeneous distribution, had vessels falling
mainly in the small-diameter class ‘16–30 µm’ (Figure 2).
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However, for the vessel density (average number of vessels per square millimeter), no
statistically significant differences were found between the PRPs and the CTRLs (Figure 3).
Since the PRPs had smaller vessels, such as the resistant cultivar Leccino [11], the in-
dex of vulnerability to cavitation turned out to be lower, about half, than that in symp-
tomatic CTRLs, with the exception of 2020, in which the two values were similar (Figure 4).
The diameter of the xylem vessels positively correlated with the symptoms observed on
the canopy (measured in Pavan et al. [12] through the adoption of a pathometric scale,
Supplementary Table S1) (r = 0.53; p-value = 0.03 according to the coefficient index r of Pear-
son); therefore, as the average diameter of the vessels increased, the severity of symptoms
observed on the canopy also became more evident.
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Figure 4. Index of vulnerability to cavitation in symptomatic control plants (CTRLs) and in putatively
resistant plants (PRPs) for each analyzed annual wood ring (2016, 2017, 2018, 2019, 2020). Statistically
significant differences are highlighted according to Student’s t-test (*** p-value < 0.001).

Likewise, the index of susceptibility to cavitation, indirectly calculated from the
average diameter, positively correlated with symptoms (r = 0.76; p-value = 0.000939); in
fact, a greater susceptibility to the cavitation phenomenon, in conditions of water stress
also induced by the Xf, can contribute to the aggravation of the symptomatologic picture.
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2.2. Histological Characteristics of the Xylematic Vessels

By means of histochemical staining, it was possible to highlight some differences
in the structural composition of the xylem vessels of the PRPs in comparison with the
symptomatic CTRLs.

In relation to the cellulose distribution, no statistically significant difference was found,
whereas the average intensity of the lignin-associated fluorescence signal was found to be
significantly higher in PRPs compared to the CTRLs (Figure 5). In particular, in the PRPs, a
greater quantity of lignin was observed in the parenchyma cells of the rays of the wood
(Figure 5); these cells are arranged radially in the cross section of the wood and have the
function to transversely connect the wood tissues.
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Figure 5. One-year branch sections stained with Calcofluor White M2R and Safranin O for setting in
evidence cellulose (cyan) and lignin (yellow), respectively. (A) CTRL: representative image of symp-
tomatic controls; SXn: representative images of the putatively resistant plants (PRPs). (B) Fluorescence
index of lignin stained with Safranin O. *** p-value < 0.001.

2.3. FISH-LSM Analysis of Branches

The 3D images obtained from the image modeling of the FISH-LSM analysis showed,
as expected, a massive presence of bacteria aggregates in the xylem vessels of CTRLs;
the aggregates were distributed according to a classic radial pattern (Figure 6). On the
contrary, in xylem vessels of the PRPs, bacteria mostly appeared as individual cells or as
small aggregates, meaning that the vessels were not completely occluded (Figure 6). This
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could explain how some plants such as SX_32 (cluster K2 with Tunisian cultivars) and
SX_67 and SX_2 (both grouped in the sub-cluster K1/L including the Xf -resistant cultivar
Leccino), despite having an Xf concentration comparable to those of the susceptible plants
(105 cfu/mL), did not show symptoms, with a disease severity score equal to 0.00 (no
symptoms; Supplementary Table S1).
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An interesting aspect observed in the sections of the PRPs is that the bacterial cells 
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Figure 6. Sections of one-year-old branches representative of control symptomatic (CTRL) and
asymptomatic PRPs subjected to FISH staining (fluorescence in situ hybridization) with the KO 210
probe specific for Xylella fastidiosa (Xf). Cyan signal: tissue autofluorescence. Red signal: probe
specific for Xf labeled with the dye Cy3. Yellow signal: autofluorescence emitted by gels and phenolic
compounds. Column (A) images obtained by overlapping the three channels: cyan, red and yellow.
Column (B) images with active the cyan and red channel. Xf cells appear either as single cells or as
small aggregates often embedded in signal associated with gels and compounds phenolics (yellow
arrows). Bar: 10 µm.

An interesting aspect observed in the sections of the PRPs is that the bacterial cells were
often included in the autofluorescence signal of gels and phenolic compounds associated
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with the xylem tissue (Figure 7) and everted into the lumen of the vessel (a mechanism that
leads to tylosis formation; Supplementary Figure S1).

Plants 2024, 13, x FOR PEER REVIEW 9 of 18 
 

 

associated with the xylem tissue (Figure 7) and everted into the lumen of the vessel (a 
mechanism that leads to tylosis formation; Supplementary Figure S1). 

 
Figure 7. Sections of one-year-old branches of the asymptomatic plant SX_32. (A) Cross section with 
the three acquired canals. (B) Detail of image A. Red signal: specific probe for Xylella fastidiosa la-
beled with the fluorochrome Cy3; cyan: plant tissue autofluorescence; yellow: autofluorescence of 
gels and phenolic compounds. The yellow arrow indicates the presence of Xf cells/aggregates. 

2.4. Analyses of Secondary Metabolites in Olive Stems 
Concerning secondary metabolites, the concentration of luteolin in the stem tissue of 

the PRPs was on average 7–14 times higher in comparison with the symptomatic CTRLs 
(Figure 8A). In particular, the genotypes with the higher luteolin concentration were 
SX_32 (clustered with Tunisian cultivars, cluster K2) and SX_67 of the sub-cluster K1/L 
(related to the cultivar Leccino) (Figure 8A). On the contrary, the other flavonoid with a 
statistically significant difference among CTRLs and PRPs was naringenin, which showed 
an opposite trend: in the PRPs, it was not detectable (Figure 8B), while in the symptomatic 
CTRL plants, it was present in the range of 0.72 and 2.58 µg/ mg fresh weight (Figure 8B). 
Stem tissues of the PRPs contained on average 8 times more salicylic acid than the CTRLs 
(Figure 8C). On the contrary, the tyrosol level was higher (from 8 to 72 times) in the CTRLs 
when compared with the PRPs (Figure 8D). 

Figure 7. Sections of one-year-old branches of the asymptomatic plant SX_32. (A) Cross section with
the three acquired canals. (B) Detail of image A. Red signal: specific probe for Xylella fastidiosa labeled
with the fluorochrome Cy3; cyan: plant tissue autofluorescence; yellow: autofluorescence of gels and
phenolic compounds. The yellow arrow indicates the presence of Xf cells/aggregates.

2.4. Analyses of Secondary Metabolites in Olive Stems

Concerning secondary metabolites, the concentration of luteolin in the stem tissue of
the PRPs was on average 7–14 times higher in comparison with the symptomatic CTRLs
(Figure 8A). In particular, the genotypes with the higher luteolin concentration were SX_32
(clustered with Tunisian cultivars, cluster K2) and SX_67 of the sub-cluster K1/L (related to
the cultivar Leccino) (Figure 8A). On the contrary, the other flavonoid with a statistically
significant difference among CTRLs and PRPs was naringenin, which showed an opposite
trend: in the PRPs, it was not detectable (Figure 8B), while in the symptomatic CTRL plants,
it was present in the range of 0.72 and 2.58 µg/ mg fresh weight (Figure 8B). Stem tissues of
the PRPs contained on average 8 times more salicylic acid than the CTRLs (Figure 8C). On
the contrary, the tyrosol level was higher (from 8 to 72 times) in the CTRLs when compared
with the PRPs (Figure 8D).
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Figure 8. Concentrations of (A) luteolin, (B) naringenin, (C) salicylic acid and (D) tyrosol in the
stem tissue of Olea europaea plants; PRPs: putatively resistant plants; CTRLs: symptomatic plants.
According to their genetic profile (assessed by Pavan et al. [12] with a selection of SSR markers), the
PRPs are included in the two genetic clusters: K1 (grouping Italian cultivars including Leccino and
FS17) and K2 (grouping Tunisian cultivars). The K1 cluster also includes the two sub-clusters K1/L
(genotypes closely related with Leccino) and K1/C (genotypes closely related with Ciciulara). These
clusters are highlighted in the graph. Different letters indicate statistically significant differences
according to ANOVA followed by Tukey-HSD post hoc test.
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3. Discussion

Vascular pathogens cause among the most destructive plant diseases; they live deep
inside their host plants and, for this reason, the measures of control for this group of
pathogens are ineffective and the studies to understand the biology of these diseases are
complicated. Now, the most effective control strategy is the use of genetic resistance and, so,
the comprehension of the molecular mechanisms and the pathogen–host plant interactions
is decisive.

In this work, we studied the defense strategies in ten putatively resistant olive plants
belonging to different genetic clusters, positive in the diagnostic test for Xf but with no
symptoms on the canopy, despite being cultivated in orchards severely affected by the
pathogen. To elucidate the defense strategies carried out, xylem vessels were examined from
several points of view. The anatomical analyses confirmed that the PRPs were characterized
by small-diameter vessels compared to the symptomatic plants (CTRLs), which displayed
a higher number of wide-diameter vessels (Figures 1 and 2). These data are in accordance
with previously published works which reported the role of small vessel diameter as a factor
increasing the plant’s resistance to Xf, both in resistant olive cultivars [7,8,13] and in other
Xf -resistant host species [14]. In the analyzed plants, no statistically significant variation
was found in the vessel frequency (Figure 3); in any case, this anatomical parameter shows
high mean sensitivity to environmental conditions, and no correlation with Xf resistance
has yet been demonstrated [15,16]. The main hypothesis on the role played by xylem
geometry in Xf resistance is linked with the susceptibility to cavitation which, in infected
plants, cooperates in worsening the symptomatology [7,17,18]. In fact, the indices of
vulnerability to cavitation calculated in the PRPs and in the symptomatic plants (Figure 4)
confirmed that the PRPs seemed to be less susceptible to cavitation, and the values of the
indices of vulnerability to cavitation in the symptomatic plants significantly correlated with
the severity of the symptoms (r = 0.76; p-value = 0.000939).

Further emerging evidence is the defense role played by lignin not only against other
vascular phytopathogens but also for Xf [9,11,19–21]. The histochemical staining achieved
in this study revealed lignin accumulation in the PRPs with a specific distribution in the
parenchyma rays (Figure 5); these cells are arranged radially in the cross section of the wood
and have the function of transversal connection between the tissues that form the stem. The
role of these cells in the defense against vascular pathogens is known. The main mechanism
of defense concerns the CODIT model (Compartmentalization of Decay in Tree [22]), a
model according to which the plant creates physical barriers to compartmentalize the
pathogen and confine it, avoiding its systemic spread in the host. Based on the role that
these barriers can play in blocking the movement of the bacterium, the PRPs were also
subjected to FISH-LSM analyses with probes specific for Xf that confirmed that in the xylem
vessels of the PRPs, Xf appeared mostly as individual cells with a random distribution
and not the classic radial patterns among adjacent vessels [23]; Xf cells appeared to be
incorporated in the autofluorescence signal of gels and phenolic compounds associated with
the xylem tissue (Figure 7). This evidence indicates the involvement, in the Xf resistance
mechanism, not only of physical barriers but also of chemical ones. Also, for Pierce’s disease
in grapevine, individual Xf cells or small aggregates have been observed when Xf adheres
to the tyloses; in that case, it has been suggested that tyloses, as well as acting as a physical
barrier, may supply a desirable surface for Xf colonization, which is perhaps justified by the
presence of by-products of cell wall turnover associated with tylose development [24]. As
reported previously [25], the primary wall which expands to form the tyloses (extensions
of the protective layers of the parenchyma) secretes substances such as gels and phenols to
make these physical/chemical barriers more effective [3].

Phenolic compounds are important substances which, in the vascular system of plants,
act not only as a physical barrier but also carry out direct antimicrobial activity [26]. The
specific composition of vascular deposits varies based on the particular host–pathogen
interaction [3]. Most of the works in the literature describe the phenolic composition of
olive cultivars, also in relation to Xf infection, by analyzing leaves and petioles [6,9,10].



Plants 2024, 13, 930 12 of 18

Specifically, in the work of Vergine et al. [10], HPLC ESI/MS-TOF analyses were per-
formed on leaf petiole extracts of thirty putatively resistant genotypes. Through uni- and
multi-variate statistical methods, the authors characterized the metabolic profiles of olive
genotypes genetically related to the cultivars “Leccino” and “Ciciulara”, but no common
metabolic pattern was found between the selected genotypes versus the susceptible one.
In our work, we focused on the same tissues (stem) studied for anatomical/histochemical
characteristics and for the bacterial pattern distribution. The phenolic compounds that
showed statistically significant differences among the stems of asymptomatic PRPs and
symptomatic plants were the flavonoids luteolin and naringenin and the hydroxybenzoic
acids salicylic acid and tyrosol (Figure 8). These phenolic profiles, obtained by analyzing the
stems, showed a different pattern of phenolic composition if compared with the same plants
evaluated by processing the leaves in a previously published study [10]; this could suggest
a tissue-specific phenolic pattern. Luteolin was significantly more abundant in the PRPs
(Figure 8). Several reports showed that luteolin and its derivates have anti-bacterial [27,28]
and anti-biofilm [29–31] properties. Also, the in vitro antimicrobial activity of the luteolin
was tested, and inhibitory activity against the X. fastidiosa Salento-1 isolate has already been
demonstrated [32]. Naringenin is the first intermediate molecule of flavonoid biosynthesis
and has roles in many aspects of plant physiology with tissue-specific properties [33]. In
some herbaceous plants, naringenin is involved in salt/osmotic and water stress [34–36].
In wood, the ability of naringenin to inhibit 4CL (4-Coumarate: CoA ligase) activity in
lignifying xylem has been reported [37]. Therefore, its significantly low content in stem
tissues of the PRPs (Figure 8) can be linked to the lignin increase found in the xylem vessels
as a defense strategy. Among the hydroxybenzoic acids, salicylic acid is well known to play
an important role in plant stress response; in the PRPs, a significant increase in salicylic acid
was reported compared with the symptomatic plants (Figure 8). Salicylic acid is crucial to
induce the expression of pathogenesis-related genes [38] and the synthesis of compounds
which are involved both in local and systemic acquired resistance in plants [39]. Moreover,
a wide range of studies reported salicylic acid as a pivotal signaling molecule that plays
a crucial role in plant tolerance and resistance both to biotic and abiotic stresses by acti-
vating mechanisms that act at different levels [40,41], some of which are the induction of
activities and the expression of antioxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT) and peroxidase (POD), thus enhancing a plant’s ability to eliminate reactive
oxygen species (also ROS produced as by-products by plant-pathogenic microbes) and
reducing cellular oxidative damage [42–44]. Salicylic acid acts as a fundamental signal
for SAR (systemic acquired resistance) [45] and it induces several pathways (such as the
MAPK, mitogen-activated protein kinase and the CDPK, calcium-dependent protein ki-
nase), playing a central role in plant–pathogen interaction [46]. Salicylic acid interacts with
other hormones and acts with other signaling molecules such as jasmonic acid (JA), auxin
and ethylene (ETH) to regulate plant tolerance to stress [47]. Another mechanism is the
induction of active anti-pathogenic substances biosynthesis [48,49]. In addition, salicylic
acid can induce cell wall strengthening as a resistance response to plant disease [50]. Vañò
et al. [51] supported the key role of the salicylic acid in plant defense, suggesting that it
could play a significant role in the response to the presence of X. fastidiosa in the vessels.
On the other hand, the unexpected significant increase in tyrosol in symptomatic plants
(Figure 8) may be related to the water stress suffered by symptomatic plants, as indicated by
Mechri et al. [52], who reported that the concentration of tyrosol was significantly increased
in olive trees under water-stressed conditions.

4. Materials and Methods
4.1. Plant Materials

Putatively resistant plants (PRPs) previously identified during exploratory surveys
in the autumn of 2019 and 2020 in olive orchards heavily affected by Xf were used as
the starting material for this study. According to the genetic profile assessed by Pavan
et al. [12] with a selection of SSR markers, the PRPs were included in two genetic clusters:
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K1 (including Italian cultivars among the Xf -resistant Leccino and FS17) and K2 (including
Tunisian cultivars). Cluster K1 was composed of the two sub-clusters, K1/L (genotypes
closely related to Leccino) and K1/C (genotypes closely related to the cultivar Ciciulara).
Ten of these PRPs, i.e., SX_32 (belonging to the K2 genetic cluster) and other individuals
grouped in cluster K1 (SX_31, SX_33, SX_5, SX_29, SX_27, SX_25, SX_26, SX_67 and SX_2)
were analyzed in this work. As reported in Pavan et al. [12], the selected PRPs displayed
a disease severity index < 1.5 (Supplementary Table S1), based on the 0–3 symptom scale
proposed by Luvisi et al. [6], and different Xf concentrations after TaqMan real-time PCR
protocol analysis [53,54]. In addition, olive trees (disease severity index ≥ 1.5) belonging to
the Xf -susceptible cultivar “Cellina di Nardò” were also collected in every area in which
each PRP was identified. Therefore, each PRP was compared to a CTRL sample chosen in
the proximity of the selected plant, representing the Xf infection status of the explored area.

More detailed information about PRPs and CTRLs samples is reported in Supplemen-
tary Table S1.

4.2. Wood Anatomy

Five-year-old branches (n = 3 per plant) from PRPs and CTRLs were sampled and
processed according to Sabella et al. [16]. A 4% aqueous formaldehyde solution was used
as an antiseptic and fixative [55]. Radial sections were obtained from branches previously
cut into pieces approximately 2 cm long. Thin perpendicular sections (13–15 µm thick)
were cut from each piece with a sliding WSL Lab microtome (WSL Institute, Birmensdorf,
Switzerland) (modified Reichert-type [56]). A safranin and astrablue mixture (50:50) was
used to stain the sections; then, they were dehydrated with ethanol (75%, 96%, and 100 %),
and after a wash with xylol, they were finally embedded in Canada balsam [57]. Images
(5X magnification) were taken using a digital camera (EC3, Leica Microsystems, Wetzlar,
Germany) connected to a transmitted light microscope (Orthoplan, Ernst Leitz, Wetzlar,
Germany). For each thin section, several images were obtained and later used to compose a
single image using the PTGui software 12.8 (New House Internet Services B.V., Rotterdam,
NL, USA) [58]. Then, for each year (2016 to 2020), the diameter of xylem vessels (µm)
and the vessel distribution (N/mm2) were determined using the image analysis software
WinCellTM 2022 (Regent Instruments Inc., Québec, QC, Canada). The vessel diameter and
the vessel distribution were computed according to Scholz et al. [59]; the mean diameter
of xylem vessels was obtained by calculating the mean diameter from 100 vessels for
each individual and, according to the data, xylem vessels were divided into six classes of
diameter (0–15 µm; 16–30 µm; 31–45 µm; 46–60 µm; 61–75 µm; 76–90 µm).

To evaluate the correlation between the mean diameter of the xylem vessels and
the disease severity data of the canopy of the PRPs and of the CTRLs, the index r of
Pearson was calculated by using the open-source software R ver.3.3.2 (R Foundation for
Statistical Analysis).

Vulnerability to cavitation (vulnerability index, VI) was calculated using the equation
proposed by Carlquist S. [60], as follows:

VI = VD/VF

where VF is the vessel frequency (number of vessels per mm2, N/mm2), while VD is the
mean vessel diameter (µm).

4.3. Histological Methods

Segments of 1.5 × 1.5 cm were excised from one-year-old branches with sterile razor
blades and processed according to Cardinale et al. [23]; surface sterilization was obtained
by using 70% ethanol for 1 min, followed by three rinses in sterile distilled water. The
sample segments were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS
1×); after the incubation overnight at room temperature, they were washed with PBS buffer
for 10 min at room temperature. The samples were then dehydrated (two 1 h incubations in
each of 70%, 80%, 95% and 100% ethanol) and embedded in paraffin; 40 µm thick sections
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were obtained with a microtome Leica RM 2155 (Leica Microsystems, Mannheim, Germany).
Sections were stored in a solution 1:1 (v/v) PBS:96% ethanol at −20 ◦C until staining. To
dissolve the paraffin, sections were incubated in toluene for 3 min at 43 ◦C. Then, the
sections were washed twice for 5 min each with PBS buffer and stained with Calcofluor
white M2R and Safranin O, to detect, respectively, cellulose and lignin deposition. Stain
solutions were prepared as follows: Calcofluor White M2R (Sigma-Aldrich, Milan, Italy)
0.02% (w/v) in distilled water and Safranin O (Sigma-Aldrich, Milan, Italy) 0.5% (w/v)
dissolved in 50% EtOH. Calcofluor White M2R staining was achieved according to Mitra
and Loqué [61]. Sections were excited at 405 nm and images were taken using a filter BP
420–480 nm. Safranin O staining was carried out following the protocol of Bond et al. [62].
Sections were then excited at 488 nm and images obtained by using a filter BP 500–700 nm.
All images were captured with a confocal laser-scanning microscope (Carl Zeiss LSM 700
laser scanning microscope, Jena, Germany); the same microscope settings were maintained
for all the images which were examined by using the Zeiss LSM image examiner software
4.2.0.121.

4.4. FISH-LSM Analysis

Sections were obtained as reported in the histological methods and processed accord-
ing to Cardinale et al. [23]. After the toluene removal and two rinses for 5 min in PBS buffer,
sections were permeabilized for 10 min at room temperature in 0.5 mg mL−1 lysozyme
(Life Technologies Italia, Milan, Italy).

After dehydration (ethanol 96–70–50%, 3 min each), hybridization was carried out
at 42 ◦C for 120 min with the Cy3-labeled X. fastidiosa-specific KO 210 probe, followed by
10 min of washing at 43 ◦C [23]. Ice-cold water was used for a final rinse, and the Citifluor
AF1 antifade reagent (Linaris Biologische Produkte GmbH, Dossenheim, Germany) was
used as an antifade reagent for the montage onto the glass slide. Finally, a coverslip was
carefully placed on the sections. The slides could be stored for up to 4 days in the dark at
4 ◦C. A confocal laser-scanning microscope (Carl Zeiss LSM 700 laser scanning microscope,
Jena, Germany) was used for the observations. Cy3 was excited with the laser line 561 nm;
the laser lines 405 and 488 nm were used to induce the autofluorescence of tissues and of
gel and phenolic compounds. Emissions were captured in the range of 570–613 nm for Cy3;
420–480 nm for the plant autofluorescence; and 500–700 for the gel/phenolic compounds.
Then, 20–50 optical slices were acquired with the Z-stack tool, and the resulting “confocal
stacks” were analyzed to obtain the three-dimensional reconstructions with the Zeiss LSM
image examiner software v. 4.2.0.121.

4.5. Stem Tissue Processing for Secondary Metabolites Analysis

Segments of one-year-old branches were ground in pre-cooled mortar to a fine powder
using liquid nitrogen and processed according to Nutricati et al. [38]. Approximately 0.5 g
of pulverized tissue was homogenized in 3 mL of 100% methanol (1:6). The obtained
extracts were sonicated for 60 min; then, they were centrifugated for 15 min at 10,000× g to
remove cellular debris. The supernatant was divided into two equal portions which were
dried at 40 ◦C with a flow of nitrogen. One half of the dried sample was resuspended in
900 µL of 50 mM sodium acetate (pH 4.5) and 100 µL of water containing 10 U of almond
β-glycosidase (EC 3.2.1.21) (Sigma Aldrich, Milan, Italy). The other half was resuspended
in 900 µL of 50 mM sodium acetate (pH 4.5) and 100 µL of water. The reactions were
kept overnight at 37 ◦C and stopped with 75 µL of 70% perchloric acid (5% (v/v) final
concentration); the reactions were stored at 4 ◦C for 1 h. Polymers were removed with
centrifugation at 14,000× g for 15 min, and the obtained supernatants were extracted with
2.5 mL of cyclopentane/ethyl acetate (1:1, v/v). The organic upper phase was dried at
40 ◦C under a flow of nitrogen. Then, 200 µL of methanol was added to the residues and
filtered through 13 mm nylon 0.45 µm syringe filters (Waters S.p.A, Milan, Italy) prior
to HPLC analysis. Next, 20 µL (from the final 200 µL methanolic extract) was analyzed
with an Agilent 1200 liquid chromatography system (Agilent Technologies, Palo Alto,
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CA, USA) equipped with a standard autosampler [11]. The high-performance liquid
chromatography (HPLC) column used was an Agilent Extend-C18 (1.8 µm, 2.1 by 50 mm).
Separation was performed at room temperature with a linear gradient of 1% (v/v) acetic
acid to 100% methanol at a flow rate of 1 mL/min. Next, 100% methanol was used to
wash the column for 10 min, which was then equilibrated again with 1% acetic acid in
water for 10 min. Commercial standards (tyrosol, luteolin, naringenin, salicylic acid, caffeic
acid, quercetin and gentisic acid) (Sigma-Aldrich, Milan, Italy) were used for the standard
calibration graphs used for the quantification of the compounds from olive stems. The
limit of quantification (LOQ) was assessed as the signal-to-noise ratio of 10:1 and the limit
of detection (LOD) as the signal-to-noise ratio of 3:1. Intra-day and inter-day precision
was used to evaluate the repeatability of the methods and was expressed by the relative
standard deviations (RSDs). An olive stem extract was injected (n = 5) on one day (intra-day
precision) for three consecutive days (inter-day precision, n = 15).

5. Conclusions

The Xf resistance response characterized in the identified asymptomatic olive geno-
types has many points in common with those already found in the resistant cultivar Leccino,
especially regarding the role of the xylem vessel geometry and structural composition as
physical barriers. In addition to these strategies, our analysis identified other chemi-
cal barriers presumably operating with the physical ones to make the defense strategy
more effective. Surely, additional experiments in controlled conditions and with artifi-
cial bacterial inoculation need to be conducted to evaluate the constitutive or induced
responses to pathogen infection in the olive genotypes reported here. In the host plant,
many mechanisms and molecules are involved in the Xf response, including the endophytic
microbiota [63]. Our data are a contribution towards understanding the mechanisms of
resistance to X. fastidiosa; among the highlighted features, salicylic acid’s role will need to
be further explored. Understanding the mechanisms underlying plant disease resistance is
of crucial importance, mainly because the research on plant resistance is still limited to a
restricted number of pathosystems. In this context, our work appears to be a fundamental
starting point and a compass to guide investigations at a genetic and molecular level; the
next step should be the identification of the genetic basis underlying the mechanisms and
molecules involved in the response to Xf. Furthermore, such resistance mechanisms could
also be useful against other vascular pathogens for more efficient and effective utilization
in crop improvement and protection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants13070930/s1, Table S1: features (Xf concentration and
syndrome severity) of the putatively resistant (PRPs) and symptomatic control (CTRLs) plants;
Figure S1: representative image of gels and phenolic compounds associated with the xylem tissue.
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