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Abstract: The combined morphological features of Stratiotes (Hydrocharitaceae) pollen, observed
with light and electron microscopy, make it unique among all angiosperm pollen types and easy to
identify. Unfortunately, the plant is (and most likely was) insect-pollinated and produces relatively
few pollen grains per flower, contributing to its apparent absence in the paleopalynological record.
Here, we present fossil Stratiotes pollen from the Eocene of Germany (Europe) and Kenya (Africa),
representing the first reliable pre-Pleistocene pollen records of this genus worldwide and the only
fossils of this family discovered so far in Africa. The fossil Stratiotes pollen grains are described and
compared to pollen from a single modern species, Stratiotes aloides L. The paleophytogeographic
significance and paleoecological aspects of these findings are discussed in relation to the Hydrochari-
taceae fossil records and molecular phylogeny, as well as the present-day distribution patterns of its
modern genera.

Keywords: aquatic plant; Eocene; Kenya; Messel; paleoecology; plant dispersal route; pollen
morphology; tropical forest

1. Introduction

The origin and evolution of extant angiosperms is an ever-changing saga that has,
since the birth of paleobotanical sciences, been studied using the morphology and anatomy
of both living and fossil plants in combination with their current and past distribution
patterns (e.g., [1,2]). In the last two decades, molecular data have become an additional
source of information, not only for establishing genetic and phylogenetic relationships
among angiosperms (e.g., [3–5]) but also for pinpointing the origin of particular lineages in
both time and space. It is now the foundation for divergence time estimates and explicit bio-
geographic analyses (e.g., [6], and references therein). The Hydrocharitaceae, a fully aquatic
family comprising 14 genera and c. 136 species (Supplementary Material S1, Table S1), is
one of those families that has recently been studied using various modern approaches in
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attempts to clarify phylogenetic relationships among the genera and species, their time
and place of origin, and subsequent divergence and dispersal patterns (e.g., [7–10]). Chen
et al. [9] (p. 8) concluded that the Hydrocharitaceae had an “Oriental” (i.e., S./S.E. Asian-
Chinese) origin and that the ancestor of Stratiotes, representing the earliest diverged lineage
of the family, dispersed into Europe during the late Cretaceous and Paleocene. They sug-
gested the genus Stratiotes “had diversified widely in this region adapting to wet swamps
in the Late Cretaceous” [9] (p. 8), and although this “seems to be inconsistent” with the
fossil record of the clade and its relatives, this discrepancy was explained by a preservation
“bias in paleobotany.” Indeed, the family’s fossil record is meager and composed only of
leaf, seed, and pollen specimens affiliated with certainty to Stratiotes L. (earliest Eocene to
Holocene), Ottelia Pers. (middle Eocene to early Oligocene), Hydrocharis L. (middle Eocene
to Pleistocene), Enhalus Rich./Thalassia Banks & Sol, ex K.D.Koenig (middle Eocene), Najas
L. (late Eocene to Pleistocene), Hydrilla Rich. (late Eocene), and Vallisneria P. Micheli ex
L. (late Eocene to Miocene) (Supplementary Material S1, Table S2). There is currently no
fossil evidence of Hydrocharitaceae older than the earliest Eocene, and there is not a single
reliable fossil record representing this family from South or Southeast Asia or China, the
supposed area of origin ([9] “Oriental area”; Supplementary Material S1, Table S2).

Stratiotes is a monotypic genus today. The single living species, Stratiotes aloides L., is
distributed throughout Europe and western Central Asia (see Figure 8 in [11]). The plant
is a peculiar dioecious perennial, which is submerged in freshwater over winter and rises
to the surface to flower in spring. The roots of S. aloides are simple, up to 180 cm long,
and loosely attached to the submerged substrate. The linear, sessile, and rigid leaves are
up to 160 cm long, spirotristichous, in a rosette, and with spinous-serrate margins. The
male inflorescences are 3–6-flowered, but the females bear mostly single flowers. Male
flowers have 5–17 stamens surrounded by 20–30 nectaries; female flowers have six pistils
surrounded by 20–30 nectaries [11,12]. Stratiotes aloides is entomophilous and mainly pol-
linated by Diptera flies [13]. The insects are attracted to the flowers by their large white
petals, osmophores emitting a smell similar to that of rotten meat, and nectaries [12,14,15].
The pollen grains of S. aloides are isodiametric and spheroidal in shape. They are inaper-
turate, 42–87 µm in diameter, and characterized by a reticulate sculpture with echinate
suprasculpture (having twisted and furrowed echini), and numerous sculpture elements
(nanoclavate and nanogemmate) within the lumina (Supplementary Material S1, Table S3).
The sculpture, when observed with scanning electron microscopy (SEM), makes pollen of S.
aloides unique within the Hydrocharitaceae (e.g., [16,17]), and in combination with pollen
shape, size, and aperture configuration, it can be differentiated from any other angiosperm
pollen. The fruit of S. aloides is a berry-like capsule containing up to 24 seeds [11]. Seeds
are well represented in the fossil record, extending from the beginning of the Eocene to the
present time across Europe and into Western Siberia (Supplementary Material S1, Table S2;
part of the “West Palearctic” area of [9]). The seeds are borne in fruits that are forced below
the water by developing leaves, then sink to the bottom in a gelatinous mass [11], and
consequently are more likely than other plant parts to become fossils. Interestingly, S.
aloides often reproduces vegetatively via stolons or turions [18], but only leaves (or parts)
and seeds have been recognized or reported as fossils.

Here we report on the first proof of pre-Pleistocene fossil Stratiotes pollen from the
early Eocene of Messel, Germany (Figure 1) (i.e., [9] “West Palearctic” area), and the
“earliest” late Eocene of Kenya (Figure 2) (i.e., [9] “Afrotropical” area). The German and
Kenyan pollen types are compared to those produced by modern Stratiotes aloides. The
new finds are discussed within the framework of previous fossil occurrences and related
(paleo)environmental data, which are compared with extant Stratiotes, ecology, and climate
preferences. A dated phylogeny and biogeographic analysis based on the fossil record of
Hydrocharitaceae are presented and discussed with regard to the origins and dispersal
routes of different Hydrocharitaceae genera.
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Figure 1. Geography and geology of the sample site at Messel, Germany, Europe. (A). Schematic 
map showing the geographic position of Messel pit, Germany, Europe. (B). Simplified geological 
map of the area surrounding the Messel pit (modified after [19]). (C). Compiled stratigraphic profile 
(modified after [20]). Stratigraphic level of sample comprising the fossil Stratiotes is marked with an 
x. 

 
Figure 2. Geography and geology of the sample site at Dodori, Kenya, Africa. (A,B). Schematic maps 
showing the geographic position of the Dodori-1 well and major geological formations. (C). Com-
piled stratigraphic profile (modified after [21]). Stratigraphic level of sample comprising the fossil 
Stratiotes is marked with an x. 

Figure 1. Geography and geology of the sample site at Messel, Germany, Europe. (A). Schematic
map showing the geographic position of Messel pit, Germany, Europe. (B). Simplified geological
map of the area surrounding the Messel pit (modified after [19]). (C). Compiled stratigraphic profile
(modified after [20]). Stratigraphic level of sample comprising the fossil Stratiotes is marked with an x.
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Figure 2. Geography and geology of the sample site at Dodori, Kenya, Africa. (A,B). Schematic maps
showing the geographic position of the Dodori-1 well and major geological formations. (C). Compiled
stratigraphic profile (modified after [21]). Stratigraphic level of sample comprising the fossil Stratiotes
is marked with an x.
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2. Results
2.1. Systematic Description

Order: ALISMATALES R.Br ex Bercht & J.Presl
Family: HYDROCHARITACEAE Juss.
Genus: Stratiotes L.
Species: Stratiotes sp., Messel morphotype (MT), pollen close to Stratiotes aloides

(Figure 3; Supplementary Material S1, Table S3).
“Description”: Pollen, monad, P/E ratio isodiametric, outline circular to elliptic; di-

ameter 21–25 µm in LM, 18–23 µm in SEM (Figure 3A–C); inaperturate; exine ca. 1.8 µm
thick (excluding echini) in LM; semitectate; sculpture echinate in LM, reticulate with
echinate suprasculpture in SEM, and nanogemmate, nanoareolate to nanorugulate inside
lumina (SEM; Figure 3D–G); echini 3–3.5 µm in height, 10–12 per 100 µm2 pollen sur-
face, straight to twisted, sometimes fused (Figure 3F,G), with furrows extending from
base towards apex (SEM); exine ca. 1.8 µm thick (LM), composed of three layers (trans-
mission electron microscopy [TEM]; Figure 3H–J); thin compact-discontinuous endexine;
thick compact-continuous footlayer; alveolate-granular infratectum with varying granu-
lae clusters; discontinuous tectum (semitectate); and supratectal elements echini (TEM;
Figure 3H–J).

“Remarks”: The fossil Stratiotes pollen grain (Messel MT) from the early Eocene of
Messel, Germany, shares diagnostic characteristics with fossil Stratiotes pollen from the
earliest late Eocene of Kenya (Dodori MT; Figures 4 and 5), as well as extant pollen of S.
aloides in LM, SEM, and TEM (Figure 6; Supplementary Material S1, Table S3; Supplemen-
tary Material S3, Figures S1–S4). Some morphological (SEM) and ultrastructural (TEM)
differences between the Messel MT and extant Stratiotes pollen can be observed. First,
the Messel MT pollen is eroded; it is infolded and has lost much of the sexine/tectum
layer of the pollen wall. Many of the echini, which are usually abundant and seen as
supratectal elements on the muri of the reticulum, are missing. Still, remnants of the muri
can be seen in Figure 3D,G (arrows). Despite the poor preservation state, the pollen grain
can be affiliated with the genus Stratiotes based on, among others, the morphology of the
echini, showing the characteristic furrows that run from the base of the echinus towards
the apex and the ultrastructure of the pollen wall observed with TEM. The main difference
between extant Stratiotes pollen and the Messel MT is in size (Supplementary Material
S1, Table S3), with the fossil being much smaller (which could be caused by infolding or
missing parts in the fossil pollen). Also, the ultrastructure of the Messel MT pollen shows
that the infratectum is denser in the fossil compared to that observed in extant pollen,
and the footlayer is continuous-compact in the Messel MT versus discontinuous in extant
Stratiotes pollen (compare Figure 3J with Figure 6J).

Hydrocharitaceae leaves have been reported from Messel [22]. Surprisingly, the
characteristic seeds of Stratiotes have not been recorded among the rich record of fruits and
seeds [23]. Also, in a study on dispersed pollen from Messel [24], Thiele-Pfeiffer described
a new species, Punctilongisulcites microechinatus Thiele-Pfeiffer, which was assigned to
Hydrocharitaceae. The author discussed Stratiotes as one of the few potential source genera.
However, she was not able to recognize the characteristic reticulate pattern between the
spines and left the generic assignment open. Bouchal et al. [25] have now shown that the
Punctilongisulcites microechinatus pollen type of Thiele-Pfeiffer [24] is sulcate and affiliated
with Arecaceae.

Species: Stratiotes sp., Dodori MT, pollen close to Stratiotes aloides (Figures 4 and 5;
Supplementary Material S1, Table S3).
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murus (white arrowhead). (F,G) Close-up showing echini, murus between echini (white arrow-
head). (H) Cross-section of pollen grain, unstained, TEM. (I,J) Detail showing cross-sections of pol-
len wall with thin compact-continuous endexine (en, black arrowheads), thick, compact-continuous 
footlayer (fl), alveolate-granular infratectum (i), semitectum (t), supratectal elements (echini, aster-
isk), and smaller sculpture elements such as granules (g, white arrowhead); note the electron-dense 
gold layer, unstained, TEM. Scale bars—10 µm (A–C,H), 2 µm (D,E), 1 µm (F,G,I,J). 
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Figure 3. Fossil Stratiotes pollen from Messel, early Eocene, Germany, Europe. LM (A), SEM (B–G),
and TEM (H–J) micrographs. (D,E) Close-up showing reticulum, columellae supporting the eroded
murus (white arrowhead). (F,G) Close-up showing echini, murus between echini (white arrowhead).
(H) Cross-section of pollen grain, unstained, TEM. (I,J) Detail showing cross-sections of pollen wall
with thin compact-continuous endexine (en, black arrowheads), thick, compact-continuous footlayer
(fl), alveolate-granular infratectum (i), semitectum (t), supratectal elements (echini, asterisk), and
smaller sculpture elements such as granules (g, white arrowhead); note the electron-dense gold layer,
unstained, TEM. Scale bars—10 µm (A–C,H), 2 µm (D,E), 1 µm (F,G,I,J).
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manganate, TEM. (I) Detail showing cross-section of pollen wall with continuous-compact endexine 
(en, black arrowheads), granular infratectum (i), semitectum (t), and supratectal elements (echini, 
asterisk), cross-section through echini pinpointed by white arrowhead, unstained, TEM. (J) Detail 
showing cross-section of pollen wall with endexine (black arrowheads) and ektexine (ekt) with se-
mitectum (t) alveolate-infratectum (i), thin, continuous-compact footlayer (fl), and supratectal ele-
ments (echini, asterisk), potassium permanganate, TEM. Scale bars—10 µm (A–C,H), 1 µm (D–
G,I,J). 

Figure 4. Fossil Stratiotes pollen from Dodori, earliest late Eocene, southeast Kenya, Africa. LM (A),
SEM (B–G), and TEM (H–J) micrographs. (D) Close-up showing reticulum. (E) Close-up showing
reticulum and muri of varying length. (F) Close-up showing twisted and furrowed echinus. (G) Close-
up showing gemmate sculpture. (H) Cross-section of pollen grain, endexine pinpointed with black
arrowhead, cross-sections through echini pinpointed by white arrowheads, potassium permanganate,
TEM. (I) Detail showing cross-section of pollen wall with continuous-compact endexine (en, black
arrowheads), granular infratectum (i), semitectum (t), and supratectal elements (echini, asterisk),
cross-section through echini pinpointed by white arrowhead, unstained, TEM. (J) Detail showing
cross-section of pollen wall with endexine (black arrowheads) and ektexine (ekt) with semitectum (t)
alveolate-infratectum (i), thin, continuous-compact footlayer (fl), and supratectal elements (echini,
asterisk), potassium permanganate, TEM. Scale bars—10 µm (A–C,H), 1 µm (D–G,I,J).
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Figure 5. Fossil Stratiotes pollen from Dodori, earliest late Eocene, southeast Kenya, Africa. LM (A),
SEM (B–E), and TEM (F,G) micrographs. (C,D) Close-up showing twisted and furrowed echinus.
(E) Close-up showing one brochus of reticulum and muri of varying length. (F,G) Cross-section of
pollen wall with compact, more or less continuous endexine (en), thin, compact-continuous footlayer
(fl) alveolate-granular infratectum (i), semitectum (t), supratectal elements (echini, asterisk), and
smaller sculpture elements such as granules (g), unstained, TEM. Scale bars—10 µm (A–C), 1 µm
(D–G).

“Description”: Pollen, monad, P/E ratio isodiametric, shape spheroidal, circular in polar
and equatorial views; diameter 48–60 µm in LM, 50–56 µm in SEM (Figures 4A–C and 5A,B);
inaperturate; exine 1.7–2.9 µm thick (excluding echini) in LM; semitectate; sculpture retic-
ulate and echinate in LM, reticulate with echinate suprasculpture in SEM, and nanogem-
mate to microgemmate inside lumina (Figures 4D–E and 5C–E); muri forming ± pen-
tagonal pattern, echini at intersection of muri; muri rounded, sometimes discontinuous
(Figures 4D and 5E), 1.4–5.5 µm long, 0.6–1.2 µm wide (SEM); lumina 3.6–9.8 µm in di-
ameter (SEM); echini 4.5–5.5 µm in height, 3–10 per 100 µm2 pollen surface, straight or
twisted (Figures 4F and 5C,D), with three furrows extending from the base towards apex
(SEM); exine 1.7–2.9 µm thick, composed of three layers (TEM; Figures 4H–J and 5F,G);
compact-discontinuous endexine; continuous footlayer; alveolate to granular infratec-
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tum with varying granulae clusters; discontinuous tectum (semitectate); and supratectal
elements echini (TEM).
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Figure 6. Recent Stratiotes aloides L. pollen from herbaria specimens (A,B,F,G) from WU0152795;
(C–E,H–J) from WU0152793). (A) LM micrographs in upper focus plane and optical cross-section.
(B,C) SEM overviews. (D–G) Close-ups of pollen surface showing the reticulum, sculpture elements
inside lumina, and twisted, three-furrowed echini atop the muri. (H) Cross-section of a pollen grain
in TEM, unstained. (I,J) Detail showing cross-section of pollen walls with thin compact-continuous
endexine (en, black arrowhead), compact-discontinuous footlayer (fl), alveolate-granular infratectum
(i), semitectum (t), supratectal elements (echini, asterisk), and smaller sculpture elements such as
granules (g), unstained, TEM. Scale bars—10 µm (A–C,H), 1 µm (D–G,I,J).
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“Remarks”: The fossil Stratiotes pollen (Dodori MT) from the earliest late Eocene of
Kenya, Africa, shares diagnostic characteristics with extant pollen of S. aloides in LM, SEM,
and TEM (Figure S4; Supplementary Material S1, Table S3; Supplementary Material S3,
Figure S1–S4). Some morphological (SEM) and ultrastructural (TEM) differences between
the fossil and extant pollen can be observed. The sculpture elements of S. aloides pollen
are shorter and narrower but more frequent than those of the Dodori MT (SEM). The muri
are usually longer and broader in the Dodori MT, and the lumina are generally larger
(SEM). The echini are taller in the Dodori MT and fewer in number per 100 µm2 pollen
surface. Also, sculpture elements inside lumina are nanogemmate to microgemmate, but
nanoclavate to nanogemmate in pollen of S. aloides (SEM) (Supplementary Material S1,
Table S3). The ultrastructure of the Dodori MT pollen wall is only slightly different from
that of extant S. aloides, mainly in terms of thickness. The infratectum of the Dodori MT
is more compact than that of the S. aloides, the supratectal elements (echini) in the fossil
are also larger than in the modern pollen, and the footlayer is continuous-compact in
the Dodori MT versus discontinuous in extant Stratiotes pollen (compare Figure 4J with
Figure 6J).

We are not aware of any previous Hydrocharitaceae (Stratiotes) fossil records from this
locality or of any other Cenozoic plant-bearing sediments from Africa.

2.2. Phylogeny of Hydrocharitaceae

Our IQTREE and MrBayes analysis of the molecular data from Bernardini and Luc-
chese [10] retrieved a strongly supported topology coherent with this previous study
(Supplementary Material S4). All genera are retrieved as monophyletic with good support.
Two major clades are retrieved with strong support: a clade including Lagarosiphon Harv.
as sister to Elodea Michx sensu lato and Ottelia plus Blyxa Noronha ex Thouars (clade
B) (100/100/1 Bootstrap/aLRT/Posterior Probability), and a clade including Limnobium
Rich. plus Hydrocaris as sister to a clade of Najas plus a clade of the seagrasses (Halophila
Thouars, Enhalus, and Thalassia) plus a clade of Hydrilla as sister to Nechamandra Planch.
plus Vallisneria (clade A) (82.5/83/1). The placement of Stratiotes as sister to the rest of
the Hydrocharitaceae was supported, albeit weakly, in IQTREE (75.3/80), but not in the
Bayesian analysis.

2.3. Dated Phylogeny

Our dated phylogeny inferred the origin of crown-group Hydrocharitaceae between
the late Cretaceous and the Paleogene (67–56 Ma) (Figure 7). The divergence of Stratiotes
from the rest of the family is estimated to have happened between 64 and 50 Ma. Clade A
appears to be slightly younger than clade B, the former having originated between 55 and
45 Ma and the latter having originated between 61 and 47 Ma. The genus Hydrilla diverged
rather early from the Nechamandra-Vallisneria clade (42–31 Ma). Among the crown groups
of the extant genera, the oldest is Najas, which originated between 28 and 14 Ma. Of similar
age are the Ottelia-Blyxa clade (33–14 Ma), the Nechamandra-Vallisneria clade (27–13 Ma),
the Seagrass clade (27–11 Ma), and the genus Lagarosiphon (32–10 Ma). The genus Elodea
sensu lato originated between 22 and 8 Ma, and the genus Vallisneria between 17 and 8 Ma.
Younger are the crown groups of the genus Ottelia (15–5 Ma), the genus Blyxa (16–4 Ma),
and the genus Hydrocharis sensu lato (13–5 Ma).
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2.4. Biogeographic Analysis

The results of our biogeographical analysis show that most of the ancestral nodes of
Hydrocharitaceae were distributed in Europe (Figure 8). The crown node of clade A is
inferred to have had a wider distribution including Europe, Africa, and South America,
with extirpation leading to an African origin of Lagarosiphon, a South American origin of
Elodea sensu lato, and a European origin of the stem of the Ottelia-Blyxa clade. This latter
group has a much more complex later history, indicating a widespread distribution of
Blyxa and an Australian–Southeastern origin of Ottelia. Representatives of clade B were
distributed in Europe for most of their evolutionary history, with the exception of the
seagrasses, which appear to have obtained a widespread distribution early in their history.
The current rather widespread distribution of Hydrocharis and Najas appears to have been
the result of recent dispersals outside Europe (i.e., through North America or through
Southeast Asia), while Vallisneria shows an ancestral distribution in Southeast Asia with
later dispersal to the Americas.
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2.5. Climate Preferences Hydrocharitaceae

To estimate the paleoclimatic preferences of Stratiotes and other Hyrdocharitaceae,
we compiled geographic occurrences and climatic preferences (in total 37.498 data sets,
Supplementary Material S1, Table S5) of 107 species belonging to 13 out of the 14 extant
Hyrdocharitaceae genera listed in POWO [26]. We used GBIF and prevailing climate across
species distribution areas ([27], Supplementary Material S2). For practical reasons, the
climatic aspects of Hydrocharitaceae are here discussed by genera and clades following
the phylogenetic framework of Chen et al. [9]. Since Hydrocharitaceae grow submerged in
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waterbodies, precipitation is not a restricting factor. Therefore, we omitted the second letter
of the Köppen climate types for this family.

Stratiotes is the first diverging genus in the family’s phylogenetic tree. It is monotypic
and presently restricted to western Eurasia, where it thrives mainly under temperate and
snow climates, with warm (Cfb, Dfb) or cool to short summers (Dfc) (Figure 9). In the Po
valley, Italy, the northern coast of the Black Sea, and north of the Caspian Sea, between
Dnepr and Wolga, this species extends into humid temperate and snow climates with hot
summers (Cfa, Dfa). Within Hydrocharitaceae, Stratiotes is today the only genus confined
to temperate climates.
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Lagorosiphon and Appertiella C.D.K.Cook et L.Triest belong to the first diverging group
in Clade B and show a Madagascan and African distribution. Here, Lagorosiphon occupies
fully tropical climates (Aw), a variety of hot and cold arid steppe and desert climates (B-
climates), and temperate climates with hot and warm summers (C-climates) (Figure 9). No
occurrence data was available for Appertiella. The second group in Clade B includes Egeria
Planch. and Elodea [9]. Egeria is restricted to South America and thrives under tropical
(mainly Aw; extending into Af, Am) and arid desert and steppe climates with hot summers
(mainly BSh; extending into BWh) but is also found in temperate climates with hot to warm
summers (mainly Cfa; extending into Cfb, Cwa, Cwb). Elodea is native to North and South
America, but absent in Central America. In the Americas, this genus shows the widest
climatic range, present in fully tropical (Af, Am, Aw) and in hot and arid desert and steppe
climates (B-climates). It is mainly present in temperate and snow climates where summers
are either hot or warm (various C- and D-climates). Some species [Elodea bifoliata H.St.John,
E. canadensis Michx., E. nutalli (Planch.) H.St.John] extends this range into snow climates
with cold and short summers (Dfc, Dsc) (Figure 9). The last group in Clade B consists
of Blyxa and Ottelia. The geographic distribution of both genera includes Africa, India,
East Asia, and most of Australasia, with only Ottelia extending into South America. Blyxa
is present in tropical (Af, Am, Aw) and temperate climates with hot to warm summers
(Cfa, Cfb, Cwa, Cwb). Only some species extend into arid [BSh, BWh; Blyxa auberti Rich.,
B. echinosperma (C.B.Clarke) Hook.f., B. octandra (Roxb.) Planch. ex Thwaites] and snow
climates [Dwa, Dwb; B. auberti, B. japonica (Miq.) Maxim, ex Asch. et Gürke]. Ottelia grows
in tropical (mainly Aw, extending into Af, Am), arid climates (mainly BSh; extending into
BSk, BWh, BWk) as well as temperate climates with hot or warm summers (mainly Cfa,
Cfb, Cwa, Cwb; extending into Csa, Csb). Only Ottelia alismoides (L.) Pers. occurs in snow
climates with hot or warm summers (Dfa, Dfb) (Figure 9).

The first diverging group in Clade A comprises Hydrocharis (incl. Limnobium), which
occurs on all continents except Antarctica. Its climatic preferences range from fully tropical
(mainly Aw, Am; extending into Af) to temperate and snow climates with hot to warm sum-
mers (mainly C-climates, extending into D-climates) and occasionally into snow climates
with cold and short summers (Dfc, Dwc). Only Hydrocharis morus-ranae L. is widespread in
the Dfc climate of the Eurasian Taiga (Figure 9). The second diverging group in Clade A
includes all marine members of Hydrocharitaceae (Thalassia, Halophila, and Enhalus). All
taxa in this group are mainly found between the Tropic of Cancer and the Tropic of Capri-
corn. There, they prevail in fully tropical (Af, Aw, Am), arid (mainly BSh, BWh; extending
into BSk, BWk), and temperate climates (mainly Cfa, Csa). Najas forms the third group
diverging in Clade A, showing a nearly global distribution with a wide climatic tolerance
(various A-, B-, and C-climates). Some species [Najas flexis (Willd.) Rostk. Et W.LE.Schmidt,
N. gracillima (A.Braun ex Engelm.) Magnus., N. graminea Delile, N. guadalupensis (Spreng.)
Magnus, N. marina L., and N. tenuissima (A.Braun ex Magnus) Magnus] thrive well under
snow climates with hot to cool short summers (mainly Dfa, Dfb, Dfc; extending into Dsc,
Dwa, Dwb, Dwc) (Figure 9). The fourth and last group in Clade A comprises Vallisneria,
Nechamandra, and Hydrilla. Hydrilla verticillata (L.f.) Royle, the single species of this genus,
is native to Eurasia, Australasia, and tropical Africa. Its wide climatic amplitude includes
fully tropical (Af, Am, Aw), arid desert and steppe (mainly BSh, BSk; extending into BWk),
and temperate climates with hot to warm summers (mainly Cfa, Cfb, Cwa). In Central
and East Asia, this species thrives under snow climates with hot to cool short summers
(mainly Dfb). Nechamandra is restricted to Southeast Asia and tropical (Aw) and temperate
climates with hot summers (Cfa, Cwa), occasionally extending into hot desert climates
(BWh). The 16 Vallisneria species are widely distributed on most continents but rare in
South America (only found in Colombia). Some species’ climatic preferences (Vallisneria
annua S.W.L.Jacobs et K.A.Frank, V. caulescense F.M.Bailey et F.Muell., V. erecta S.W.L.Jacobs,
V. rubra, (Rendle) Les et S.W.L.Jacobs, V. triptera S.W.L.Jacobs et K.A.Frank) include tropical
(mainly Aw; extending into Af, Am) and arid desert and steppe climates (mainly BSh, BWh;
extending into BSk, BWk). Other members of this genus [V. denseserrulata (Makino) Makino,
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V. natans (Lour.) H.Hara, and V. spinulosa S.Z.Yan] thrive predominantly in temperate and
snow climates with hot to warm summers (mainly Cfa, Cfb, Dfa, Dfb). Vallisneria americana
Michx., V. nana R.Br., and V. spiralis L. are more generalistic in their climatic preference
(occurring under various A-, B-, C, and D-climates) (Figure 9).

Based on the climatic preference of Hydrocharitaceae, it becomes apparent that most
species prefer tropical to warm temperate climates (Figure 9). The outlier of this pattern
is the monotypic Stratiotes, which is restricted to warm temperate and snow climates of
western Eurasia.

3. Discussion
3.1. The Paleophytogeographic History of Stratiotes

The oldest Stratiotes record reported so far is from the earliest Eocene of the UK (~56 Ma;
Supplementary Material S1, Tables S2 and S6) (Figure 10). The timing and provenance
of the known fossil record suggest a West European origin for Stratiotes, followed by an
eastward dispersal across Europe into northwestern Asia during the Eocene. The genus had
a European west–east transcontinental distribution by the latest Eocene and extended into
European Russia and Western Siberia from the Oligocene onwards. Apparently, the taxon
then thrived in various parts of Europe and Western Siberia until the Pliocene/Pleistocene
(Supplementary Material S1, Table S2). Recent phylogenetic studies ([9] Figure 1; [10]
Figure 1) place Stratiotes as the earliest diverging lineage and sister to the remaining
Hydrocharitaceae. If the family originated in South/Southeast Asia as inferred by Chen
et al. [9], it would have needed to radiate quickly into Europe where it thrived for the
next 50+ Ma, while going extinct in its area of origin. The early Eocene fossil records and
phylogenetic position of Stratiotes would point towards Europe as the focal point of origin
for the genus/family. This is consistent with our new finds, one of which represents an
Eocene lineage of Stratiotes in sub-Saharan Africa, an area that today hosts the second
diverging lineage of the family, Lagarosiphon. The fossil record of Stratiotes has until
now been restricted to Europe and Western Siberia (Figure 10) and composed mostly
of entire seeds or single valves of germinated seeds. The lack of Stratiotes in the fossil
plant record of Africa is not surprising. Stratiotes fossils have until now been confined to
Cenozoic fruit/seed records (Supplementary Material S1, Table S2) and such assemblages
are rare in Africa (summarized in [28], Table 5.1 and Figure 5.1). Four fruit/seed floras
from the Paleocene to Eocene have been reported in Egypt, along with a single Eocene
fruit/seed flora in Sierra Leone [28]. None of the reports on these five floras documents
the presence of Stratiotes. The notable absence of dispersed Stratiotes pollen in the pre-
Pleistocene global paleopalynological records to date can be attributed to the entomophilous
nature of the plants [13]. Stratiotes produce only a small amount of pollen (even none at
all) per fertile stamen [15], and extant Stratiotes also reproduce vegetatively [29]. Also,
because of the structure and function of the pollen wall (see before), the grains disintegrate
easily. Furthermore, the majority of paleopalynological studies rely only on LM, which
is not sufficient to determine the generic affinity of this pollen type and can easily lead
to misidentification as echinate and the much more common Arecaceae pollen. Eocene
palynofloras from Europe, for example, are known for their rich and diverse palm pollen
components (e.g., [30]).

Based on the current fossil record (Figure 10), including our new finds, the sole surviv-
ing Stratiotes species is a relict of the first phase of Hydrocharitaceae radiation involving
intercontinental dispersal towards the Americas, Asia, and Africa from Europe. The inferred
late Cretaceous and Paleocene East Asian (Oriental) origin for Hydrocharitaceae/Stratiotes
of Chen et al. [9] is not justified by the “fact” that “the genetic diversity centre of the family is in
topical Asia” [9] (p. 7), but biased by the according modern-day underrepresentation of the
earliest diverging non-Asian lineages. In addition, Chen et al. [9] relied on two (outdated)
methods for biogeographic analysis that ignored the phylogenetic distances along their
tree. Most of the tips are scored as combined areas (coded as polymorphisms; [9] Figure 2),
including the “Oriental area” I, hence, the “Oriental” origin of the family, although only
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four species scattered across the tree and with different biogeographic affinities (South
American, Australian, and sub-Saharan African sisters) have been coded as exclusively E.
In the case of Stratiotes (aloides), the “Oriental” area was erroneously included: the species
stretches from Europe into Siberia (cf. [11] Figure 8), i.e., covers the “West. . .” and “East
Palearctic” area. Thus, their analysis set-up was strongly biased towards an “Oriental”
origin. Repeated intercontinental dispersal is likely in the case of aquatic plants such
as the Hydrocharitaceae that are dispersed mainly by birds [31], and in the case of Stra-
tiotes, through interconnected bodies of water via turions that serve as vegetative dispersal
units [18]. In addition, the extant distribution of many plant lineages only reflects the latest
Cenozoic dispersal and East Asian refugia (e.g., [9,32]).

Based on the available fossil record (Figure 10), niche preferences, and paleogeog-
raphy, we suggest that Stratiotes originated in the British Islands region in the late Pale-
ocene/earliest Eocene and then dispersed eastwards across Europe and southwards into
Africa throughout the Eocene. With tropical and subtropical climate equivalents and cor-
responding vegetation extending from the equator to mid and high latitudes in Europe,
temperature would not have been a barrier to a southward dispersal of Stratiotes from
Europe into Africa. Such a ‘northern route’ from Eurasia into Africa during the Eocene
was recently proposed for the Picrodendraceae, believed to have dispersed into Africa
from the Americas via Europe [33], and the Loranthaceae, believed to have entered Africa
from Asia around the same time [34,35]. Paleocene to Eocene palynological studies from
northern Africa also indicate the presence of typically Northern Hemisphere taxa, including
a group of triporate forms likely related to Betulaceae, Hamamelidaceae, and Juglandaceae,
as well as fruits of Fagaceae from Egypt (e.g., [28]). Eocene high sea levels resulted in
the widespread availability of lacustrine, lagoonal, and estuarine environments between
Europe and Africa during the latest Paleocene until at least the middle-to-late Eocene [36].
These environments would have facilitated southward migration by Stratiotes, even though
North Africa was covered by shallow seas with some scattered islands at that time, thus
requiring some long-distance dispersal. Interestingly, the vertebrate paleontological record
also documents several groups that migrated into Africa from Eurasia (primarily Europe)
during the Paleogene, and as Africa was depauperate in vertebrate diversity following the
breakup of Gondwana in the late Cretaceous, northern immigrants became established,
evolving into several characteristic endemic clades [37]. Why and how Stratiotes was extir-
pated in Africa can only be hypothesized. On the basis of its co-occurrence with pollen of
the mangrove palm, Nypa (F. Grímsson, pers. obs.), a relatively expanded shallow coastal
zone and large interior basins were present in northern tropical Africa during the latest
Paleocene through the middle Eocene, and a major global decline in mangrove communities
in the later Eocene, and at the Eocene–Oligocene transition [36], it seems reasonable to
hypothesize the loss of Stratiotes from Africa at the same time. Based on the fossil record,
the phylogeny, and the current distribution of modern genera, it is possible that African
Stratiotes evolved into Lagarosiphon (?Appertiella), the first diverging genus of sister clade B.
Both Lagarosiphon and Appertiella are currently endemic to Africa and/or Madagascar. This
scenario would imply that the Stratiotes pollen is primitive within the family.
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Figure 10. Distribution of Hydrocharitaceae in time and space. Extant distribution of genera is
based on a cleaned georeferenced GBIF dataset (Supplementary Material S1, Table S5) and plotted
on the Pleistocene map. Fossil records and ages of paleofloras are based on [22,38–155] (for details
see Supplementary Material S1, Tables S2 and S6). Palaeomaps modified after [156], epoch maps
are based on GeTech palaeo-plate rotational models for the middle of each epoch’s first stage. For
simplicity, all fossil occurrences of a genus within an epoch, regardless of their particular stratigraphic
range, were plotted on the epoch’s middle first-stage map.

3.2. Ecological and Climatic Preferences of Extant and Fossil Stratiotes

Today, Stratiotes grows in freshwater lakes, sheltered bays, backwaters of rivers, ponds,
ditches, and other water bodies that are 2–5 m deep with a stable water level, and is
never found in temporary nor greatly fluctuating waters, or in shallow or swiftly flowing
water bodies. The plant prefers nutrient-rich muddy substrates and usually occurs in
calcareous mesotrophic water [11]. During the latest Paleocene to Eocene, at the time when
Stratiotes originated and diverged, all of Europe (excluding the Scandinavian craton and
Western Russia) was composed of numerous archipelagoes extending from the British
Islands to what today is Asia Minor and Central Asia (e.g., [157,158] and references therein).
Numerous embayments and brackish and freshwater lakes occurred across Europe during
that time (e.g., [159]), as was true of tropical Africa as well [36], providing havens for
various aquatic plants and aquatic plant communities (e.g., [160]). In Eocene Germany, in
the region of Messel, several paleolakes of volcanic origin (maar lakes) are known [161,162].
Regardless of the origin of the lake, being volcanic like the Messel maar or otherwise, they
sustained complex ecosystems ranging from deep to shallow waters and from coastline
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to adjacent terrestrial surroundings (e.g., [163]), providing also ideal aquatic habitats for
Stratiotes.

Interestingly, some of the Eocene and Oligocene Stratiotes fossil seeds originate from
sediments that accumulated in brackish or shallow marine environments (e.g., [11,160]).
The sedimentary context of the fossil African Stratiotes, the Dodori MT from the earliest late
Eocene, fits within this scenario. The fossil pollen originated from the Kipini Fm (Figure 2)
and was sampled from a sedimentary sequence dominated by sandstones interbedded with
various mudstones, claystones, and lignite layers interpreted to have accumulated within
a delta-front environment [164]. Further evidence of brackish or estuarine water comes
from the co-occurrence of Nypa (“mangrove”) palm pollen in the same sample. We can
hypothesize that the African Stratiotes was part of the lowland wetland/aquatic vegetation
in East Africa during the Eocene, growing in lagoonal or estuarine bodies close to the
coastline associated with paleo-river(s) running eastwards into the ocean.

As mentioned previously, Stratiotes’ current distribution covers Europe and parts
of western Central Asia (see [11] Figure 8). In its main distribution area, Western and
Central Europe, Stratiotes is thriving under a fully humid warm temperate climate with
warm summers (Köppen–Geiger Cfb-climate; cf. [165]) (Supplementary Material S2). At its
margins, in parts of Scandinavia, Eastern Europe, and Central Asia, Stratiotes is growing
under a fully humid snow climate with warm and/or cool summers and cold winters (Dfb-,
Dfc-climates). Taking into account that the European fossil record of Stratiotes extends
approximately 56 million years back in time (Supplementary Material S1, Table S2) and
that climate in Europe was (much) warmer during most of the Cenozoic than at present
(e.g., [166,167]), one can conclude that the current distinctly temperate climate preference
of the sole surviving species, S. aloides, is not representative of its generic lineage. Previ-
ous studies record between 8 and 16 different Stratiotes species throughout the Cenozoic
of Eurasia (e.g., [11,50,81,121,137,160]). During most of the Eocene, when Stratiotes dis-
persed eastwards across Europe and was represented there by up to five different taxa
(e.g., [11,137,160]), the region was in a hot and humid “paratropical” climate comparable
to that of the present-day moist tropics to hot subtropics [166,167]. In Europe, this paleocli-
matic regime sustained a unique thermophilic flora, the so-called Paratropical Rainforest
(e.g., [160]), that disappeared from Europe at the end of the Eocene. The potential modern
analogs of many Paratropical Rainforest plant taxa (e.g., [160]) are currently thriving under
various equatorial climates (Af-, Am-, Aw-climates) or fully humid warm temperate cli-
mates with hot summers (essentially a subtropical Cfa-climate). This means that during
its initial European and out-of-Europe radiation, Stratiotes was accustomed to a climate
considerably warmer (and more humid) than at present. The climate in Messel, Germany, c.
48 Ma was much warmer than present and located approximately 6◦ farther south than
today, at a paleolatitude of about 45◦ N (see [161] Figure 2.2). Paleoclimatic estimations
based on fossil plant remains from Messel suggest a mean annual temperature ranging
from 16.8 to 23.9 ◦C, with temperatures during summer months reaching 24.7–27.9 ◦C.
The temperature of the coldest month is believed to have exceeded 10 ◦C, supporting a
frost-free climate [168]. Oxygen isotope measurements based on vertebrate fossils from
Messel indicate similar paleotemperatures around 18 ± 2.5 ◦C [169]. The climate in Kenya
38–37 Ma was undoubtedly warmer than present and located approximately 10◦ farther
south than today, at a paleolatitude of about 8◦ S. A recent reassessment of sea surface
temperatures (SSTs) determined from coupled clumped isotope (∆47) and Mg/Ca mea-
surements on the carbonate from early Eocene foraminifera in cores from off the coast of
Tanzania indicate tropical SSTs were between 30 ◦C and 36 ◦C throughout the Eocene [170].
Middle Eocene clumped isotope (∆47)-derived values (at paleolatitude ~19◦ S) are near the
higher end of that range. Although we do not precisely know the land-based equivalent
of sea surface temperatures, it was indeed hot. By comparison, the modern mean annual
temperature in Lamu, Kenya, is approximately 27 ◦C. Global climate models produce an
enhanced hydrological cycle at low latitudes (e.g., [171]), but this may not be important
regarding Stratiotes, an aquatic plant.
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3.3. Paleogene Origin and Dispersal of Hydrocharitaceae

Although our dated phylogeny does not retrieve considerably different ages from
Chen et al. [9], our biogeographical analysis shows that inferring the ancestral age of
Hydrocharitaceae based solely on the distribution of extant taxa is potentially misleading.
Indeed, our results support a much more important role for Europe in the distribution of
the family. Although this could be partially driven by the excellent European record for
the family, which in turn could be driven by collection bias, our analysis did not retrieve
major conflicting signals that could have informed the distribution of fossil taxa, whose
absence in the other biogeographical areas was left as uncertain. With the exception of
the seagrasses, whose distribution is probably not limited by biogeographical barriers,
widespread clades such as Najas and Hydrocharis seem to have dispersed out of Europe
after the mid-Miocene, while more endemic genera such as Vallisneria, Lagarosiphon, and
Elodea sensu lato obtained their current distribution (or close to their current distribution)
earlier than the Miocene. This difference in biogeographical history, taken together with
the results of our climate signatures, opens the possibility that at least some of the genera
of the Hydrocharitaceae were limited in their distribution not by biogeographical barriers,
but rather by the availability of appropriate climates. The mid-Miocene transition pushed
some of the genera outside of the boreotropics and into the tropical climates of Southeast
Asia, Africa, and the Americas, while eradicating them from Europe. On the other hand,
the more cold-tolerant forms of Stratiotes persisted at high latitudes, leading to the current
distribution of Stratiotes aloides.

4. Material and Methods
4.1. Origin of Samples
4.1.1. Messel, Germany, Europe

The fossil Stratiotes pollen from Messel, Germany (Figure 1), was extracted from a
clayey siltstone sample, originally positioned 176 m below the surface (sample nr. 54
in [172]), from core Messel 2001, Messel, Germany. The Messel 2001 core was drilled in
2001 during drilling to a depth of 433 m in the ± central part of the Messel pit to confirm
the assumed volcanic origin of the Messel paleolake [20].

4.1.2. Dodori, Kenya, Africa

The fossil Stratiotes pollen from Kenya, Africa (Figure 2), was recovered from a silty
mudstone sample, originally positioned 4503 ft (1373 m) below the surface, from core
Dodori-1, Lamu Basin, Kenya, Africa. The Dodori-1 core is named after a settlement in
Kenya’s Lamu County that is situated 13 miles (21 km) inland from the coast. The Dodori-1
core was produced in 1964 during drilling to a depth of c. 14,140 feet (4340 m) in order to
investigate potential hydrocarbon reservoirs in Upper Cretaceous to Cenozoic sedimentary
rocks at the coast of the ancient Lamu Embayment, southeast Kenya [164].

4.2. Preparation and Study of Samples

The sedimentary rock samples were processed, and fossil pollen was extracted ac-
cording to the method explained in Grímsson et al. [173]. Pollen from extant Stratiotes
aloides was sampled from herbarium specimens WU0152793 [174], WU0152794 [174], and
WU0152795 [174], housed in the University of Vienna Herbarium (WU; Supplementary Ma-
terial S1, Table S3). The fossil and extant pollen were investigated both by light microscopy
(LM) and SEM using the single-grain method as described by Zetter [175] and Halbritter
et al. [176] (pp. 121–123), as well as with transmission electron microscopy (TEM) following
Ulrich and Grímsson [177]. The SEM stubs and TEM sections with the fossil and extant
pollen produced under this study are stored in the collection of the Department of Botany
and Biodiversity Research, University of Vienna, Austria. The pollen terminology follows
Punt et al. [178] (LM) and Halbritter et al. [176] (LM, SEM, and TEM). For practical reasons,
the fossil pollen types are classified as morphotypes (MTs) named after the place/well
where they were found.
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During pollen preparation for LM, SEM, and TEM, it became clear that fossil and
extant Stratiotes pollen grains are incredibly fragile and break and disintegrate easily.
Sculpture elements (echini and muri) also fall off easily. This instability is due to the open
structure, loosely attached segments comprising the infratectum, and the discontinuity of
the footlayer and tectum. The pollen of Stratiotes is also inaperturate, and the pollen wall
can rupture anywhere. Already during acetolysis, the pollen grains started to break and
it can be assumed that this is part of the reason for the absence of Stratiotes pollen in the
geological record.

4.3. Geographic and Geological Background
4.3.1. Messel, Germany, Europe

The Messel pit (Figure 1A,B) is world-famous for the numerous exceptional fossils that
have been discovered there since 1875 [179] and include priceless (in a scientific context)
plant, invertebrate, and vertebrate remains (e.g., [180–182]). The sediments of the Messel
pit accumulated during the early and middle Eocene in a crater/maar structure caused
by phreatomagmatic activity dated as c. 47.8 Ma [183], c. 48.2 Ma [184], or 48.06 Ma [185].
The crater filling has been divided into four main units based on the Messel 2001 core
and previous onsite research [20,182]. At the base, at a depth of 433–228 m, are massive
pyroclastics and a diatreme breccia bearing no formal name (Figure 1C). The lake sediments
(rocks) overlying the pyroclastics have been divided into the Lower, Middle, and Upper
Messel Formation (Fm). The Lower Messel Fm occurs at 228–94 m depth in the core and
comprises breccia, sand- to claystone, as well as lapilli tuffs (Figure 1C). The Middle Messel
Fm occurs at 94–0 m depth in the core and consists of finely laminated dark olive-grey to
dark brownish-grey clay- and siltstones (oil shale) intercalated with few sandy-gravelly
layers and occasional layers of siderite (Figure 1C). The Upper Messel Fm, which has been
mined away, was allegedly up to 40 m thick and composed of finely laminated blackish
claystone intercalated with lignite seams and clayey sands (e.g., [20,182]). The sedimentary
sample with the fossil Stratiotes pollen presented herein originates from the Lower Messel
Fm, assigned to the Ypresian (early Eocene), and is between 48.27 and 48.05 Ma [184].

4.3.2. Dodori, Kenya, Africa

The Lamu Basin covers a large area of southeastern Kenya and southwestern Somalia
with an aerial extent of 132,720 km2 (Figure 2A) [186]. It is the largest basin in Kenya,
composed of sedimentary rocks of Permian to Cenozoic age, including continental rift
basin sandstones, fluvio-deltaic sandstones, marine shales, and carbonates. The Cretaceous
and Cenozoic sediments have been divided into three megasequences deposited under
alternating periods of transgression and regression, thus incorporating unconformities of re-
gional and local significance [164]. Megasequence II comprises the rocks deposited between
the late Jurassic and the late Paleocene, also defined as the Sabaki Group. Megasequence
III constitutes the Tana Group, comprising, among others, the Kipini Fm and the Dodori
limestone (Figure 2B), which are Paleogene deposits accumulated during three pulses of
sea-level rise and a single regressive phase. Megasequence IV (Coastal Group) is defined by
an unconformity that separates the underlying late Oligocene strata of the Tana Group from
the youngest sediments filling the basin [164]. The Kipini Fm comprises several sandstones
interbedded with claystones and mudstones, and the Dodori limestone is an expression
of the shelf carbonate deposition that occurred in the area until the late Eocene [164]. The
studied sample originates from a greyish shale of the Kipini Fm, positioned just below the
Dodori limestone (at 4503 ft (1373 m) below the surface; Figure 2B), and is of earliest late
Eocene (earliest Priabonian) age (~37.71 Ma; following [187]). The consistent occurrence
of the large foraminifera, Nummulites fabianii Prever (from 4410 ft (1344 m) upwards), as
well as various dinoflagellate cysts (including Cordosphaeridium fibrospinosum R.J.Davey
& G.L.Williams) characteristic of the late Eocene, support the Priabonian age of the sed-
imentary matrix containing the fossil Stratiotes pollen. Generally, middle-to-late Eocene
sediments in this region consist of interbedded nummulitic sands, poorly sorted and fine
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to very coarse-grained calcareous sandstones, nummulitic and micritic limestones, and
dark olive greenish grey shales and grey-green silty mudstones. The sample containing
the fossil Stratiotes pollen originates from the top of a sedimentary rock unit interpreted to
have been deposited within a delta-front environment (Figure 2B) [164].

4.4. Dated Phylogeny

We inferred a dated phylogeny of the Hydrocharitaceae using the molecular matrix
of Bernardini and Lucchese [10]. This included one nuclear locus (ITS) and five plastid
loci (matK, rbcl, rpoB, rpoC, and trnK) for 50 species of Hydrocharitaceae, including the
genera Blyxa (3/14 species sampled), Elodea (5/9, including 1 species formerly in Agapanthe
Planch. and 2 species formerly in Egeria), Enhalus (1/1), Halophila (4/17), Hydrilla (1/1),
Hydrocharis (4/5, including 2 species formerly in Limnobium), Lagarosiphon (3/9), Najas
(10/39), Nechamandra (1/1), Ottelia (5/23), Stratiotes (1/1), Thalassia (1/2), and Vallisneria
(10/16, including 1 species formerly in Maidenia Rendle). This dataset covers all the genera
of the Hydrocharitaceae, with the exclusion of the monotypic Appertiella C.D.K.Cook &
L.Triest, for which no molecular data are available.

After trimming one unidentified species and using Butomus umbellatus L. as the only
outgroup, we used the resulting alignment in a tip-dating analysis under the Fossilized
Birth-Death prior as employed in the software MrBayes v. 3.2.7 [188] as implemented
in the CIPRES science gateway [189]. Fossil taxa of Hydrocharitaceae were added and
constrained to their more likely position (see Supplementary Material S1, Table S4). The
prior on the age of the root was set between 113 Ma and 56 Ma, corresponding to the oldest
unequivocal fossil evidence of the monocots [82] and the oldest age of the older fossil,
respectively. We employed two unlinked clock models, one for the plastid markers and
one for the ITS, using an uncorrelated log-normal clock. Tip ages were implemented as
uniform distributions to improve accuracy [190]. The proportion of extant sampling was set
to 0.37. The MCMC was run for 50,000,000 generations, sampling every 5000 generations.
Convergence was assessed using the software Tracer [191], checking for ESS of more than
200. A Maximum Clade Credibility (MCC) tree was generated discarding the first 10% of
the posterior trees as burn-in. The tree was then plotted using the R package MCMCtreeR.

4.5. Biogeographical Analysis

A biogeographical analysis was conducted using the DEC model implemented in
the R package BioGeoBEARS [192] using the MCC tree from the Bayesian analysis. We
conducted the analyses using the biogeographical areas used by Chen et al. [9]. Area
occupancy of the different species was scored based on the distribution retrieved from the
Plants of the World Online database [26]. For the area occupancy of the fossils, we used the
option “useAmbiguities = TRUE” in BioGeoBEARS, to allow the areas where the fossil was
not sampled from to be scored as unknown, to reflect the uncertainty over the true absence
of fossil taxa across their potential distribution.

4.6. Climate Data Harvesting and Analysis

We used Köppen profiles (e.g., [193–197]) to summarize the climatic niches occupied
by extant Hydrocharitaceae species/genera and to hypothesize about their climatic niche
evolution (Supplementary Material S2). A Köppen profile reflects the proportional Köppen–
Geiger climate (cf. [165,198]) zone coverage of modern plant species based on their gridded
distribution data from GBIF.org (Supplementary Material S1, Table S5). Unfortunately, no
distribution data were available on GBIF.org for the genus Appertiella and some species of
Blyxa, Ottelia, Hydrocharis, Hydromystria G.Mey., Halophila, Thalassia, Najas, and Vallisneria.
Modern species distributions were checked for outliers (e.g., neophyte distribution) using
published chorological data (e.g., [26]). Additionally, multiple occurrences with identical
coordinates were merged (labeled ‘unique localities’ in the diagrams (Supplementary Ma-
terial S2). The revised georeferenced occurrence data were then plotted onto 1 km2 grid
Köppen–Geiger maps (1979–2013 data; [27]) to establish Köppen profiles for all modern
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species/genera. The georeferenced data and the Köppen–Geiger maps with 1 km2 resolu-
tion were processed using the ‘Sample Raster Values’ Toolbox in Qgis v.3.16.4-Hannover.
The Köppen–Geiger climates occupied by extant Hydrocharitaceae species/genera are
shown as maps generated in Qgis and as frequency (proportional distribution) diagrams
(Supplementary Material S2). To simplify interpretations, the Köppen profiles of Hydrochar-
itaceae genera are summarized into five climatic niches. Additionally, precipitation (second
letter in Köppen climate types) was excluded since all members of Hydrocharitaceae are
aquatic and, therefore, not susceptible to rainfall seasonality/humidity availability.

5. Conclusions and Future Considerations

The oldest Stratiotes fossils are seeds from the early Eocene of England (London
Clay), and the oldest unequivocal pollen is from the early Eocene of Germany (Messel)
and the late Eocene of equatorial Kenya (Dodori, Africa). The Eocene is known as the
global warm house [199], meaning the oldest known Stratiotes fossils were preserved
under tropical or paratropical conditions. Therefore, it can be assumed that the ancestral
climatic signal for Stratiotes, and Hydrocharitaceae in general, was tropical to hot/warm
temperate. We assume that the African lineages of Stratiotes went extinct while the European
lineages diversified and adapted to the changing climate during the Oligocene and Neogene,
surviving the transition from a hot/warmhouse to a coolhouse climate. The ice ages
probably presented a final bottleneck in reducing the lineage’s diversity to the remaining
monotypic Stratiotes aloides.

The fossil Stratiotes pollen described herein is unique, and the only reliable pre-
Holocene pollen record of this genus so far. The Stratiotes pollen from the Messel pit
is the first unequivocal fossil record representing this genus from this locality. This finding
underlines the potentiality of re-investigating European paleopalynofloras using combined
LM and SEM, which have until now mostly been investigated using conventional LM.

Despite the size of the African continent, it has revealed few Cretaceous to Cenozoic
macro- and mesofloras [28]. This places African palynofloras on a pedestal and makes them
the most important paleobotanical source for resolving paleophytogeographic distribution
patterns and interpreting past vegetation and climate changes in this part of the globe. The
unique fossil Stratiotes pollen from Kenya (Africa) presented herein again demonstrates
the usefulness of the single-grain method for paleopalynology (e.g., [200–202]). Future
work on Africa’s palynofloras must include combined LM and SEM studies. The African
paleopalynoflora is a closed treasure chest, and the single-grain method is the key to
opening it. Routinely applying this method when analyzing Cretaceous and Cenozoic
palynofloras from this part of the globe will certainly cast new light on the origin and
evolution of Africa’s forests and vegetation units.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants13071008/s1. Supplementary Material S1. This Excel file comprises Tables S1–S6 (and ref-
erences therein, Table S7) referred to in the main text [11,12,22,24,25,38–108,110–155,160,180,203–217].
Supplementary Material S2. This PDF comprises distribution and climate data for Hydrocharitaceae
in a phylogenetic context [9,27,165,198,218]. Supplementary Material S3. This PDF comprises addi-
tional LM, SEM, and TEM micrographs of extant Stratiotes aloides pollen. Supplementary Material S4.
This PDF comprises Bayesian and IQTREE produced for this study.
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