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Abstract: The plant-specific WRKY transcription factor family members have diverse regulatory
effects on the genes associated with many plant processes. Although the WRKY proteins in Ara-
bidopsis thaliana and other species have been thoroughly investigated, there has been relatively little
research on the WRKY family in Luffa cylindrica, which is one of the most widely grown vegetables in
China. In this study, we performed a genome-wide analysis to identify L. cylindrica WRKY genes,
which were subsequently classified and examined in terms of their gene structures, chromosomal
locations, promoter cis-acting elements, and responses to abiotic stress. A total of 62 LcWRKY genes
(471–2238 bp) were identified and divided into three phylogenetic groups (I, II, and III), with group
II further divided into five subgroups (IIa, IIb, IIc, IId, and IIe) in accordance with the classification
in other plants. The LcWRKY genes were unevenly distributed across 13 chromosomes. The gene
structure analysis indicated that the LcWRKY genes contained 0–11 introns (average of 4.4). More-
over, 20 motifs were detected in the LcWRKY proteins with conserved motifs among the different
phylogenetic groups. Two subgroup IIc members (LcWRKY16 and LcWRKY31) contained the WRKY
sequence variant WRKYGKK. Additionally, nine cis-acting elements related to diverse responses to
environmental stimuli were identified in the LcWRKY promoters. The subcellular localization analy-
sis indicated that three LcWRKY proteins (LcWRKY43, LcWRKY7, and LcWRKY23) are localized
in the nucleus. The tissue-specific LcWRKY expression profiles reflected the diversity in LcWRKY
expression. The RNA-seq data revealed the effects of low-temperature stress on LcWRKY expression.
The cold-induced changes in expression were verified via a qRT-PCR analysis of 24 differentially ex-
pressed WRKY genes. Both LcWRKY7 and LcWRKY12 were highly responsive to the low-temperature
treatment (approximately 110-fold increase in expression). Furthermore, the LcWRKY8, LcWRKY12,
and LcWRKY59 expression levels increased by more than 25-fold under cold conditions. Our findings
will help clarify the evolution of the luffa WRKY family while also providing valuable insights for
future studies on WRKY functions.

Keywords: Luffa cylindrica; WRKY transcription factors; abiotic stress; expression analysis

1. Introduction

Luffa, which is widely cultivated all over the world, especially in China, is a diploid
species (2n = 26). The main cultivated luffa species are Luffa acutangula Roxb. (ridged)
and Luffa cylindrica Roem. (smooth). Suitable temperatures for L. cylindrica seedling
growth are 22–28 ◦C during the day and 17–18 ◦C at night. The temperatures during the
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flowering and fruit-bearing period are relatively high, typically 25–29 ◦C during the day
and 18–22 ◦C at night. In contrast, temperatures below 10–12 ◦C have inhibitory effects
on L. cylindrica seedling growth. According to field observations, the low temperatures
and low light intensity that are common in spring and autumn affect L. cylindrica seedling
growth, photosynthetic activities, and dry matter accumulation, resulting in insufficient
nutrient levels, curled leaves, deformed fruits, and other undesirable traits, ultimately
leading to decreased yield and quality, which has seriously restricted the development of
the L. cylindrica industry.

In plants, low-temperature stress can activate stress signals, which are then trans-
mitted to the nucleus through signaling pathways involving Ca2+ messengers, a reactive
oxygen species (ROS) burst, abscisic acid (ABA) and other hormones, and various kinases.
The integration of multiple transcription factors (TFs) results in a regulatory network
important for the reprogramming of gene expression required for the plant response to
low-temperature stress. The WRKY TFs were initially identified in sweet potato. On the
basis of whole-genome sequencing and functional genomics studies involving various
plants, the WRKY family has been identified as one of the most important TF families in
plants [1–4]. The typical feature of WRKY proteins is one or two highly conserved WRKY
domains comprising approximately 60 amino acids and the N-terminal consisting of highly
conserved WRKYGQK domains (with a few variant sequences, including WRKYGKK,
WRKYGMK, and WRKYGEK). The C-terminal contains a motif encoding a zinc-finger
structure (CX4-7CX22-23HXH/C) [5,6]. The WRKY TFs are broadly involved in the regula-
tion of plant growth and development as well as responses to biotic and abiotic stresses
because they bind to the conserved W-box element [(C/T)TGACC(A/T)] in target gene
promoters and activate or inhibit gene expression [7–9]. Generally, WRKY TFs mainly
control the transcription of the downstream target genes in the nucleus. However, recent
studies showed that in pepper (Solanaceae), CaWRKY27b (with a WRKYGMK variant
sequence) in the cytoplasm enters the nucleus after being phosphorylated by CaCDPK29
and then combines with CaWRKY40 to activate the transcription of target genes [6,10].

Earlier research indicated that WRKY proteins are important for decreasing stress-
induced damages and increasing stress tolerance via signal transduction pathways and the
production of a series of proteins mediating plant defense responses. The WRKY responses
to abiotic stress may depend on ABA [11,12] or they may be mediated through signal
transduction pathways associated with different phytohormones, including salicylic acid
(SA) [13,14] and methyl jasmonate (MeJA) [15]. The WRKY proteins can bind directly to the
W-box element in the promoter of their own gene or in the promoter of downstream target
genes to positively or negatively regulate gene expression, thereby increasing or decreasing
plant tolerance to environmental stresses [16,17]. According to studies on rice, after low-
temperature stress signals are transmitted to the cell interior, the Ca2+ channel (i.e., CNGC)
alters the concentration of Ca2+, which is the second messenger in cells, after which MAPK,
MAPKK kinase cascades, and CDPK as well as other protein kinases affect the binding
between WRKY TFs and target genes, resulting in abiotic stress responses that modulate
the low-temperature tolerance of plants [18]. Notably, defense responses to abiotic stresses,
such as low temperatures, can protect plants via the synthesis of osmoregulatory substances
(e.g., soluble sugars and proline) and certain proteins with protective effects against cold
stress [19]. In Cynodon dactylon (L.), CdWRKY2 positively regulates the cold stress response
by targeting the CdSPS1 and CdCBF1 promoters and activating expression to coordinately
mediate sucrose biosynthesis and the CBF signaling pathway, ultimately leading to cold
tolerance [20].

There has been considerable research conducted to clone and functionally characterize
WRKY genes in model plants and some agriculturally important crops. For example,
the functions of WRKY TFs related to plant responses to abiotic stressors, such as low-
temperature conditions, have been reported for Arabidopsis thaliana [21], rice [22], wheat [23],
soybean [24], tomato [25], cucumber [26], autumn eggplant [27], bamboo [28], banana [29],
and centipede grass [30]. Some WRKY TFs are positive regulators [20,25], whereas others
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are negative regulators [11]. A WRKY TF can regulate the expression of hundreds of target
genes [31–33] as well as its own gene [34]. Moreover, WRKY TFs can be activated by other
TFs as part of a cascade or regulatory network that controls plant defense responses to
low-temperature stress. In rice, the OsWRKY63–OsWRKY76–OsDREB1B module helps
regulate cold tolerance via the optimization of the response to low-temperature stress [22].

The sequenced genomes of many Cucurbitaceae crops, such as Cucumis melo [35],
Cucumis sativus [36], Cucurbita maxima [37], Cucurbita moschata [37], Cucurbita pepo [38], Ben-
incasa hispida [39], Citrullus lanatus [40], L. acutangula Roxb. [41], and L. cylindrica Roem. [42],
are useful resources for genome-wide analyses of Cucurbitaceae species. In this study, we
performed a genome-wide analysis of the LcWRKY genes in L. cylindrica, resulting in the
identification of 62 LcWRKY genes. A comprehensive analysis involving bioinformatics
techniques and methods for examining gene expression patterns was performed. On the
basis of the tissue-specific LcWRKY expression profiles as well as the expression patterns
in response to a low-temperature treatment, several LcWRKY genes were identified as
candidate regulators involved in the abiotic stress response of L. cylindrica.

2. Results
2.1. Identification of LcWRKY Genes in L. cylindrica

The HMM software version 3.0 package (i.e., hidden Markov model) was used to
identify the putative WRKY proteins in L. cylindrica. The candidates were then compared
with proteins in the NCBI and Pfam databases to confirm the presence of the WRKY
domains. The 62 LcWRKY genes with complete WRKY domains identified in the L. cylin-
drica genome were named LcWRKY1–62 according to their order on the 13 L. cylindrica
chromosomes (Supplementary File S1). The length of the coding sequences ranged from
471 bp to 2238 bp. The analysis of the conserved domains indicated that 11 LcWRKY
proteins (LcWRKY10, LcWRKY13, LcWRKY27, LcWRKY28, LcWRKY35, LcWRKY36,
LcWRKY41, LcWRKY43, LcWRKY55, LcWRKY56, and LcWRKY60) contained two con-
served WRKY domains, whereas the other 51 LcWRKY proteins had only one conserved
WRKY domain (Supplementary File S2). The molecular weights ranged from 18.35 kDa
(LcWRKY40) to 82.10 kDa (LcWRKY10), with an average of 40.12 kDa. Only 12 LcWRKY
proteins had molecular weights exceeding 50 kDa (LcWRKY27, LcWRKY20, LcWRKY41,
LcWRKY51, LcWRKY37, LcWRKY13, LcWRKY11, LcWRKY55, LcWRKY18, LcWRKY24,
LcWRKY56, and LcWRKY10). The isoelectric point (pI) ranged from 4.70 (LcWRKY5) to
9.87 (LcWRKY12), with an average of 7.41. Of the identified LcWRKY proteins, 43.55%
(27/62) had a pI greater than 7.0.

2.2. Chromosomal Locations and Duplication of LcWRKY Genes

The 62 LcWRKY genes were mapped to the 13 L. cylindrica chromosomes (Figure 1).
Chromosomes 4, 10, and 11 contained the most LcWRKY genes (seven each), whereas
only three LcWRKY genes were located on chromosomes 1, 5, 9, 12, and 13. The other
chromosomes contained 4–6 LcWRKY genes. The 62 identified LcWRKY proteins were
classified into three groups according to the number of WRKY domains and the zinc-finger
motif structure [43]. Group I consisted of 11 LcWRKY proteins. Group II, which was the
largest group and comprised 44 LcWRKY proteins, was further divided into five subgroups,
with subgroups IIa, IIb, IIc, IId, and IIe consisting of 4, 6, 19, 7, and 8 LcWRKY proteins,
respectively (Supplementary File S1). Group III included seven LcWRKY proteins. Most
of the LcWRKY proteins contained the conserved WRKYGQK motif, but LcWRKY16 and
LcWRKY31 had slight variations in their signature motif (i.e., WRKYGKK) (Supplementary
File S2). Similar results were reported for Liriodendron chinense [44].
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Figure 1. Chromosomal distribution of the LcWRKY genes. The chromosomal position of each
LcWRKY gene can be determined using the scale on the left.

2.3. Analysis of LcWRKY Cis-Acting Elements and Gene Structures

The LcWRKY promoters (2.0 kb upstream region) were analyzed using the PlantCARE
database (Supplementary File S3). A total of 6324 (61.78%) known cis-acting elements
were detected in the LcWRKY genes. These cis-acting elements were associated with
abiotic and biotic stress responses as well as physiological and developmental processes.
More specifically, 146 MeJA-responsive elements and 132 ABA-responsive elements were
detected in 41 (66.13%) and 45 (72.58%) of the LcWRKY promoter regions, respectively
(Figure 2a); these were the most abundant cis-acting elements among the nine analyzed
elements. Additionally, 66 gibberellin-responsive elements were detected in 59.68% of
the LcWRKY promoter regions, 49 SA-responsive elements were detected in 54.84% of
the LcWRKY promoter regions, 47 auxin-responsive elements were detected in 51.62%
of the LcWRKY promoter regions, 45 MYB-binding sites associated with responses to
drought were detected in 50% of the LcWRKY promoter regions, 35 defense and stress-
responsive elements were detected in 48.39% of the LcWRKY promoter regions, and 34 low-
temperature-responsive elements were detected in 40.32% of the LcWRKY promoter regions.
Four wound-responsive elements were detected in only four LcWRKY promoter regions.
The presence of such versatile cis-acting elements reflected the functional diversity of the
LcWRKY TFs in L. cylindrica (Supplementary File S4).
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Figure 2. Luffa cylindrica LcWRKY promoter elements and structures according to phylogenetic
relationships. The phylogenetic tree was constructed on the basis of the full-length L. cylindrica
WRKY protein sequences using MEGA (version 7.0). The proportional lengths of the WRKY genes
are presented. The groups are differentiated by color. (a) The promoter elements were analyzed using
the TBtools software (version 1.6). (b) The LcWRKY gene structures were examined using the Gene
Structure Display Server 2.0 software.

The structural features of the identified LcWRKY genes were examined using the GSDS
server. The examination of the exon and intron regions (Figure 2b) revealed that 50% of the
62 identified LcWRKY genes had three exons. Eight LcWRKY genes contained two exons,
eight LcWRKY genes consisted of four exons, eight LcWRKY genes included five exons,
four LcWRKY genes had six exons, and three LcWRKY genes contained seven exons. In
contrast, LcWRKY47 had no introns. The identified LcWRKY genes also differed in terms of
size, ranging from 879 bp (LcWRKY29 in group III) to 8348 bp (LcWRKY10 in group I) [45]
(Supplementary Files S1 and S5). The LcWRKY gene sizes in group I ranged from 1578 bp
(LcWRKY43) to 8348 bp (LcWRKY10). The LcWRKY gene sizes in group II ranged from
1205 bp (LcWRKY5) to 6681 bp (LcWRKY31). The LcWRKY gene sizes in group III ranged
from 879 bp (LcWRKY29) to 6956 bp (LcWRKY61).

2.4. Phylogenetic Relationships and Conserved Motifs

On the basis of the phylogenetic analysis, the 62 LcWRKY genes were classified into
three groups. Group I was composed of 11 LcWRKY genes. Group II contained 44 LcWRKY
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genes, which was more than the seven LcWRKY genes in group III. Group II was further
divided into subgroups IIa, IIb, IIc, IId, and IIe, which consisted of 4, 6, 19, 7, and 8 LcWRKY
genes, respectively (Figure 3a). The typical feature of the encoded LcWRKY proteins
was one or two highly conserved WRKY domains comprising approximately 60 amino
acids. The N-terminal of this domain included a highly conserved WRKYGQK sequence
or a slightly variant sequence (WRKYGKK; only in LcWRKY16 and LcWRKY31). The
C-terminal contained a zinc-finger motif (CX4-7CX22-23HXH/C) (Supplementary File S2).
To further investigate the diversity among the motifs in the LcWRKY sequences, the con-
served motifs in the 62 LcWRKY proteins were predicted using MEME. Among the twenty
predicted motifs, three WRKY motifs (i.e., motifs 1, 2, and 5) were broadly distributed,
whereas the other motifs were limited to certain phylogenetic groups (Figure 3b and Sup-
plementary File S6). These three WRKY motifs are involved in DNA binding as well as
protein–protein interactions. Relatively little is known about the other motifs.

Figure 3. Conserved motifs in L. cylindrica WRKY proteins according to phylogenetic relationships.
(a) Unrooted phylogenetic tree constructed on the basis of full-length WRKY protein sequences using
MEGA (version 7.0). (b) Distribution of conserved motifs among WRKY proteins. Different motifs
are indicated by different colored blocks as indicated at the top of the figure.
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2.5. LcWRKY Expression Profiles in Seven Tissues

The expression levels of all 62 LcWRKY genes were thoroughly examined by conduct-
ing a rigorous transcriptome analysis of seven L. cylindrica tissues (root, stem, leaf, male
flower, female flower, fruit, and ovary) on the basis of publicly available transcriptome
data. The fragments per kilobase of transcript per million (FPKM) values determined on
the basis of the transcriptome sequencing data revealed differences in LcWRKY expression
among the selected tissues. Specifically, LcWRKY expression levels were highest in the
root, followed by the male flower, female flower, fruit, stem, leaf, and ovary, with FPKM
values of 2231.04, 1254.83, 954.89, 669.01, 583.42, 555.61, and 422.34, respectively (Figure 4a).
Among the 62 LcWRKY genes, LcWRKY5 and LcWRKY28 had undetectable expression
levels (FPKM value of 0) in the seven examined tissues. The FPKM values for 13 LcWRKY
genes (LcWRKY4, LcWRKY32, LcWRKY3, LcWRKY14, LcWRKY51, LcWRKY54, LcWRKY53,
LcWRKY47, LcWRKY26, LcWRKY11, LcWRKY35, LcWRKY50, and LcWRKY37) were less
than 10 in the seven examined tissues, whereas the FPKM values for 28 LcWRKY genes
(e.g., LcWRKY2, LcWRKY7, and LcWRKY8) ranged from 11.98 to 96.64 in the selected tissues,
with an average of 45.66. The FPKM values for the other 19 LcWRKY genes were also deter-
mined for all tissues. Furthermore, seven LcWRKY genes were most highly expressed in the
root, especially LcWRKY29 (FPKM value of 554.42) and LcWRKY31 (FPKM value of 407.36).
Five LcWRKY genes (LcWRKY33, LcWRKY40, LcWRKY41, LcWRKY43, and LcWRKY57)
were predominantly expressed in the male flower (FPKM values of 92.78, 244.61, 60.78,
148.05, and 88.66, respectively). The LcWRKY34 (FPKM value of 237.85), LcWRKY36 (FPKM
value of 65.23), and LcWRKY40 (FPKM value of 175.89) genes were preferentially expressed
in the female flower (Supplementary File S7).

2.6. Analysis of LcWRKY Expression under Low-Temperature Stress Conditions

The WRKY TFs are well-known regulators of abiotic stress signaling pathways. In
this study, an Illumina transcriptome sequencing (RNA-seq) analysis was performed to
determine the LcWRKY expression patterns at specific time-points during an exposure to
low-temperature (5 ◦C) stress conditions. According to the heat map (Figure 4b), the expres-
sion levels of the 20 stress-response-related genes identified in L. cylindrica varied among
the selected time-points (0, 2, 4, 8, and 12 h). The FPKM values indicated the LcWRKY ex-
pression levels gradually increased, with FPKM values of 789.03, 1783.21, 2088.96, 2390.62,
and 2711.62 at 0, 2, 4, 8, and 12 h, respectively (Figure 4b and Supplementary File S8).

To verify the RNA-seq data, 24 LcWRKY genes related to abiotic stress tolerance (6 from
group I, 12 from group II, and 6 from group III) were selected for a quantitative real-time
polymerase chain reaction (qRT-PCR) analysis (Figure 5). There were significant differences
in the expression levels of these 24 LcWRKY genes, many of which were highly expressed
during the low-temperature treatment. Specifically, the LcWRKY2, LcWRKY7, LcWRKY8,
LcWRKY12, LcWRKY14, LcWRKY36, LcWRKY38, LcWRKY46, LcWRKY48, LcWRKY50,
LcWRKY57, and LcWRKY59 expression levels peaked at 8 h, whereas LcWRKY29, LcWRKY43,
and LcWRKY56 were most highly expressed at 4 h. Notably, LcWRKY23 was highly ex-
pressed only at 2 h, while LcWRKY13, LcWRKY33, LcWRKY39, LcWRKY41, LcWRKY53,
LcWRKY60, and LcWRKY62 expression levels were almost undetectable throughout the
low-temperature treatment period. There was a strong positive correlation (R2 = 0.8097;
p ≤ 0.01) between the qRT-PCR and RNA-seq data, even for the LcWRKY genes that were
generally expressed at low levels (Figure 6).
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levels, respectively. (a) Tissue-specific LcWRKY expression profiles. (b) LcWRKY expression levels in
the leaves at five time-points during a low-temperature treatment.

2.7. Subcellular Localization of LcWRKY Proteins

To examine the subcellular localization of the LcWRKY proteins, constructs were
generated for the expression of LcWRKY43 (group I), LcWRKY7 (group II), and LcWRKY23
(group III) fused to the green fluorescent protein (GFP). The constructs were inserted into
Nicotiana benthamiana via an Agrobacterium-tumefaciens-mediated transformation for the
subsequent transient expression and subcellular localization analysis. In the control cells
containing the empty vector (35S::GFP), green fluorescence was distributed in the cell mem-
brane, cytoplasm, and nucleus, whereas in the cells containing a 35S::LcWRKY::GFP con-
struct, green fluorescence was detected exclusively in the nucleus. Accordingly, LcWRKY7,
LcWRKY23, and LcWRKY43 were localized to the nucleus, which was consistent with
the predicted subcellular localization (Supplementary File S1 and Figure 7). The nuclear
localization of these three LcWRKY proteins is in accordance with their putative roles
as TFs.
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sequencing (RNA-seq) and qRT-PCR data. For the RNA-seq analysis, the FPKM values at 2, 4, 8,
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Figure 7. Subcellular localization of three LcWRKY proteins in the lower epidermal cells of Nico-
tiana benthamiana. The green fluorescence, visible light, and merged green fluorescence and visible
light images are presented. 35S::GFP: Agrobacterium tumefaciens strain carrying the empty vec-
tor (pCAMBIA1300-GFP); 35S::LcWRKY::GFP: A. tumefaciens strain carrying a recombinant vector
(pCAMBIA1300-LcWRKY7-GFP, pCAMBIA1300-LcWRKY23-GFP, or pCAMBIA1300-LcWRKY43-
GFP). Scale bars = 50 µM.
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3. Discussion
3.1. Characterization of the LcWRKY Gene Family in L. cylindrica

Among the plant TF families, the WRKY TF family is one of the largest and most
important, with a broad range of functions that affect plant growth, development, signal
transduction, and biotic and abiotic stress responses. Thus, in this study, we conducted
a whole-genome analysis and detected 62 LcWRKY genes (LcWRKY1–62) in L. cylindrica.
These genes were divided into three groups (I, II, and III) and five subgroups (IIa, IIb, IIc, IId,
and IIe) on the basis of the presence of conserved WRKY domains and a zinc-finger-motif-
like structure. The phylogenetic analysis and resulting clades supported the classification
of the LcWRKY genes into three groups (I, II, and III). There was a close phylogenetic
relationship between the WRKY genes in subgroups IIa and IIb as well as between the WRKY
genes in subgroups IId and IIe. Interestingly, in contrast to the other LcWRKY proteins,
LcWRKY16 and LcWRKY31 were revealed to contain a non-standard conserved WRKY
domain (i.e., Q-to-K substitution in WRKYGQK during evolution, resulting in WRKYGKK).
A similar mutation was also detected in the genome of other plants, including Prunus mume,
Elaeis guineensis, and Fagopyrum tataricum [5,7,15]. Our phylogenetic analysis revealed the
close relationship between the two subgroup IIc LcWRKY genes, which belonged to the
same branch of the phylogenetic tree (Figure 3a). Variations in the WRKY motif can alter the
DNA-binding activity, which may help to explain the functional diversity among the WRKY
TFs [6]. Earlier research showed that Cucurbitaceae originated approximately 80 million
years ago, with at least four whole-genome duplication (WGD) events occurring during the
evolution of cucurbits [46]. These WGD events are the main factors that have contributed to
the morphological diversity of cucurbit plants; however, the genome size and the number
of genes in these species decreased to the corresponding levels before the WGD events [47].
In the current study, WRKY gene duplication events were not detected, which is consistent
with the findings of previous studies on C. sativus [48] and L. cylindrica Roxb. Because of
the lack of gene duplication events in the LcWRKY family, the group III LcWRKY genes,
which are most active during evolution, likely have relatively conserved functions.

The conserved WRKY domains of the LcWRKY proteins were analyzed in this study.
Multiple sequence alignments revealed a change in the WRKY domains of LcWRKY10 and
LcWRKY37 (subgroup IIc). Most characterized WRKY proteins preferentially bind to their
cognate cis-acting W-box element via their WRKY domain. Hence, it may be worthwhile
to further investigate the binding specificity and functionality of these two LcWRKY pro-
teins. An earlier investigation involving broomcorn millet (Panicum miliaceum L.) indicated
that five PmWRKY proteins (PmWRKY2, PmWRKY15, PmWRKY23, PmWRKY24, and
PmWRKY28) contain the variant sequence WRKYGKK, while four PmWRKY proteins
(PmWRKY5, PmWRKY6, PmWRKY8, and PmWRKY20) contain the variant sequence
WRKYGEK. Changes in the WRKYGQK motif can modulate the binding of the WRKY
TF to target DNA sequences. For example, in pepper, CaWRKY27b, which contains the
WRKYGMK domain (i.e., Q-to-M substitution in the conserved WRKYGQK sequence),
cannot bind to W-boxes in the nucleus, but it can combine with CaCDPK29 to form a
complex that regulates the CaWRKY40-mediated defense response to biotic stress [6].

3.2. Analysis of L. cylindrica WRKY Gene Promoters

Various types of cis-acting elements were identified in the LcWRKY promoter regions,
suggesting the encoded TFs may be involved in diverse biological processes influencing
plant growth and development [2,45,49]. An earlier study demonstrated that the expression
of the cucumber gene CsWRKY46 can increase the cold tolerance of transgenic plants,
which may be related to the associated positive regulation of the cold signaling pathway
in an ABA-dependent manner [26]. Salicylic acid is a key regulator of plant responses
to various pathogens because of its effects on multiple mechanisms that induce defense
activities. In A. thaliana, the expression of MiWRKY53 affects the regulation of plant
defense responses involving SA-mediated mechanisms [13]. In oil palm, EgWRKY59 and
EgWRKY65 contribute to similar regulatory mechanisms involving ABA-, SA-, and ROS-
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mediated signaling pathways during an exposure to drought or other abiotic stresses;
these two genes may be useful for enhancing the abiotic stress tolerance of plants. A
recent study showed that OsWRKY24 and OsWRKY70 expression levels are upregulated
by low temperatures, SA, and MeJA but are downregulated by ABA [50]. In Dendrobium
officinale seedlings, the expression levels of nine DoWRKY genes are significantly affected
by cold and MeJA treatments, suggestive of their contributions to stress tolerance [51]. In
banana fruit, MaWRKY26 expression is reportedly induced by cold stress or MeJA, thereby
enhancing cold tolerance [29]. In the present study, various cis-acting elements responsive
to phytohormones (i.e., MeJA, ABA, and SA) were identified, implying that the LcWRKY
TFs likely help control various hormone signaling pathways related to the abiotic and biotic
stress responses of L. cylindrica (Figure 2a and Supplementary File S4) [12–14].

3.3. Expression Profiles of LcWRKY Genes in L. cylindrica and the Changes Induced by
Low-Temperature Stress

RNA-seq analyses are usually performed to study gene functions and structures
and to reveal the molecular mechanisms underlying specific biological processes. In the
present study, we used transcriptome data for seven L. cylindrica tissues (root, stem, leaf,
male flower, female flower, fruit, and ovary) to explore tissue-specific LcWRKY expression
patterns (Figure 4a). Many of the selected LcWRKY genes were highly expressed in the root
(51%), whereas a few LcWRKY genes were highly expressed in the male flower (12.90%), leaf
(3.23%), fruit (4.84%), female flower (1.61%), ovary (1.61%), and stem (1.61%). These results
are consistent with the findings of earlier studies involving other plants, including Acer
truncatum [52], Pennisetum glaucum [2], and Melastoma dodecandrum [45]. Moreover, the gene
expression data indicated that the LcWRKY genes have tissue-specific expression profiles,
with potentially important roles in root responses to external stresses. The LcWRKY34,
LcWRKY40, LcWRKY41, LcWRKY43, and LcWRKY57 expression levels peaked in the flower,
suggestive of a key role in the mechanism mediating L. cylindrica flower formation and
development. In addition, a few LcWRKY genes were expressed at low or undetectable
levels (e.g., LcWRKY3, LcWRKY4, LcWRKY5, LcWRKY14, LcWRKY28, LcWRKY32, and
LcWRKY51). These results suggest that LcWRKY TF genes are expressed at various levels
in different organs or tissues to regulate diverse biological and physiological processes in
L. cylindrica.

Low-temperature stress can substantially alter plant growth and development. Previ-
ous studies on the mechanism by which WRKY regulates cold stress responses mainly fo-
cused on model plants [11,53]. In the current study, we explored the regulatory functions of
LcWRKY TFs in L. cylindrica Fusi-1 seedlings that underwent a low-temperature treatment
(Supplementary File S8). The analysis of the LcWRKY expression levels (i.e., FPKM values)
under normal conditions (Figure 4a) showed the LcWRKY genes (except LcWRKY61) were
expressed at lower levels in the leaves (553.77) than in the other examined tissues, with the
exception of the ovary (424.48). However, the LcWRKY expression levels increased 3.44-fold
from 0 h (789.03) to 12 h (2711.62) during the low-temperature treatment, indicative of the
LcWRKY gene responses to cold conditions. Furthermore, 24 LcWRKY genes representing
all three groups (I, II, and III) were selected for the qRT-PCR analysis. The expression
patterns of the examined LcWRKY genes, including LcWRKY7, LcWRKY8, LcWRKY12,
and LcWRKY59, suggested that the encoded TFs are likely involved in the L. cylindrica
response to cold stress. Recent research showed that the overexpression of CsWRKY46 and
other cucumber WRKY genes can increase the viability of transgenic A. thaliana seedlings
incubated at 4 ◦C [26]. Another study involving an analysis of transient gene expression
showed that CsWRKY46 (group II) is a nuclear protein [24]. In rice, the overexpression
of OsWRKY76 reportedly enhances the cold stress tolerance at 4 ◦C, whereas OsWRKY63
negatively regulates chilling tolerance through the OsWRKY63–OsWRKY76–OsDREB1B
transcription-regulating module [22]. In the present study, the expression levels of a few
LcWRKY genes decreased during the exposure to cold stress (e.g., LcWRKY13, LcWRKY33,
LcWRKY39, LcWRKY41 LcWRKY53, and LcWRKY60). We speculate that these genes may
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play a role in L. cylindrica’s responses to other biotic and/or abiotic stresses. Interestingly,
a W-box element (WRKY TF binding site) was detected in the region upstream of certain
LcWRKY genes, including LcWRKY7, LcWRKY8, LcWRKY12, LcWRKY23, and LcWRKY43,
suggestive of the auto-regulation of the expression of these genes under stress conditions
(Supplementary File S4).

4. Materials and Methods
4.1. Plant Materials, Growth Conditions, and Treatment

Luffa cylindrica Fusi-1 seeds were washed three times with distilled water, soaked in
2% sodium hypochlorite for 15 min, washed three more times with distilled water, and
then sown in plastic boxes. The seeds were placed in an incubator equipped with an LED
cold light source for an incubation under the following conditions: 16 h day (28 ◦C)/8 h
night (20 ◦C); light intensity of 300 µmol photons m−2 s−1; and relative humidity of
70%. Twenty-day-old seedlings were incubated at 5 ◦C for 0, 2, 4, 8, and 12 h under a
light intensity of 80 µmol photons m−2 s−1. The stress treatment was initiated at the
beginning of a photoperiod. Images of the chlorophyll fluorescence of the leaves were
captured using the IMAG-MAX chlorophyll imaging system (blue light source) (Walz,
Effeltrich, Germany) to determine the maximum quantum efficiency of photosystem II
(Fv/Fm) (Supplementary File S9). All control and treated samples were examined using
three biological replicates. The leaf samples were combined, immediately frozen in liquid
nitrogen, and stored at −80 ◦C.

4.2. Total RNA Extraction, RNA Sequencing, and Gene Expression Analysis

The total RNA extraction, mRNA purification, and cDNA library construction steps
were completed by Guangzhou Gene Denovo Technologies Co. (Guangzhou, China). The
cDNA libraries were constructed as previously described [54] and then sequenced on
an Illumina HiSeq 2500 instrument. High-quality reads were aligned to the L. cylindrica
cultivar P93075 (ASM1713956v1) reference genome using Bowtie2.

For the qRT-PCR analysis, total RNA was extracted from each sample using an EZNA
Plant RNA kit (Bio-Tek, Beijing, China). These experiments were completed using three
biological replicates and three technical replicates. The RNA samples were quantified and
checked for quality using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific,
Carlsbad, CA, USA) and a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

The read count represents the number of reads mapped to the reference genome.
However, the FPKM value may be used to represent gene expression levels because it is
calculated after considering the sequencing depth and feature length. Notably, the choice
of computational methods for analyzing RNA-seq data can influence the estimated gene
expression levels in the transcriptome [18]. To assess the differences between the read
counts and FPKM values, we calculated the FPKM values for the identified genes in each
transcriptome.

The tissue-specific LcWRKY expression profiles were investigated using our pub-
licly available Fusi-1 (PRJNA1044273) transcriptomes for the following tissues: root
(SAMN38393632, SAMN38393633, and SAMN38393634), stem (SAMN38393635,
SAMN38393636, and SAMN38393637), leaf (SAMN38393623, SAMN38393624,
and SAMN38393625), male flower (SAMN38393626, SAMN38393627, and SAMN38393628),
female flower (SAMN38393620, SAMN38393621, and SAMN38393622), fruit (SAMN38393617,
SAMN38393618, and SAMN38393619), and ovary (SAMN38393629, SAMN38393630, and
SAMN38393631). The effects of low-temperature stress on LcWRKY expression in the
seedling leaves were examined at the following five time-points: 0 h (SAMN38393638,
SAMN38393639, and SAMN38393640), 2 h (SAMN38393641, SAMN38393642, and
SAMN38393643), 4 h (SAMN38393644, SAMN38393645, and SAMN38393646), 8 h
(SAMN38393647, SAMN38393648, and SAMN38393649), and 12 h (SAMN38393650,
SAMN38393651, and SAMN38393650).
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For the qRT-PCR assays, primers (i.e., LcWRKY-Fq and LcWRKY-Rq) were designed
according to the sequences determined in this study (Supplementary File S10). The thermal
cycling program was as follows: 93 ◦C for 3 min; and 40 cycles of 93 ◦C for 5 s and
72 ◦C for 30 s. For the control, the 18S rRNA gene (GenBank accession: KM656452) was
selected as the reference gene, and the 18S rRNA-Fq and 18S rRNA-Rq primers were
designed (Supplementary File S10). Relative gene expression levels were calculated using
the 2−∆∆Ct method.

4.3. Identification of LcWRKY Genes in the L. cylindrica Genome

The L. cylindrica WRKY proteins were identified using two methods. Specifically,
we searched the L. cylindrica genome database (https://www.ncbi.nlm.nih.gov/datasets/
genome/GCA_017139565.1/ (accessed on 22 September 2023)) for WRKY proteins on the
basis of the sequences of conserved WRKY domains in A. thaliana. All L. cylindrica peptide
sequences were downloaded from the L. cylindrica database. The HMM software package
and BLASTP were used to obtain candidate WRKY TFs, which were subsequently validated
using the Pfam (http://pfam.xfam.org/ (accessed on 22 September 2023)) and SMART
(http://smart.embl-heidelberg.de/ (accessed on 22 September 2023)) databases.

4.4. Bioinformatics Analysis of the LcWRKY Gene Family

The LcWRKY gene structures were visualized using GSDS, which aligned the cDNA
sequences to the gene sequences [55]. Phylogenetic trees were constructed according to
the maximum likelihood method (bootstrap: 1000 replicates) using MEGA (version 7.0).
The WRKY genes responsive to stress were identified. In addition, heat maps, phylogenetic
trees, and cis-acting elements were visualized using the TBtools software (version 1.6).
The theoretical molecular weight and pI were calculated using ProtParam (http://web.
expasy.org/protparam/ (accessed on 23 September 2023)). The subcellular localization
was predicted using WoLF PSORT (https://wolfpsort.hgc.jp/ (accessed on 23 September
2023)), with plants selected as the biological type. The conserved motifs in the LcWRKY
proteins were analyzed using the following optimized parameters of MEME (http://
meme-suite.org/tools/meme (accessed on 27 September 2023)): any number of repetitions;
maximum number of motifs, 25; minimum sites, 2; and optimum width of each motif,
6–100 residues [56]. The MAST program (http://meme-suite.org/tools/mast (accessed
on 27 September 2023)) was used to screen protein databases for the detected motifs. The
cis-acting elements in the LcWRKY promoters were analyzed using the TBtools software
and PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed
on 30 September 2023)). The PlantCARE results were used to visualize the predicted
cis-acting elements.

4.5. Subcellular Localization of LcWRKY Proteins

To investigate the nuclear localization of the LcWRKY proteins, the full-length se-
quences of three LcWRKY genes (LcWRKY7, LcWRKY23, and LcWRKY43) without the stop
codon were amplified by PCR using the primers listed in Supplementary File S10. The PCR
products were inserted into separate pCAMBIA1300 vectors for the expression of a GFP
fusion protein. The generated recombinant plasmids were inserted into N. benthamiana
seedling leaves for the subcellular localization analysis. The empty vector (35S::GFP) was
used as the control. The leaves were examined for GFP fluorescence using a TCS SP8 confo-
cal laser scanning microscope (Leica, Wetzlar, Germany), with 488 nm argon excitation and
a 505–530 nm band filter.

5. Conclusions

A total of 62 LcWRKY genes were differentially regulated under low-temperature
stress conditions according to the Illumina sequencing data. A comprehensive analysis of
phylogenetic relationships, chromosomal locations, gene structures, and conserved motifs
was performed. On the basis of the diverse tissue-specific LcWRKY expression profiles
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as well as the expression patterns in response to the low-temperature treatment, several
LcWRKY genes (e.g., LcWRKY7, LcWRKY8, LcWRKY12, and LcWRKY59) were identified as
candidate regulators of the cold stress response of L. cylindrica.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13050676/s1, File S1: Table S1. WRKY family genes identified
in L. cylindrica. File S2: WRKY protein sequences. File S3: Promoter region 2.0 kb upstream of
LcWRKY gene sequences. File S4: Identified cis-acting elements in the LcWRKY promoter regions.
File S5: Full-length sequences of 62 LcWRKY genes. File S6: Table S2. Consistent sequences of the
predicted WRKY motifs in L. cylindrica. File S7: Tissue-specific LcWRKY expression profiles. File
S8: Low-temperature-stress-induced LcWRKY expression profiles. File S9: Figure S1. Effects of
low-temperature stress on 2-week-old luffa seedlings. File S10: Table S3. Primers used in this study.
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