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Abstract: Oxygenic photosynthetic organisms use Photosystem II (PSII) to oxidize water and reduce
plastoquinone. Here, we review the mechanisms by which PSII is assembled and turned over in the
model green alga Chlamydomonas reinhardtii. This species has been used to make key discoveries in
PSII research due to its metabolic flexibility and amenability to genetic approaches. PSII subunits
originate from both nuclear and chloroplastic gene products in Chlamydomonas. Nuclear-encoded PSII
subunits are transported into the chloroplast and chloroplast-encoded PSII subunits are translated by
a coordinated mechanism. Active PSII dimers are built from discrete reaction center complexes in a
process facilitated by assembly factors. The phosphorylation of core subunits affects supercomplex
formation and localization within the thylakoid network. Proteolysis primarily targets the D1 subunit,
which when replaced, allows PSII to be reactivated and completes a repair cycle. While PSII has been
extensively studied using Chlamydomonas as a model species, important questions remain about its
assembly and repair which are presented here.
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1. Introduction

In oxygenic photosynthesis, visible light is used to energize electrons stripped from
water. Simultaneously, protons are pumped across a membrane generating proton motive
force. The final products, NADPH and ATP, are used for cellular functions including the
fixation of CO2 in the Calvin–Benson Cycle (reviewed in [1]).

Photosystem II (PSII) is the first component of the photosynthetic electron transport
chain and acts as a water–plastoquinone (PQ) oxidoreductase (see [2,3]). PSII is a large
membrane-bound complex consisting of approximately 20 unique protein subunits [4].
Within the PSII core, the P680 primary chlorophyll-a donor undergoes charge separation
upon photoexcitation. On the donor side of PSII, the hole in the ground state of P680

+ is
filled by a redox-active tyrosine, YZ, which, is in turn, reduced by the Mn4CaO5 oxygen-
evolving complex (OEC). Following four one-electron oxidation events, the OEC catalyzes
the formation of O2 from two molecules of water. On the acceptor side of PSII, the excited
electron in P680* is transferred to a pheophytin, a primary PQ acceptor, QA, and then to a
secondary PQ acceptor, QB (reviewed in [5,6]).

PSII serves as a model system for multiple scientific fields. Protein biochemists study
PSII to learn how membrane protein complexes assemble and function (see [7,8]). Bioinor-
ganic chemists have been intrigued by the multiple metal cofactors in PSII including the
OEC (see [9]), cytochrome(s) (see [10]) and a non-heme iron (see [11]). Biophysical chemists
and biophysicists use PSII to study visible-to-chemical energy conversion and exciton and
electron transfer reactions (see [12]). Molecular biologists have used differentially expressed
PSII subunits to learn about bacterial and plastidal gene regulation (see [13]) and have
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used PSII to study protein turnover mechanisms (see [14]). Evolutionary biologists analyze
the changes (or lack of changes) in PSII subunits from cyanobacteria to plants (see [15]).
Geologists recognize the role of PSII as the sole biological source of O2 from water oxidation
(see [16]). PSII’s ability to efficiently perform this reaction using only light as an energy
input inspires synthetic chemists, materials chemists, and engineers to attempt to replicate
this activity (see [17]). This incomplete list illustrates the significant interest in PSII and its
application to multiple research areas.

PSII and other photosynthetic complexes are generally conserved from cyanobacte-
ria to algae to plants, and researchers in this field use all three groups as model species.
For example, many biophysical studies of PSII have used membrane preparations from
market spinach [18–21]. The cyanobacterium Synechocystis sp. PCC 6803 has been widely
used to study mutations in PSII subunits [22–27]. This mesophilic species is naturally
transformable and has highly efficient homologous recombination making it a very practi-
cal genetic system [28,29]. Detergent-solubilized PSII core complexes from thermophilic
cyanobacteria such as Thermosynechococcus vulcanus have been used for multiple influential
structural studies [30–32] and biophysical studies [33–36]. While all this work is valuable,
the structures [37] and assembly and repair mechanisms [7] of PSII are not identical between
oxygenic phototrophs.

Over the past seventy years, the model green alga Chlamydomonas reinhardtii (here-
after Chlamydomonas) has been used to elucidate many discoveries in photosynthesis and
other fields (see [38,39]). As a unicellular eukaryote, Chlamydomonas is a practical model
species for studying chloroplast biology. First, this species can grow photoautotrophically,
mixotrophically, or heterotrophically. This trait allows Chlamydomonas to be studied with
genetic mutations in photosynthesis genes that would otherwise be lethal. In addition,
Chlamydomonas can reproduce asexually or sexually. In the research laboratory, cultures
are typically maintained vegetatively. However, sexual reproduction facilitates genetic
approaches. Because of these features, Chlamydomonas has been and is used to discover key
components and mechanisms of PSII function, assembly, and repair.

Here, we review research studies that have used Chlamydomonas to gain insights into
PSII. We aim to highlight the influential role of this organism in multiple scientific fields
that all use PSII as a model system. We compile PSII-specific data to facilitate future studies
and bring attention to areas where more research is needed.

2. Discussion
2.1. Architecture of the Chlamydomonas chloroplast

In algae and plants, photosynthesis occurs in the chloroplast. Chlamydomonas cells
develop one cup-shaped chloroplast occupying almost half of the volume of the cell [40,41]
(Figure 1). The light-dependent photosynthetic reactions are localized to a network of mem-
branes called thylakoids. These thylakoids are organized in appressed regions (regularly
spaced stacks termed grana in land plants) and non-appressed regions. In Chlamydomonas,
active dimeric PSII complexes are organized in appressed thylakoids, and Photosystem I
and ATP synthase are localized to non-appressed regions [42,43].

The chloroplast emerged from the endosymbiosis of a cyanobacterium. Over the
course of evolution, most of the genetic information from the original cyanobacterial
genome was transferred to the host nuclear genome. In Chlamydomonas, only 72 unique
protein-encoding genes are retained in the chloroplast genome [44]. As discussed below,
most PSII subunits are chloroplast encoded. The synthesis of chloroplast-encoded pho-
tosystem proteins is concentrated at the Translation or T-zone, which is located near the
pyrenoid [45–47] (Figure 1). Here, newly synthesized proteins are inserted directly into
the membrane [48], which is facilitated by a complex containing Alb3.1 and Alb3.2 [49,50].
The Chlamydomonas chloroplast is a complex organelle with multiple sub-organellular
structures [51].
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Figure 1. An overview of PSII assembly and organization in Chlamydomonas. ① Nuclear-encoded 
PSII subunits, including PsbO, PsbP, and PsbQ, are translated in the cytosol and imported into the 
chloroplast using the TOC TIC system. ② These complexes are spatially aligned with the chloro-
plast translation zone near the pyrenoid. ③ PSII subunits assemble in an organized pathway from 
reaction center intermediates to mature dimers. ④ Active and phosphorylated PSII dimers are en-
riched in appressed domains of the thylakoid membranes. ⑤ PSII assembly and degradation occur 
in non-appressed domains of the thylakoid membranes. Additional details and references are pro-
vided in the text. 

Nuclear-encoded chloroplast proteins (including Chlamydomonas PSII subunits PsbO, 
PsbP, PsbQ [52], PsbW [53], and PsbX [54] (Figure 2)), are translated in the cytosol [55], 
targeted to the chloroplast [56], and then imported across the outer and inner chloroplast 
membranes using energy from ATP hydrolysis [57]. Chloroplast protein transport is facil-
itated by the translocon of the outer membrane (TOC) and translocon of the inner mem-
brane (TIC) protein complexes [58–61] (Figure 1). Interestingly, the TOC and TIC com-
plexes spatially align with the T-zone suggesting a highly coordinated system of protein 
import and translation in the Chlamydomonas chloroplast [62–64]. 

 

Figure 1. An overview of PSII assembly and organization in Chlamydomonas. 1⃝ Nuclear-encoded
PSII subunits, including PsbO, PsbP, and PsbQ, are translated in the cytosol and imported into the
chloroplast using the TOC TIC system. 2⃝ These complexes are spatially aligned with the chloroplast
translation zone near the pyrenoid. 3⃝ PSII subunits assemble in an organized pathway from reaction
center intermediates to mature dimers. 4⃝ Active and phosphorylated PSII dimers are enriched
in appressed domains of the thylakoid membranes. 5⃝ PSII assembly and degradation occur in
non-appressed domains of the thylakoid membranes. Additional details and references are provided
in the text.

Nuclear-encoded chloroplast proteins (including Chlamydomonas PSII subunits PsbO,
PsbP, PsbQ [52], PsbW [53], and PsbX [54] (Figure 2)), are translated in the cytosol [55],
targeted to the chloroplast [56], and then imported across the outer and inner chloroplast
membranes using energy from ATP hydrolysis [57]. Chloroplast protein transport is
facilitated by the translocon of the outer membrane (TOC) and translocon of the inner
membrane (TIC) protein complexes [58–61] (Figure 1). Interestingly, the TOC and TIC
complexes spatially align with the T-zone suggesting a highly coordinated system of
protein import and translation in the Chlamydomonas chloroplast [62–64].

Plants 2023, 12, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. An overview of PSII assembly and organization in Chlamydomonas. ① Nuclear-encoded 
PSII subunits, including PsbO, PsbP, and PsbQ, are translated in the cytosol and imported into the 
chloroplast using the TOC TIC system. ② These complexes are spatially aligned with the chloro-
plast translation zone near the pyrenoid. ③ PSII subunits assemble in an organized pathway from 
reaction center intermediates to mature dimers. ④ Active and phosphorylated PSII dimers are en-
riched in appressed domains of the thylakoid membranes. ⑤ PSII assembly and degradation occur 
in non-appressed domains of the thylakoid membranes. Additional details and references are pro-
vided in the text. 

Nuclear-encoded chloroplast proteins (including Chlamydomonas PSII subunits PsbO, 
PsbP, PsbQ [52], PsbW [53], and PsbX [54] (Figure 2)), are translated in the cytosol [55], 
targeted to the chloroplast [56], and then imported across the outer and inner chloroplast 
membranes using energy from ATP hydrolysis [57]. Chloroplast protein transport is facil-
itated by the translocon of the outer membrane (TOC) and translocon of the inner mem-
brane (TIC) protein complexes [58–61] (Figure 1). Interestingly, the TOC and TIC com-
plexes spatially align with the T-zone suggesting a highly coordinated system of protein 
import and translation in the Chlamydomonas chloroplast [62–64]. 
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2.2. Transcription of PSII Subunits in the Chloroplast

The chloroplast genome encodes 16 of the 21 PSII subunits in Chlamydomonas [65] (see
Figure 2). The most prevalent chloroplast transcript is psbA which encodes the PSII core
subunit D1 [66,67]. However, little of this psbA mRNA is associated with ribosomes [68],
indicating the tight control of translation initiation. The second most prevalent chloroplast
transcript is psbD which encodes the D2 core subunit and is found at levels approximately
five-fold less than psbA [65].

The PSII cytochrome b559 subunit is encoded by two genes, psbE and psbF. As described
below, cytochrome b559 plays crucial roles in PSII translation control and assembly. In
cyanobacteria [69], some algae [70,71], and plants [72], these genes are organized as part
of a psbEFLJ operon. Surprisingly, in Chlamydomonas, psbE and psbF are separated and
have reverse orientations [73,74]. psbF and psbL remain associated with each other and are
co-transcribed [73]. psbJ is co-transcribed as part of a cluster that includes psbD [75,76].

In Arabidopsis, a mitochondrial transcription termination factor, mTERF5, controls the
transcription of the psbEFLJ operon [77]. This regulatory mechanism is likely not conserved
in Chlamydomonas given the differences in gene organization. Why Chlamydomonas evolved
to have this unique cytochrome b559 expression system is not understood.

2.3. Translation of PSII Subunits in the Chloroplast—Control by Epistasy of Synthesis

The de novo synthesis of specific PSII subunits is regulated by the presence or absence
of other PSII subunits through a mechanism termed Control by Epistasy of Synthesis
(CES) (reviewed in [78]). Here, we discuss CES in Chlamdyomonas PSII assembly, but this
mechanism is more general. In Chlamydomonas, CES has been observed in the assembly
of cytochrome b6f, ATP synthase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Ru-
bisco), and PSI. It is also involved in the synthesis of Rubisco in plants and Cox1 in yeast
mitochondria (see [79]).

In Chlamydomonas, the presence of the D2 subunit is required for D1 translation [80,81].
Subsequently, the presence of the D1 subunit is required for CP47 (psbB) translation [81].
This regulation is based on negative regulation of each unassembled polypeptide interacting
with its own mRNA in the 5′ untranslated region (UTR) [68].

Regulation of cytochrome b559 translation in Chlamydomonas is more complicated. In a
∆psbE strain, the translation of D1, D2, CP43, and CP47 was not observed or was strongly
inhibited [82]. As discussed below, cytochrome b559 is a component of early PSII assembly
intermediates. The phenotypes observed in ∆psbE may reflect true CES and/or a defect in
the assembly pathway.

2.4. Translation of PSII Subunits in the Chloroplast—Regulatory Elements

In the chloroplast, regulation occurs mostly at the translational level and requires
both cis- and trans-regulating elements (see [83]). All characterized cis-regulatory elements
are in the 5′ UTR of the genes [84–86]. Trans-regulating elements (translational activators)
are crucial components of PSII core subunits’ translational control and are summarized in
Table 1.

Table 1. Trans-regulatory elements of PSII subunit translation in Chlamydomonas.

PSII Subunit
Affected Translation Factor Mechanism References

psbA (D1)

RB47 Binds to A-rich region in the psbA 5′ UTR;
required for D1 synthesis [87–89]

RB60 Protein disulfide isomerase that redox
regulates RB47 [87,90]

TBA1 Oxidoreductase that facilitates binding of
RB47 to psbA transcript [91]
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Table 1. Cont.

PSII Subunit
Affected Translation Factor Mechanism References

RB55 Observed to bind psbA mRNA but
not characterized [92,93]

RBP63

Binds to psbA 5′ UTR; essential for D1
synthesis; subunit of chloroplast

pyruvate dehydrogenase complex that
becomes a translational regulator

upon acetylation

[94–96]

CrHCF173 Homolog of Arabidopsis HCF173; affects
D1 accumulation [97]

psbD (D2)

NAC1 Promotes psbD translation at a step that is
likely after initiation [98,99]

AC115

NAC2 Promotes psbD stability by binding to its
5′ UTR [85,100]

RBP40 (RB38)

Binds to U-rich region of psbD 5′ UTR;
forms a complex with NAC2 to control

psbD mRNA stability and initiation; also
observed to bind psbA mRNA although

this interaction may not be specific

[92,101,102]

psbB (CP47) Mbb1
Promotes psbB mRNA stability by

interacting with its 5′ UTR; also affects
psbH mRNA maturation

[103,104]

psbC (CP43)

TBC1
Facilitates psbC translation by binding to

its 5′ UTR
[86,105,106]TBC2

TBC3

MBCI Stabilizes psbC mRNA [76]

Clearly, the translational control of chloroplast-encoded PSII subunits is extensive.
Table 1 is very likely incomplete, and more research is needed in this area. While trans-
regulatory elements are discussed here for Chlamydomonas, similar regulation is present
in plants (see [107]). In contrast to the chloroplast, cyanobacteria generally control PSII
expression at the transcriptional level (see [108]).

2.5. Assembly of Protein Subunits and Cofactors

PSII subunits form discrete subcomplexes before assembling into monomeric then
dimeric reaction centers (illustrated in Figure 1). First, D2 binds cytochrome b559 subunits
PsbE and PsbF. D1 is then translated and binds with other subunits. The binding of the
D1 subcomplex to D2-cytochrome b559 leads to the formation of the first reaction center
(RC) complex. In Chlamydomonas, One-Helix Protein 2 (OHP2) stabilizes D1 during its
translation by promoting chlorophyll association [109]. Another assembly factor, RBD1,
promotes D1 stabilization [110,111] and is also involved in the delivery and/or reduction
of the non-heme iron ion near the stromal surface of PSII [112]. Next, CP47 is translated
and binds to create the RC47 complex. The binding of CP43, facilitated by the assem-
bly factor LPA2 [113,114], low molecular weight subunits, and extrinsic subunits forms
monomeric PSII.

After the PSII core is assembled, the OEC is assembled from Mn2+, Ca2+, and water
in a stepwise process termed photo-assembly (reviewed in [115]). Here, metal ions and
water molecules bind to the apo-OEC PSII protein. Light-driven oxidation events lead to
higher valent Mn ions and the OEC cluster spontaneously assembles in situ. This process
has mostly been studied in plants and cyanobacteria, but some groups have conducted
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experiments on Chlamydomonas whole cells [116] or isolated membranes [117]. The kinetics
and efficiency of OEC photo-assembly are similar among these organisms suggesting a
conserved mechanism [116,117].

The binding of the extrinsic subunits PsbO, PsbP, and PsbQ occurs late in the assembly
process. (Note that the terms OEE1, OEE2, and OEE3, respectively, have also been used for
these proteins [81,84,118]). PsbO is required for oxygen evolution and photoautotrophic
growth in Chlamydomonas and acts by stabilizing the OEC [118]. This subunit is conserved
in cyanobacteria, algae, and plants [119]. PsbP and PsbQ enhance oxygen evolution activity
by promoting the binding of Ca2+ in the OEC and chloride near the OEC [120]. These
subunits are conserved in algae and plants [121]. Mature PSII in cyanobacteria contains
PsbO, PsbU, PsbV, and PsbQ [30,122]. The cyanobacterial PsbP homolog is an assembly
intermediate [123] and not a component of the mature complex.

PSII reaction centers form supercomplexes with the light-harvesting complex (LHC)
antenna proteins (see [3]) (Figure 2). In Chlamydomonas, the major complexes mature
as trimers and are encoded by a family of nine genes (LHCBM1-9) with high sequence
homology [124]. In addition, CP26 and CP29 subunits associate to control the linkage
between the PSII core and LHC antenna proteins. Single and double mutants of CP26 and
CP29 show impaired photosynthesis and photoprotection [125]. The PSII subunit PsbZ
(also known as Ycf9) is also involved in supercomplex assembly, particularly under stress
conditions [126].

2.6. PSII Phosphorylation and Dephosphorylation

In the chloroplast but not in cyanobacteria, phosphorylation of PSII subunits and the
associated antennae plays a role in supercomplex formation and PSII migration within the
thylakoid network. These properties affect both protein complex turnover and state transi-
tions [127] (reviewed in [128]). In plants, the STN8 kinase phosphorylates PSII core subunits
including D1 [129,130] which can be dephosphorylated by the PBCP phosphatase [131].
In plants, the STN7 kinase phosphorylates LHCs [132] (and to a lesser extent, PSII core
subunits [133]) which can be dephosphorylated by the PPH1/TAP38 phosphatase [134,135].

The situation in Chlamydomonas is more complicated. The Chlamydomonas PSII subunits
CP43, D2, and PsbH, but not D1, undergo phosphorylation at their N-termini [136]. The
Chlamydomonas ortholog of STN8, STL1, has not been fully characterized but is likely to
be the PSII core kinase. The phosphorylation of PSII subunits is independent of state
transitions, and the specific trigger remains unknown [137]. Chlamydomonas LHCs are
phosphorylated by the STT7 kinase [138]. Unlike plants which have distinct phosphatases
for PSII subunits and LHCs, the Chlamydomonas phosphatases CrPPH1 and CrPBCP can
dephosphorylate both PSII and LHC [139].

We note that PSII phosphorylation and dephosphorylation mechanisms increase
in specificity over evolutionary time. These processes are absent in cyanobacteria. Al-
gae use specialized kinases but redundant phosphatases. Plants use specialized kinases
and phosphatases.

2.7. Proteolysis of the D1 Subunit

PSII in Chlamydomonas is undergoing frequent damage and repair. When PSII is
isolated from Chlamydomonas cultures grown under optimal conditions, the observed man-
ganese content is lower than expected suggesting that up to 20% of centers are in damaged
or assembly states [140,141]. The PSII D1 subunit is most prone to oxidative damage and is
rapidly turned over. In Chlamydomonas under saturating light conditions, the half-life of
D1 is as short as 20 min [142]. While D1 repair is costly in terms of ATP equivalents [143],
replacing only this single subunit is more efficient than degrading and reassembling the
entire PSII reaction center. D2 turns over at a slightly slower, but significantly rapid rate
under high light conditions [144].

The D1 degradation process is well understood in plants where soluble DEG proteases
clip loops and the FtsH proteases degrade the resulting fragments. Arabidopsis DEG2 clips
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a stromal D1 loop to generate ~23 kDa and ~10 kDa fragments [145], although D1 is still
degraded in the absence of this protease [146]. DEG1 clips a lumenal loop or loops to
generate ~16 kDa and ~5 kDa fragments [147]. DEG5 and DEG8 form a complex and DEG8
clips a lumenal loop to generate ~16 kDa and ~18 kDa fragments [148]. In cyanobacteria,
DEG proteases are not required for D1 degradation, but do protect cells from heat and light
stresses [149].

FtsH is essential for D1 degradation in Chlamydomonas. In a Chlamydomonas FtsH
mutant strain exposed to light, D1 fragments of ~23 kDa, ~16 kDa, and ~6 kDa accumulate
(Figure 3) [150]. However, it is not known which proteases are responsible for these
fragments. The Chlamydomonas genome encodes 12 DEG proteases with predicted active
protease domains and up to seven are predicted to be localized to the chloroplast [151].
DEG1C [152] and DEG9 (unpublished) are active proteases localized to the chloroplast
stroma but are not involved in PSII repair or biogenesis. DEG8 and DEG5 are colocalized to
the pyrenoid tubules (thylakoids) [51] but have not been further characterized. The identity
of the specific protease(s) involved in processing D1 before FtsH remains unknown.
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Figure 3. Discrete D1 fragments accumulate in Chlamydomonas in an FtsH mutant [150]. Note the
appearance of ~23, 16–20 kDa, and 6–10 kDa fragments in the lower panels. (WT: wild type; LC:
chloroplast translation inhibitors lincomycin and chloramphenicol added; ftsh1–1: mutant with
defective FtsH protease due to a FtsH1−R420C mutation; OEE2: loading control probing PsbP).
Reproduced with permission from Oxford University Press, Oxford, UK.

Intriguingly, a 23 kDa D1 fragment is also accumulated in a Chlamydomonas double
mutant of FtsH and RBD1 in darkness. In this situation, D1 degradation is not the result of
photodamage and instead may be induced by a conformational change from the lack of
RBD1 [110].

2.8. PSII Repair

Following D1 damage, CP43 dissociates from the PSII reaction center, which makes
D1 more accessible to proteolysis [81]. A new D1 polypeptide is synthesized and inserted,
and CP43 rebinds (reviewed in [153]). This process occurs in non-appressed regions of
the thylakoids. In Chlamydomonas, the factor TEF30 facilitates D1 insertion and/or CP43
binding during repair of monomeric PSII [154]. Another factor, REP27 (homologous to
LPA1 in plants), is also involved in D1 insertion during PSII repair [155,156].
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3. Conclusions

As shown here, Chlamydomonas has remained an important tool for studying PSII from
the 1980s to the present. The studies reviewed here have provided deeper insights into
biochemical and evolutionary processes:

• PSII assembly in Chlamydomonas provides an excellent model system for the evolution
and interplay between nuclear and organellar genomes.

• The CES mechanism, which is well studied in terms of PSII assembly in Chlamydomonas,
is applicable to multiple protein complexes in the chloroplast and other systems.

• Analogously, the extensive translational control of PSII subunits in the Chlamydomonas
chloroplast has revealed gene regulation strategies.

• The PSII phosphorylation, dephosphorylation, and degradation pathways in Chlamy-
domonas show intermediate mechanisms between cyanobacteria and plants, thus
providing insights into evolution of photosynthetic organisms.

4. Remaining Questions

While Chlamydomonas has clearly contributed much to our understanding of PSII
assembly and repair, key questions remain unanswered. These include:

1. What are the molecular mechanisms that allow chloroplast protein import and chloro-
plast protein synthesis to be coordinated?

2. Why are the genes that encode cytochrome b559 separated in the Chlamydomonas
chloroplast genome?

3. What is the full suite of regulatory elements that control the translation of PSII subunits
in the chloroplast?

4. What are the specific triggers for PSII core subunit phosphorylation and dephospho-
rylation?

5. Which protease(s) degrades D1 into fragments before FtsH processing?

With these questions and others, Chlamydomonas will continue to be a practical and
powerful system for PSII research.
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