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Abstract: Stem rust, caused by Puccinia graminis f.sp. tritici, is one of the most dangerous rust diseases
on wheat. Through physiological, biochemical, and molecular analysis, the relationship between
the change in resistance of 15 wheat cultivars to stem rust disease and the response of 41 stem rust
resistance genes (Sr,s) as well as TTKSK, TTKST, and TTTSK races was explained. Some cultivars
and Sr genes, such as Gemmeiza-9, Gemmeiza-11, Sids-13, Sakha-94, Misr-1, Misr-2, Sr31, and Sr38,
became susceptible to infection. Other new cultivars include Mir-3 and Sakha-95, and Sr genes 13, 37,
40, GT, and FR*2/SRTT3-SRTT3-SR10 remain resistant. Some resistance genes have been identified
in these resistant cultivars: Sr2, Sr13, Sr24, Sr36, and Sr40. Sr31 was not detected in any cultivars.
Reactive oxygen species such as hydrogen peroxide and superoxide, enzymes activities (catalase,
peroxidase, and polyphenoloxidase), and electrolyte leakage were increased in the highly susceptible
cultivars, while they decreased in the resistant ones. Anatomical characteristics such as the thickness
of the epidermis, ground tissue, phloem tissue and vascular bundle diameter in the midrib were
decreased in susceptible cultivars compared with resistant cultivars. Our results indicated that some
races (TTKSK, TTKST, and TTTSK) appeared for the first time in Egypt and many other countries,
which broke the resistant cultivars. The wheat rust breeding program must rely on land races and
pyramiding genes in order to develop new resistance genes that will survive for a very long time.

Keywords: stem rust; Sr genes; plant fungal interaction; wheat; molecular analysis; anatomical structure

1. Introduction

Wheat is one of the most significant crops in the world for human food and animal
feed [1,2]; therefore, many efforts are made to increase its grain production in Egypt.
Egypt’s total wheat production is approximately 9 million tons, with consumption at
20 million tons. There are many challenges facing researchers to increase crop production
under various environmental conditions such as water deficit [3,4], salinity [5], and rust
diseases [6–9]. Stem rust is one of the most dangerous diseases and is caused by the fungus
Puccinia graminis f. sp. tritici (Pgt) [10,11]. Under ideal environmental situations, the
fungus can generate new physiological races that target resistant cultivars and propagate
epidemically, resulting in up to 100 percent yield losses across wide areas during epidemic
years. The most efficient, cost-efficient, and ecologically benign method of managing this
disease is the identification and development of resistant genotypes [12]. Planting resistant
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cultivars is advised since resistant host plants are the most efficient way to prevent the
rust disease. The production of wheat by both small and big scale farmers is currently
threatened by the recent re-emergence of a highly virulent race, generally known as Ug99
and designated as TTKSK based on North American nomenclature [13–15].

The availability of “green bridges” and a sizable quantity of airborne urediniospores
that start early epidemics are both guaranteed by the staggered planting strategy. The
current commercial wheat cultivars are extremely susceptible to the new race because
susceptible cultivars are constantly under attack from the rust pathogen [16]. Therefore,
achieving long-lasting resistance to wheat stem rust necessitates ongoing pathogen char-
acterization, as well as the discovery and use of new resistance genes that outcompete
the dominant pathogenic races. The traditional technique for identifying resistance genes
that are probably present in crop cultivars is gene postulation. Therefore, the definition of
resistance genes was based on molecular markers [17]. It is based on the principle of gene-
for-gene specificity, in which the infection types produced by pathogen isolates on cultivars
under research are compared to infection types produced by the same isolates on near-
isogenic lines bearing a single known resistance gene [18]. The genetic makeup of wheat
cultivars in Egypt’s main wheat-growing areas indicate that major genes, minor genes, or
both combined control disease resistance; nevertheless, the complementing effects of major
genes may improve a variety’s response and result in higher degrees of resistance. For the
introduction of new efficient resistance genes into released cultivars, knowledge of the stem
rust resistance genes in those cultivars is crucial. Environmental stress factors are associated
with the formation of ROS, which causes lipid peroxidation under any abiotic and biotic
stresses conditions [19–22]. The increase of hydrogen peroxide (H2O2) and super oxide
(O2) under infection was observed. Enzymatic and non-enzymatic components such as
Catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX), polyphenol oxidase (PPO),
ascorbic acid, glutathione, carotenoids, and proline are very important in plants’ defense
system against stress conditions [23,24]. CAT, POX, and PPO up-regulation play a critical
role in protecting plants from pathogen attack and scavenge ROS as well as alterations in
membrane permeability as a result of either biotic or abiotic stresses [25,26]. Therefore, the
purpose of this work was to use physiological, chemical, genetic, and anatomical analysis
to determine cultivars’ sensitivity and resistance to stem rust disease, as well as the genes
responsible for resistance, related to the new physiological races.

2. Results
2.1. Evaluation of Wheat Cultivars against Stem Rust at the Adult Stage

Fifteen wheat cultivars were evaluated against stem rust under field conditions in the
Kafrelsheikh governorate, Egypt, in both seasons 2021 and 2022 (Figure 1). As a result of
the cultivars’ reaction to the disease, the cultivars with the highest final disease severity
were Misr-1 and Misr-2, followed by Gemmeiza-9, Gemmeiza-11, Sids-13, and Sakha-94
(Figure 1A). Also, these cultivars recorded the highest values for AUDPC during the two
seasons (Figure 1B). In the seasons 2021 and 2022, the Sakha-95 and Misr-3 cultivars had the
lowest final disease severity and AUDPC values (Figure 1A,B). In presenting these results,
it was found that the disease severity and AUDPC in the second season were higher than
in the first season, which prompts us to try to explain these results.
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Figure 1. Final rust severity (A) and AUDPC (B) of 15 wheat cultivars against stem rust during the 
2021 and 2022 seasons. The different letters indicate the presence of significance between them. 

2.2. Evaluation of 41 Stem Rust Resistance Genes (Sr,s) 
Forty-one stem rust resistance genes (Sr,s) were evaluated for stem rust under field 

conditions during the seasons of 2021 and 2022 (Tables 1 and 2). The most resistant genes 
in 2021 were 13, 22, 26, 28, 35, 37, 40, GT, Brigardier (Sr31), PBW343 (Sr31), Sisson (Sr31+36), 
Chris (Sr7a, Sr12, Sr6), and FR*2/SRTT3-SRTT3, SR10, and in 2022 they were 13, 37, 40, GT, 
and FR*2/SRTT3-SRTT3, SR10, which achieved zero disease severity (Table 2). Through 
these results, it was found that there are five genes (13, 37, 40, GT, and FR*2/SRTT3-SRTT3-
SR10) that had complete resistance to this disease during both seasons, and the second 
season was higher in disease severity than the first season. 

Table 1. Final rust severity of stem rust resistance genes (Sr,s) in the Kafrelsheikh governorate dur-
ing 2021 and 2022 seasons. 

NO. Sr Gene 
Kafrelsheikh Governorate 

2021 2022 
1 2 5.63 6.00 
2 5 73.33 76.67 
3 6 36.67 93.33 
4 7b 53.33 66.67 
5 8a 63.33 83.33 
6 9a 46.67 76.67 
7 9b 43.33 66.67 
8 9e 63.33 86.67 
9 9g 43.33 86.67 
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Figure 1. Final rust severity (A) and AUDPC (B) of 15 wheat cultivars against stem rust during the
2021 and 2022 seasons. The different letters indicate the presence of significance between them.

2.2. Evaluation of 41 Stem Rust Resistance Genes (Sr,s)

Forty-one stem rust resistance genes (Sr,s) were evaluated for stem rust under field
conditions during the seasons of 2021 and 2022 (Tables 1 and 2). The most resistant genes
in 2021 were 13, 22, 26, 28, 35, 37, 40, GT, Brigardier (Sr31), PBW343 (Sr31), Sisson (Sr31+36),
Chris (Sr7a, Sr12, Sr6), and FR*2/SRTT3-SRTT3, SR10, and in 2022 they were 13, 37, 40, GT,
and FR*2/SRTT3-SRTT3, SR10, which achieved zero disease severity (Table 2). Through
these results, it was found that there are five genes (13, 37, 40, GT, and FR*2/SRTT3-SRTT3-
SR10) that had complete resistance to this disease during both seasons, and the second
season was higher in disease severity than the first season.

Table 1. Final rust severity of stem rust resistance genes (Sr,s) in the Kafrelsheikh governorate during
2021 and 2022 seasons.

NO. Sr Gene
Kafrelsheikh Governorate

2021 2022

1 2 5.63 6.00
2 5 73.33 76.67
3 6 36.67 93.33
4 7b 53.33 66.67
5 8a 63.33 83.33
6 9a 46.67 76.67
7 9b 43.33 66.67
8 9e 63.33 86.67
9 9g 43.33 86.67
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Table 1. Cont.

NO. Sr Gene
Kafrelsheikh Governorate

2021 2022

10 9d 66.67 76.67
11 10 63.33 66.67
12 11 36.67 46.67
13 13 0.00 0.00
14 17 2.66 6.00
15 17 76.67 46.67
16 21 66.67 83.33
17 22 0.00 5.00
18 24 1.33 26.00
19 26 0.00 5.00
20 28 0.00 7.66
21 30 66.67 36.67
22 31 2.33 18.67
23 31 2.66 4.33
24 31 2.133 1.33
25 31 0.00 2.33
26 31 1.13 2.8
27 31 0.00 2.00
28 35 0.00 6.00
29 36 1.133 9.333
30 37 0.00 0.00
31 38 2.43 4.33
32 40 0.00 0.00
33 Tmp 76.67 76.67
34 GT 0.00 0.00
35 MCN 66.67 70.00

Combined genes

36 24+31 1.06 9.00
37 36+31 0.00 7.66
38 Sr36, 6 8.33 3.66
39 Sr6, 24, 36, 1RS-Am 0.73 1.46
40 Sr7a, Sr12, Sr6 0.00 1.06
41 SRTT3, SR10 0.00 0.00

Table 2. The pedigree list of the fifteen cultivars used in this study.

No. Wheat Cultivar Pedigree

1 Sakha-93 SAKHA92/TR810328 S.8871-1S-2S-1S-0S.
2 Sakha-94 OPATA/RAYON//KAUZ. CMBW90Y3180-OTOPM-3Y-010M-010M-010Y-10M-015Y-0Y-0AP-0S.

3 Sakha-95 PASTOR//SITE/MO/3/CHEN/AEGILOPS
SQUARROSA(TAUS)//BCN/4/WBLL1CMSA01Y00158S-040P0Y-040M030ZTM-040SY-26M-0Y-0SY-0S

4 Gemmeiza-7 CMH74A.630/5X//SERI82/3/AGENT. GM4611-2GM-3GM-1GM-0GM.
5 Gemmeiza-9 ALD”S”/HUAS//CMH74A.630/SX.GCM4583-5GM-1GM-0GM.
6 Gemmeiza-10 MAYA74”S”/ON / 1160- 147 /3/ BB/ G11/4/ CHAT “S”/5/ CROW “S”GCM 5820- 3GM- 1GM- 2GM- 0GM.
7 Gemmeiza-11 BOW”S” /KVZ”S”// 7C/SERI82/3/GIZA168 /SKHA61. GM7892-2GM-1GM-2GM-1GM-0GM.
8 Gemmeiza-12 OTUS/3/SARA/THB//VEE. CCMSS97Y00227S-5Y-010M-010Y -010M-2Y-1M-0Y-0GM

9 Sids-12 BUC//7C/ALD/5/MAYA74/ON//1160147/3/BB/GLL/4/CHAT”S”/6/MAYA/VUL//CMH74A.630//4*SX.
SD7096-4SD-1SD-1SD-0SD.

10 Sids-13 AMAZ19=KAUZ”S”//TSI/SNB”S”. ICW94-0375-4AP-2AP-030AP-0APS-3AP-0APS-050AP-0AP-0SD.
11 Sids-14 SW8488*2/KUKUNACGSS01Y00081T-099M-099Y-099M-099B-9Y-0B-0SD
12 Misr-1 OASIS/SKAUZ//4*BCN/3/2*PASTOR.CMSSOYO1881T-050M-030YO3OM-30WGY-33M-0Y-0S
13 Misr-2 SKAUZ/BAV92. CMSS96M0361S-1M-010SY-010M-010SY-8M -0Y-0S
14 Misr-3 ATTILA*2/PBW65*2//KACHU CMSS06Y00582T-099TOPM-099Y-099ZTM-099Y-099M-10WGY-0B-0EGY
15 Shandweel-1 SITE/MO/4/NAC/TH.AC//3*PVN/3/MIRLO/BUC CMSS93B00567S-72Y-010M-010Y-010M-3Y-0M-0THY-0SH
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2.3. Identification of Stem Rust Resistance Genes in Wheat Cultivars

To explain the resistance of wheat cultivars to stem rust, it was necessary to identify the
stem rust resistance genes (Sr,s) responsible for resistance in 15 wheat cultivars. Therefore,
the most resistant genes such as Sr2, Sr13, Sr24, Sr31, Sr36, and Sr40 were selected and
defined in 15 wheat cultivars (Figures 2 and 3). Gene Sr2 was detected in 13 wheat cultivars
at 350bp. except the Gemmeiza-12, Sakha-94, and Sids-13 cultivars. Meanwhile, Sr13 was
identified in four wheat cultivars, Sakha-95, Misr-3, Sakh-93, and Gemmeiza-10, at 320bp.
Gene Sr24 was detected at 480bp. in Gemmeiza-12, Misr-3, Misr-1, Misr-2, Gemmeiza-10,
and Gemmeiza-11 (Figure 2). Sr40 was detected in nine wheat cultivars, Gemmeiza-9,
Gemmeiza-12, Sakha-95, Sids-14, Gemmeiza-7, Sakha-93, Misr-1, Misr-2, and Shandweel-1,
at 270bp. Gene Sr36 was identified in all wheat cultivars at 290 bp. On the other hand, Sr31
was not detected in any cultivars (Figure 3).
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Figure 2. Detection of Sr2, Sr13, and Sr24 genes in 15 wheat cultivars (M = Ladder, 1 = Gemmeiza-
9, 2 = Gemmeiza-12, 3 = Sakha-94, 4 = Sakha-95, 5 = Sids-14, 6 = Sids13, 7 = Sids-12, 8 = Misr-3,
9 = Gemmeiza-7, 10 = Sakha-93, 11 = Misr-1, 12 = Gemmeiza-10, 13 = Gemmeiza-11, 14 = Misr-2 and
15 = Shandweel-1).
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Figure 3. Detection of Sr31, Sr36, and Sr40 genes in 15 wheat cultivars (M = Ladder, 1 = Gemmeiza-
9, 2 = Gemmeiza-12, 3 = Sakha-94, 4 = Sakha-95, 5 = Sids-14, 6 = Sids13, 7 = Sids-12, 8 = Misr-3,
9 = Gemmeiza-7, 10 = Sakha-93, 11 = Misr-1, 12 = Gemmeiza-10, 13 = Gemmeiza-11, 14 = Misr-2 and
15 = Shandweel-1).

2.4. Effect of Stem Rust Infection on Enzyme Activity in Different Wheat Cultivars

The activity of catalase, peroxidase, and polyphenol oxidase in 15 wheat cultivars
infected with stem rust was studied to analyze the resistance and susceptibility to this dis-
ease in the two seasons (Figure 4). An increase in the catalase, peroxidase, and polyphenol
oxidase activity was observed in the highly susceptible cultivars (Misr-1 and Misr-2), and a
decrease in their activity was seen in the highly resistant cultivars (Sakha-95 and Misr-3)
(Figure 4A–C).
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2.5. Effect of Stem Rust on Electrolyte Leakage, Chlorophyll a, and Chlorophyll b of Different
Cultivars

Also, the results of infection with stem rust on the wheat cultivars under study had a
clear effect on the level of electrolyte leakage, chlorophyll a, and chlorophyll b in the 2021
and 2022 seasons (Figure 5). It was clear that the electrolyte leakage level increased in the
highly susceptible cultivars (Misr-1 and Misr-2) and decreased in the resistant ones (Sakha-
95 and Misr-3) (Figure 5A). On the contrary, it was observed that the level of chlorophyll
a and chlorophyll b increased in the resistant cultivars (Sakha-95 and Misr-3) and was
reduced in the susceptible ones (Misr-1 and Misr-2) (Figure 5B,C).
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2.6. Effect of Stem Rust on Reactive Oxygen Species (ROS) of Four Wheat Cultivars

Our results in Figure 6 show that superoxide and hydrogen peroxide as purple and
brown discoloration, respectively, were measured in four cultivars Misr-1, Misr-2, Misr-
3, and Sakha-95. In resistant cultivars, namely Misr-3 and Sakha-95, the discoloration
decreased compared with the susceptible cultivars Misr-1 and Misr-2 (Figure 6).
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Figure 6. Symptoms of stem rust (A), purple discoloration (B) and brown discoloration (C) of
superoxide and hydrogen peroxide, respectively, in Misr-1, Misr-2, Misr-3, and Sakha-95 cultivars.
Sakha 95 and Misr 3 are resistant to the disease that were used to compare with the more susceptible
varieties Misr 1 and Misr 2, so they are similar.

2.7. Effect of P. graminis f. sp. tritici on the Anatomical Characters of Four Wheat Cultivars

According to our results, Figure 7 shows that the fungus P. graminis f. sp. tritici
decreased most anatomical characteristics in susceptible cultivars, such as the thickness of
the epidermis and the thickness of ground tissue and phloem tissue, as well as the diameter
of the vascular bundle in the midrib in susceptible cultivars (Misr-1 and Misr-2) compared
with resistant cultivars (Misr-3 and Sakha-95).
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2.8. Distribution of P. graminis f. sp. tritici Races in Egypt and Other Countries

The researchers attempted to interpret the prior findings in order to explain why some
wheat cultivars behaved differently when infected with the stem rust fungus. It was noted
that various races (TTKSK, TTKST, and TTTSK) that were defined in Egypt and many other
nations from 1999 to 2022 debuted for the first time (Figure 8). TTKSK appeared in Uganda
(1998/9), Kenya (2001), Ethiopia (2003), Iran (2007), Tanzania (2009), Eritrea (2012), Rwanda
(2014), and Egypt (2014). TTKST appeared in Kenya (2006), Tanzania (2009), Egypt (2014),
Rwanda (2014), and TTTSK appeared in Kenya (2007), Ethiopia (2010), Uganda (2012),
Rwanda (2014), and Egypt (2022). For the first time, these races were able to disrupt the
Sr31, Sr24, and Sr36 resistance genes (Figure 8).
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3. Discussion

Stem rust is one of the most damaging diseases to wheat. Most cultivars were sus-
ceptible to this disease, which was the main disease in the first half of the 20th century
(1930s–1940s), until a source of resistance was imported from Kenya. Giza-139 was the
first cultivar to be resistant to stem rust; it was introduced in 1947. Semi-dwarf cultivars
and CIMMYT-introduced lines contained various resistance genes in the early 1970s. But
now, it has been found that some wheat cultivars are resistant to stem rust disease, such
as Gemmeiza-10, Sids-13, and Gemmeiza-11, while the Sids-12, Shandweel-1, Misr-1, and
Misr-2 cultivars became susceptible [27]. As a result of the emergence of the Ug99 race in
Uganda, all Egyptian wheat varieties were evaluated against this race, all of which were
susceptible to infection. Therefore, Misr-1 and Misr-2 cultivars were selected from the CIM-
MYT wheat genotypes and evaluated in Uganda, Kenya, and Ethiopia, and they proved
their resistance to stem rust disease, especially for this race. Then the two varieties were cul-
tivated in these countries to overcome this race (Ug99). In the two growing seasons, fifteen
wheat cultivars were evaluated against stem rust in Egypt. The Misr-1, Misr-2, Gemmeiza-9,
Gemmeiza-11, Sids-13, and Sakha-94 cultivars recorded the highest final disease severity
and the highest values of area under disease progress. As the two cultivars, Misr-1 and



Plants 2024, 13, 1045 11 of 18

Misr-2, become susceptible to stem rust disease, therefore, it was necessary to introduce
new resistant cultivars instead of those susceptible to infection, and these cultivars were
Misr-3 (from CIMMYT wheat genotypes) and Sakha-95 [28]. In this study, they showed
the highest resistance to stem rust. The change in the behavior of wheat cultivars towards
resistance to stem rust made us think about evaluating the 41 stem rust resistance genes
(Sr,s) responsible for resistance to this disease in the 2021 and 2022 seasons. Through these
results, it was found that there are five genes (13, 37, 40, GT, and FR*2/SRTT3-SRTT3-SR10)
that have complete resistance to this disease during the two seasons, and that the second
season was higher in disease severity than the first season [29]. Previous studies were
conducted to evaluate the gene expression under stem rust infection [30–34]. It is possible
to link the breaking of gene resistance to the change in the behavior of wheat cultivars to
the disease. These genes were identified in the cultivars through molecular markers. It
was noticed that some genes such as Sr2 and Sr24 were known in wheat cultivars such as
Misr-1 and Misr-2. These genes were more effective against this disease. Sr2 is considered
to be a slow-rusting gene or form of adult plant resistance (APR) [35,36]. It was noticed
in numerous Kenyan varieties, including Kenya Plume and CIMMYT varieties, Pavon
76, Juchi 2000, and Kritati. Sr24 is widely used in wheat breeding programs worldwide.
Since then, it has been introgressed into many wheat genotypes [36]. The Sr24 gene was
ineffective for some variants in the lineage of Ug99, but it is effective for the new races:
TKTTF, TTTTF, and many P. graminis races in China [37]. But after the emergence of Ug99
(TTTKS) in Uganda (1998/99), Kenya (2001), Ethiopia (2003), Sudan (2006), Yemen (2006),
Iran (2007), Eritrea (2012), Rwanda (2014), and Egypt (2014), the resistance of most cultivars
broke, especially Sr31 [38–40]. Then the TTKST race appeared and broke the resistance gene
Sr24 in Kenya (2006), Tanzania (2009), Eritrea (2010), Uganda (2012), Rwanda (2014), and
Egypt (2014). Also, the resistance gene Sr36 was broken by the TTTSK race in Kenya (2007),
Tanzania (2009), Ethiopia (2010), Uganda (2012), Rwanda (2014), and Egypt (2022) [41].
This race (TTTSK) was recorded for the first time in Egypt, which prompts us to explain the
change in the behavior of some cultivars in resistance to stem rust disease, and especially
that this gene (Sr36) was detected in all cultivars under study. On the contrary, the result of
gene evaluation in the field indicated the efficiency of Sr13 in 2021 and 2022, and it was
determined in the resistant cultivars: Misr-3 and Sakha-95.

Another point is that two crucial roles for the ROS are played during infection defense.
The first one is the buildup of ROS, which prevents or kills infections while supporting
hypersensitive necrosis [22]. The second function is the reduction of ROS levels, which
promotes the activation of antioxidants and the expression of resistance genes in tissues
close to infection sites [22]. Specifically, ROS and H2O2 serve a dual role by inducing the
overexpression of resistance genes, encouraging localized host and pathogen cell death,
and promoting antioxidant activities. The plants’ typical defensive system against ROS
accumulation is an antioxidant defense system that is formed by antioxidant enzymes
like CAT, PPO, and POX. Following inoculation, these enzymes were upregulated in the
susceptible cultivars, whereas CAT and POX activities were noticeably elevated in the
resistant cultivars. Under several stressors, these enzymes play a vital role in reducing
ROS levels or scavenging to detoxify and remove their harmful effects [42–46]. Also,
the increase in electrolyte leakage may be due to the effect of the pathogen on the cell
membrane in the susceptible cultivars (Misr-1 and Misr-2) and its permeability, whereas the
membrane permeability of the resistant cultivars (Misr-3 and Sakha-95) were not affected
under infection. The variation in anatomical characteristics such as the epidermis, xylem,
and phloem tissues in resistant and susceptible wheat cultivars was studied, and the
increase in stem anatomical characteristics was observed in the resistant cultivars. The
detrimental effects of P. graminis f. sp. tritici on cell division, elongation, and enzyme
activity, as well as the various growth characteristics of wheat plants, led to the decline in
anatomical characteristics in susceptible cultivars [47]. This result is in accordance with the
findings of some researchers [48,49]. According to the results, Egypt was considered one of
the countries at risk for the spread of Ug99, especially given that most wheat genotypes in
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Egypt were based on CIMMYT germplasm. Therefore, one must rely on land races and
pyramiding genes in the wheat rust breeding program in order to obtain new resistance
genes that will last for long periods of time.

4. Materials and Methods

The current study was performed during the 2021 and 2022 seasons at the experi-
mental farms of the Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
The laboratory experiments were conducted at Excellence Center and Plant Pathology &
Biotechnology Lab, Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh
University, Egypt.

4.1. Field Experiments
Evaluation of Some Wheat Cultivars and Stem Rust Resistance Genes (Sr,s) at the
Adult Stage

In the Kafr El-Shakh governorate, 15 cultivars (Table 2) and 41 stem rust resistance
genes (Sr,s) (Table 3) were tested under field conditions during the 2021 and 2022 seasons.
The complete randomized block design with three replicates was used in these experiments,
and there were three rows in the experimental unit (3 m long and 30 cm apart and 5g seed
rate for each row). The experiment was encircled by a 1.5 m belt and a 1 m ditch that
demarcated entries that were susceptible to stem rust, such as “Morocco”. The spreader
was artificially inoculated using TTKSK, TTKST, and TTTSK races of P. graminis during
late tillering and late elongation stages. The inoculation was done by shaking or brushing
rusted material over the plant leaves to create an initial film of free water on the plants,
which is necessary for spore germination and for the infection to take hold. According to the
approach used by Peterson et al. [50], disease severity (DS) was measured four times, every
10 days, during the two consecutive seasons as the percentage of leaves covered in rust
pustules. Rust reaction was expressed in five types [51], i.e., immune = (0), resistant = (R),
moderately resistant = (MR), moderately susceptible = (MS), and susceptible = (S). Then
rust reaction was transformed to average coefficient of infection (ACI) values according to
the methods adopted by Saari and Wilcoxson [52]. According to an equation proposed by
Pandey et al. [53], AUDPC was calculated in the tested cultivars.

Table 3. The pedigree list of the forty-one stem rust resistance genes (Sr,s) used in this study.

No. Sr Gene Tester No. Sr Gene Tester

1 2 CnS(Hope3B) 22 31 Sr31 (Benno)/6*LMPG-6 DK42
2 5 ISr5-Ra 23 31 Kavkaz
3 6 ISr6-Ra 24 31 Federation 4/Kavkaz
4 7b ISr7b-Ra 25 31 Brigardier
5 8a ISr8a-Ra 26 31 Clement
6 9a ISr9a-Ra 27 31 PBW343
7 9b W2691Sr9b 28 35 W3763-SR35
8 9e Vernstein 29 36 W2691SrTt-1
9 9d ISr9d-Ra 30 37 W2691 SR37TT2

10 9g CnsSr 9g 31 38 VPM-1
11 10 W2691Sr10 32 40 RL 6087 Dyck
12 11 ISr11-Ra 33 Tmp CnsSr Tmp
13 13 W2691SR13 34 GT BT-SrGt
14 17 Combination 35 MCN McNair 701
15 17 LC/KENYA HUNTER-SR17 36 24+31 Siouxland
16 21 CnS_T_monococcum 37 36+31 Sisson
17 22 SWSR22T.B. 38 Sr36, 6 Roughrider
18 24 LcSr24Ag 39 Sr6, 24, 36, 1RS-Am Fleming
19 26 EAGLE-SR26,SR9G 40 Sr7a, Sr12, Sr6 Chris
20 28 W2691 SR28KT 41 SRTT3, SR10 FR*2/SRTT3-SRTT3, SR10
21 30 BtSr30Wst
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4.2. Laboratory Experiments
4.2.1. Molecular Markers

A total of 15 wheat cultivars were examined to identify the six stem rust resistance
genes (Sr2, Sr13, Sr24, Sr31, Sr36 and Sr40) by using 6 specific primers purchased from SBS
Company, Jinjiang City, China. Molecular analysis was carried out at the EPCRS Excellence
Center, Faculty of Agriculture, Kafer El-sheikh University, Egypt.

The extraction of DNA was carried out using a modified procedure that was based
on Dellaporta et al.’s [54] methodology. The PCR Amplification procedure followed these
instructions. Six specific primers were used to detect the six stem rust resistance genes as
shown in Table 4. The PCR reaction mixture (15µL) contained 5 ng DNA template, 10 pmol
of forward primer, 10 pmol of reverse primer, 0.1 U of Taq DNA polymerase (Bioline GmbH,
Luckenwalde, Germany), 25 mM of MgCl2, 2 mM dNTPs, and 10× PCR buffer in 96 well
thermal cyclers (Applied Biosystem Thermal Cycler, Singapore). The reaction conditions
were as follows: initial denaturation was for 5 min at 94◦C, followed by the initial 37
cycles of denaturation for 1 min at 94◦C, annealing (Table 4), and extension at 72 for 2 min.
Subsequently, a 10 min final extension at 72◦C was done. PCR products of SSR markers
were checked for amplification on 2% agarose gel. All the PCR amplification bands were
separated using the electrophoresis method on 2% agarose gels prepared in 1× TBE buffer
stained with ethidium bromide. The Mid-Range DNA Ladder 100bp-3kbp linear sale (Jena
Bioscience, Jena, Germany) was used to detect the molecular weight of the tested samples.
The Mid-Range DNA Ladder 100bp-3kbp linear sale (Jena Bioscience, Jena, Germany) was
used to detect the molecular weight of the tested samples.

Table 4. Primer, sequences, Annealing Temperature and references from Sr genes associated markers.

Genes Primer Sequence Annealing Temp.
(◦C)

Amplicon Size
(bp) Reference

Sr2 F
R

CAA GGG TTG CTA GGA TTG GAA AAC
AGA TAA CTC TTA TGA TCT TAC ATT TTT CTG 55 ◦C 350 bp [55]

Sr13 F
R

CGGAGCAAGGACGATAGG
CACCACACCAATCAGGAACC 54 ◦C 320 bp [56]

Sr24 F
R

CAC CCG TGA CAT GCT CGT A
AAC AGG AAA TGA GCA ACG ATG T 58 ◦C 480 bp [57]

Sr31 F
R

CTCTGTGGATAGTTACTTGATCGA
CCTAGAACATGCATGGCTGTTACA 55 ◦C 1200 bp [58]

Sr36 F
R

CGT CGA AAA CCG TAC ACT CTC C
GCG AAA CAG AAT AGC CCT GAT G 61 ◦C 290 bp [59]

Sr40 F
R

CAAGGAAATAGGCGGTAACT
ATTTGAGTCTGAAGTTTGCA 51 ◦C 270 bp [60]

4.2.2. Determination of O2- and H2O2

O2- and H2O2 were shown to be purple in NBT and reddish-brown in DAB staining, re-
spectively. Vacuum infiltrated stems were treated with 0.1 w/v percent NBT (Sigma-Aldrich,
Steinheim, Germany) or 0.1 w/v percent DAB (Fluka, Buchs, Switzerland). NBT- and DAB-
treated samples were cleaned in 0.15 w/v percent trichloroacetic acid in ethanol: chloroform
4:1 v/v for 1 day after being exposed to sunlight for 20 min and 2 h, respectively [61]. The
samples were washed with water and placed in 50% glycerol prior to analysis. Utilizing
nicked eyes or ChemiImager 4000 digital imaging equipment, the discoloration of stems
was recorded.

4.2.3. Assays of Antioxidant Enzymes

For enzyme assays in plants, 0.5 g wheat stem material was homogenized at 0–4 ◦C in
3 mL of 50 mM TRIS buffer (pH 7.8) containing 1 mM EDTA-Na2 and 7.5% polyvinylpyrroli-
done. The samples were centrifuged for 20 min at 4 ◦C (12,000 rpm), and then the total
soluble enzyme activity was measured in the supernatant using a spectrophotometer. All
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measurements were done at 25 ◦C, using a spectrophotometer. The enzyme assays were
tested three times. CAT activity was assayed according to Aebi [62] using a spectrophotome-
ter. Changes in absorbance at 240 nm were recorded for 3 min every 30 sec intervals. PPO
activity was determined according to the method of Malik and Singh [63]. The absorbance
was recorded at 495 nm for 3 min. The activity was stated as the increase in absorbance
min−1 g−1 fresh weight. POX activity was recorded for the crude extract according to Ham-
merschmidt et al. [64], and the changes in absorbance were measured at 470 nm every 3
min. Enzyme activity was recorded as the increase in absorbance (min−1 g−1 fresh weight).

4.2.4. Electrolyte Leakage (EL%)

EL% was assayed according to Szalai et al. [65] and Whitlow et al. [66]. Twenty discs
(1 cm2) of leaves were placed into individual vials with 25 mL deionized water (Milli-Q
50, Millipore, Bedford, MA, USA). Flasks were shaken for 20 h at ambient temperature
to facilitate electrolyte leakage from injured tissues. Initial electrical conductivity was
recorded for each vial using an Acromet AR20 electrical conductivity meter. Flasks were
then immersed in a hot water bath at 80 ◦C for 1 h to encourage cell rupture. The vials
were placed on the Innova 2100 platform shaker for 20 h at 21 ◦C, final conductivity was
recorded for each flask. EL was recorded for each bud as follows: initial conductivity/final
conductivity × 100.

4.2.5. Chlorophyll a and b Content

The concentration of chlorophyll (Chl) of one gram of fresh leaves was extracted with
5 mL N,N-dimethyl-formamid overnight at 5 ◦C, then Chl. a and b were estimated using a
spectrophotometer at 663 and 647 nm as mg/g f w [67]. The concentrations were calculated
with the following equations:

Chl. A = 12.76A663 − 2.79A647 (mg/g fresh weight).

Chl. B = 20.76 A647 − 4.62A663 (mg/g fresh weight).

4.2.6. Anatomical Studies

During the second growing season, stem samples (1 cm length) 70 days old were
collected from the middle of the fourth internode from the apex. The samples underwent
killing and fixation (F.A.A.) and were rinsed in 50% ethyl alcohol before being dehydrated
in a typical butyl alcohol series. The specimens were then heated to between 56 and 58
degrees in paraffin wax. A rotary microtome type 820 was used to cut transverse sections
that were 12 micrometres thick. The sections were mounted in Canada balsam, fixed
with albumin, and dyed with safranin [68,69]. The sections were examined using a light
microscope and photographed.

4.2.7. Statistical Analysis

The data were analyzed using SPSS software for Windows version 25.0. All compar-
isons were assessed through a one-way analysis of variance (ANOVA) test. To identify
significant differences among treatment means, Duncan’s multiple range test was employed
at a significance level of p ≤ 0.05.

5. Conclusions

Gemmeiza-9, Gemmeiza-11, Sids-13, and Sakha-94 cultivars became susceptible, while
new cultivars, Sakha-95 and Misr-3, were resistant. Physiological, biochemical, and molec-
ular analysis differentiated between them. By defining the stem rust resistance genes such
as Sr2, Sr13, Sr24, Sr31, Sr36, and Sr40, it became clear that there is a great similarity in the
genes defined within these cultivars, which shows the similarity in pedigree. Also, these
cultivars were obtained from the same source (CIMMYT). These cultivars’ resistance was
broken as a result of novel races such as TTKSK, TTKST, and TTTSK, which appeared for
the first time in Egypt and other countries. The wheat rust breeding program must rely
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on land races and pyramiding genes in order to develop new resistance genes that will
survive for a very long time.
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