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Abstract: The investigation into the spatial patterns of living woody (LWD) and coarse woody debris
(CWD) in warm-temperate deciduous broadleaved secondary forests serves as a foundational explo-
ration of the mechanisms governing coexistence and mortality in forest ecosystems. The complete
spatial randomness null model (CSR) was employed to analyze spatial distribution patterns, with the
independent component null model (IC) and canonical correspondence analysis (CCA) utilized to
elucidate spatial correlations and topographic influences. All three models were applied to LWD and
CWD across various size classes within a 20-hectare plot in the Dongling Mountains. The study’s find-
ings indicate that both LWD and CWD predominantly exhibited aggregated patterns, transitioning to
a random distribution as the size class increased. Both increasing abundance and maximum diameter
at breast height (DBH) also have a significant influence on the distribution of species. Notably, rare
species exhibited higher aggregation compared to common and abundant species. The spatial corre-
lation results between LWD and CWD across various size classes predominantly showed positive
correlations and uncorrelated patterns within the sampled plots. CCA analysis further revealed that
elevation, convexity, slope, and aspect significantly influenced the spatial patterns of LWD and CWD
across different size classes. Within the sample site, trees display a tendency to grow and die in
clusters. Biotic factors have a more significant influence on species distribution than abiotic factors.

Keywords: spatial distribution pattern; size class; habitat heterogeneity; warm-temperate secondary
forest; sustainable development

1. Introduction

The examination of species spatial distributions in forest ecosystems and the underly-
ing mechanisms that shape them have always been a prominent subject of research [1–3].
The spatial distribution pattern not only serves as a quantitative representation for assess-
ing community structure but also plays a pivotal role in reflecting the dynamic succession
of species across various growth phases. This aids in elucidating the origins of coexistence
mechanisms within ecological communities [4–7].

The spatial patterns of forest stands are influenced by ecological processes such as
growth, reproduction, and mortality [8,9]. Coarse woody debris (CWD), referring to
decomposing organic material remaining after tree death, is prevalent in various natural
forest ecosystems [10]. Additionally, it serves as a crucial substrate for the process of
natural regeneration [11,12] and plays a significant role in the establishment, development,
and succession renewal of forest ecosystems [13]. Furthermore, coarse woody debris
(CWD) creates voids or gaps within the forest ecosystem, fostering the expansion and rapid
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growth of light-dependent species. This, in turn, influences the overall composition and
structural dynamics of the community. Numerous investigations have explored the spatial
distribution of CWD and factors contributing to its mortality [14–16]. Nevertheless, the
aforementioned studies primarily concentrated on dead trees alone, with limited studies
comparing spatial relationships and patterns between LWD (living woody) and CWD.

The spatial distribution pattern of forests is intricately determined by a combination
of species’ attributes, interspecific correlations, and environmental circumstances [17].
Multiple investigations have demonstrated that dispersal limitation, negative density de-
pendence, and habitat heterogeneity represent three pivotal factors influencing the spatial
distribution pattern of species [2,18–20]. The prominence of opportunistic factors in species
distribution is underscored by dispersal limitation [21]. Negative density dependence
suggests that species growth is regulated by negative feedback mechanisms, curbing the
formation of single-optimistic communities [22]. Habitat heterogeneity indicates that envi-
ronmental filtering leads to the aggregation of species in suitable habitats, with ecological
niche differentiation contributing to species coexistence [18]. The existence of intricate
spatial processes introduces the possibility that spatial patterns at various scales may be
attributed to distinct causes [1]. Species’ attributes, spatial associations, and microtopo-
graphic factors are frequently overlooked or insufficiently addressed, particularly in the
context of analyzing spatial patterns related to CWD.

The spatial distribution of forests not only displays deviations among different species
but also demonstrates significant disparities depending on the growth stage [23]. Further-
more, it consistently highlights the need for analyzing the spatial distribution of trees with
regard to the different phases of development in forests [24]. Plotkin et al. conducted
a study that reported that the aggregation intensity has been shown to exhibit variation
across different phases of growth [25]. Comita et al. [26] and Lai [27] demonstrated that
the same species indicates diverse responses to environmental conditions during distinct
growth stages.

Previous research has demonstrated variances in mortality patterns among trees with
varying diameters [15]. The spatial pattern of plant individuals at different developmental
stages and their connectivity results from long-term interactions between plant commu-
nities and their surrounding environment [28]. Analyzing spatial patterns in conjunction
with different growth stages aims not only to showcase the characteristics of spatial and
temporal distribution in forest stands but also to elucidate the underlying mechanisms
enabling species coexistence [29]. Nevertheless, there is a scarcity of research examining
spatial patterns throughout various phases of growth, especially in conjunction with CWD.

In recent decades, significant scholarly inquiry has been dedicated to investigating the
mechanisms impacting spatial distribution and the ecological processes that underlie these
patterns. Prior research has predominantly concentrated on tropical rainforests [1,28,30,31]
and subtropical forests [32,33], with relatively little emphasis on warm-temperate [34]
and temperate forests [9]. Moreover, it is imperative to acknowledge that different forest
types exhibit unique spatial distributions. For example, habitat heterogeneity emerged as a
notable factor influencing the spatial distribution of woody plants in both tropical forests
(BCI sample site in Panama) and subtropical forests (Fushan sample site in Taiwan). How-
ever, no discernible impact of habitat heterogeneity on the spatial pattern of woody plants
was noted in the Changbai Mountain sample site located in the northeastern temperate
zone [35]. Warm-temperate forests constitute an essential category of vegetation in China,
characterized by abundant plant resources and notable geographical distribution. Due to
extensive anthropogenic activities, the presence of natural forests has significantly dimin-
ished. The warm-temperate deciduous broadleaved forests in Beijing primarily consist of
secondary forests that have undergone a process of recovery following significant damage.
The dataset obtained from the 20–hectare warm-temperate dynamic monitoring sample
plot located in the Dongling Mountains (DLM) offers a valuable opportunity to investigate
the dominance pattern of warm-temperate forest species and the mechanisms underlying
the maintenance of species assemblages.
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The primary aims of this study were to (1) analyze and interpret the spatial distribution
patterns of LWD and CWD across different size classes in a 20 hm2 warm-temperate sec-
ondary forest; (2) investigate the role of biotic and abiotic factors in the spatial distribution
patterns of LWD and CWD; and (3) compare the reasons for differences and similarities in
spatial patterns of LWD and CWD. Our results are expected to provide helpful insights
into the dynamic patterns of warm-temperate secondary forests. It intends to enhance the
managerial capabilities of forest managers and establish the fundamental framework for
the sustainable use and development of local regional forests.

2. Materials and Methods
2.1. Study Site

The study was conducted at the Beijing Xiaolongmen Forest Park Reserve (39◦48′34′′–
40◦10′37′′ N, 115◦25′–116◦10′07′′ E). The vegetation here is a typical warm-temperate and
deciduous broadleaved secondary forest, with relatively complex community structures.
The dominant tree species in the main forest layer, known as the tree layer, include Acer
mono, Quercus wutaishanica, Populus davidiana, Betula platyphylla, among others. The sample
location exclusively features the North China larch (Larix principis–rupprechtii) as the sole
coniferous species, commonly found in the north temperate zone. Abelia biflora, a species
in the understory, exhibits a unique distribution spanning East Asia and Mexico. Within
this region, Syringa pekinensis and Syringa pubescens exemplify vegetation with a temperate
distribution typical of the Old World. Furthermore, the combination of plant species from
both northern and southern regions results in the presence of tropical and pantropical
distributions, indicating that the sample location is situated in a transitional zone.

The Donglingshan Mountain sample plot has a warm-temperate continental monsoon
climate with four distinct seasons, with a mean annual temperature of 4.8 ◦C, an average
July (hottest) temperature of 18.3 ◦C, and an average January (coldest) temperature of
−10.1 ◦C. The annual frost-free period is about 195 days, and the annual sunshine is about
2600 h. Annual precipitation in the study area ranges between 500 and 650 mm, with June
and August accounting for roughly 78% of total precipitation. Mountain brown soil is the
parent soil material [36].

A 20 ha (400 m × 500 m) plot (40◦00′ N, 115◦26′ E) was established in Xiaolongmen
Forest Park Reserve in 2010, with the first census completed in 2010 following the standard
field protocol of the CTFS (Center for Tropic Forest Sciences, Condit 1995, http://www.
ctfs.si.edu, accessed on 30 November 2023). The plot is characterized by rugged terrain
(Figure 1): the elevation varies from 1298.21 m to 1506.34 m and the slope ranges from 8.46◦

to 48.49◦, with a mean of 31.98◦.

2.2. Data Collection

The plot (20 ha/400× 500 m) was divided into 500 subplots measuring 20× 20 m each,
and all free standing trees (DBH ≥ 1) in these grids were identified, tagged, and mapped
following standard field procedures [37]. A comprehensive examination of living woody
debris was conducted on a total of 500 plots, resulting in the documentation of 56 species,
36 genera, and 20 families. According to the dataset from the living woody debris, the
coarse woody debris was identified, tagged, and mapped with a DBH greater than or equal
to 5 cm. A total of 32 species, 25 genera, and 15 families were documented (unidentified
species as “unknown”). Quercus wutaishanica and Acer mono Maxim. are absolute dominant
species in our plot. To obtain a sufficient sample size for point pattern analyses, we chose
46 common species with no fewer than 20 individuals [38].

http://www.ctfs.si.edu
http://www.ctfs.si.edu
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Figure 1. Plot location and forest stand schematic.

2.3. Data Analyses

The spatial point pattern has been widely used to analyze the spatial distribution
pattern of species [39]. In this paper, we used g(r) to study the spatial distribution of species
at 0–50 m scale and mean g0–10 as a measure of mean conspecific aggregation density within
10 m of a tree [28]. The g function is derived from Ripley’s K function [40], and g function
is a probability density function which can effectively eliminate the cumulative effect
with increasing scale in Ripley’s K function. The g(r) function replaces circles with rings,
irrespective of varying scale patterns, thus minimizing the influence of large-scale patterns
on smaller scales. Consequently, the g(r) function can demonstrate greater sensitivity in
assessing the degree to which the observed distribution of points on a specific scale differs
from the anticipated value. The g(r) function is utilized to analyze patterns on a specific
scale determined by the radius r. It operates as a distance-dependent correlation function,
examining the pattern across the distances of all localized pairs of individuals. The formula
for its calculation is as follows:

g(r) =
1

2πr
dK(r)
d(r)

The g(r) function has emerged as a crucial analytical technique for assessing spatial
patterns and the degree of clustering, owing to its enhanced intuitiveness and accuracy
of results. An aggregated distribution is indicated when g(r) is greater than 1, a regular
distribution is observed when g(r) is less than 1, and a random distribution is identified
when g(r) is equal to 1. Specifically, when g(r) > 1, it signifies that the density of points
on scale r exceeds that of the random distribution, suggesting an aggregated distribution
pattern. For instance, if g(r) = 2, it indicates that the density of points on scale r is two times
that of the random distribution.

We use complete spatial randomness (CSR) as a null model. The null model is widely
used for univariate point patterns; it assumes no interactions between points and indicates
that trees can occur at any position without the influence of biological processes. Nine
hundred and ninety–nine random Monte Carlo simulations are used to test whether a
species is not significant from the random distribution. If the observed value falls within the
2.5th and 97.5th percentiles, the null model cannot be rejected and the species is aggregated.
These simulations are performed in the “spatstat” package in R.
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We used the mean aggregation intensity g0–10 [28] to compare the distribution patterns
of LWD and CWD across various size stages and applied regression analysis to investigate
the association between abundance, maximum diameter at breast height (max DBH), and
g0–10. The observed species abundance served as the basis for this analysis, and we divided
the abundance into three levels: abundant (with abundance ≥ 1000 individuals/20 ha),
common (100–999 individuals/20 ha), and rare (<100 individuals/20 ha). The data were
subjected to statistical analysis to determine their significance, employing either the Kruskal–
Wallis or Wilcoxon rank-sum test. According to the empirical assessment of diameter at
breast height (1.3 m above the ground, DBH) and the identified study requirements, we
divided the sizes into three levels: small size (<10 cm, S), medium size (≥10 and <20 cm,
M), and large size (≥20, L).

The present study employed a null model of the independence of components (IC)
model to examine the connections between various growth phases prior to and following
tree mortality [1]. The null model of the independence of components assesses the degree to
which the observed distribution of type 2 in relation to type 1 differs from the expected value
of type 2. Throughout the process, the positions of type 1 points remain constant, while
the collective type 2 points undergo a transformation across the research sample through
the utilization of a random vector. Monte Carlo simulations consisting of 999 iterations
were conducted to generate an envelope line with a confidence level of 95% and to test the
statistical significance of the observed point pattern results.

The microtopographic variables used in the canonical correspondence analysis (CCA)
were the elevation, slope, aspect, and convexity of each 20 × 20 m grid. In this study, we
examine the correlation between microtopography and the spatial distribution of woody
vegetation. The Monte Carlo permutation test was performed to evaluate the significance
of these relationships using the “vegan” package in R. Each microtopographic variable
was tested at the 5% significance level using 1000 random permutations. All analyses were
performed using R4.3.1 (R Development Core Team) and Microsoft Excel 2023.

3. Results
3.1. Spatial Distribution Pattern of LWD and CWD in Each Size Class

The results under the CSR null model showed that aggregated distribution was the
dominant pattern in the DLM plot, and the pattern varied with the size classes of LWD
and CWD at 0–50 m (Figure 2). The small size of LWD did not exhibit convergence to
random within 0–50 m. The medium size transitioned to a random distribution at 40 m. The
large size displayed a pattern of initially randomizing and then aggregating distribution
constrained within a distance of 5 m. The occurrence of randomness at 5 m could be
attributed to interactions between intraspecific or interspecific individuals. The distribution
pattern of CWD across various size classes likewise demonstrates a shift from aggregated to
random distribution as the scale increases (Figure 2). The clustering pattern is predominant
for the small and medium sizes, whereas the large size has a tendency towards random
distribution at 41 m.

3.2. Aggregation Intensity g0–10 and Attributes of LWD and CWD in Each Size Class

The investigation documented a significant reduction (p < 0.001) in the aggregation
intensity g0–10 of LWD concomitant with the abundance increasing (Figure 3). Similarly,
a significant negative correlation (p < 0.01) was found between the abundance of CWD
and g0–10 (Figure 3). Furthermore, the aggregation intensity g0–10 exhibited a negative
linkage with the maximum DBH of both LWD and CWD. Specifically, LWD was found to
be significant but CWD was non–significant (Figure 3).
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Figure 2. Distribution map and point pattern analysis of different development stages of LWD (live
woody debris) and CWD (coarse woody debris) in the 20 ha Dongling Mountains forest plot. Left
panels show the number in the contour map is elevation (m). The second panel shows the relationship
between the univariate pair-correlation function (g(r)) and scale for the all species. Two rows of
LWD on the left and two rows of CWD are shown on the right. The lines represent g(r); the gray
areas indicate the simulation envelopes generated from 999 Monte Carlo simulations under the null
hypothesis of complete spatial randomness (CSR, the middle panels). The figures were created using
R 4.0.3 software (https://www.r-project.org/, accessed on 1 October 2020).

The aggregation intensity g0–10 of LWD exhibited a decrease as the size class increased
(Figure 4), and there were significant variations observed between the three size levels
(Kruskal–Wallis χ2 = 11.51, p < 0.01). Conversely, the trend for CWD was statistically
non-significant across various size classes (p > 0.05).

The results of the Kruskal–Wallis test indicated a statistically significant variation in
the three abundance levels of LWD (χ2 = 36.95, p < 0.001), and the aggregation intensity
g0–10 of rare species was substantially greater than the common and abundant species.
This finding provides additional evidence supporting the negative correlation between
abundance and g0–10. The sample size of rare species within CWD is insufficient for
meaningful comparison.

https://www.r-project.org/
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3.3. Spatial Correlation Analysis of LWD and CWD

The spatial interactions among trees of varying size classes displayed considerable
variability (Figure 5). Within a 50 m scale, the association between the small and medium
size of LWD underwent a transition from a positive correlation to no correlation at a
distance of 38 m. This transition suggests an attraction between these two size classes at a
smaller spatial scale, with the relationship becoming unrelated as the scale increases. At a
distance of 31 m, a negative correlation was observed between small–sized and large-sized
trees, indicating a shift from mutual exclusion to non-correlation.

Moreover, a positive association was seen between the small size of LWD and CWD
with varying sizes. This observed positive correlation may be attributed to the favorable
conditions created by CWD at a smaller spatial scale, fostering the colonization, growth,
and development of saplings. The linkage between the medium and large sizes experienced
a shift from a negative correlation to non-correlation at a distance of 10 m. The interac-
tion involving the medium and large sizes in conjunction with CWD was predominantly
characterized by non-correlation.
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3.4. Microtopographic Effect on LWD and CWD

The results indicate that four microtopographic parameters significantly influence the
distribution of various sizes of LWD and CWD (Table 1). Distinct size classes exhibited
varied distribution patterns influenced by different microtopographic variables (Figure 6).
Specifically, the combination factors accounted for 9.25% of the variance in the distribution
of small–sized LWD. Furthermore, the spatial distribution of small–sized LWD demon-
strated a significant positive correlation with elevation and a significant negative correlation
with convexity, slope, and aspect along the first axis. On the second axis, the distribution of
small–sized LWD was significantly positively correlated with elevation and convexity and
significantly negatively correlated with slope and aspect (Figure 6; Table 1).
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Table 1. Permutation test for the topographic factors explaining the distributions of LWD and CWD
plants in the Dongling Mountains plot.

LWD Topographic Factor CCA1 CCA2 R2 Pr (>r)

Small size Elevation 0.131 0.991 0.342 0.001 ***
Convexity −0.905 0.425 0.489 0.001 ***

Slope −0.735 −0.679 0.160 0.001 ***
Aspect −0.862 −0.508 0.087 0.001 ***

Middle size Topographic factor CCA1 CCA2 R2 Pr (>r)

Elevation −0.389 −0.921 0.348 0.001 ***
Convexity −0.973 −0.229 0.395 0.001 ***

Slope −0.666 0.746 0.121 0.001 ***
Aspect −0.778 0.628 0.135 0.001 ***

Large size Topographic factor CCA1 CCA2 R2 Pr (>r)

Elevation −0.698 0.717 0.206 0.001 ***
Convexity −0.987 0.159 0.366 0.001 ***

Slope −0.969 −0.248 0.112 0.001 ***
Aspect −0.944 −0.329 0.091 0.001 ***

CWD Topographic factor CCA1 CCA2 R2 Pr (>r)

Small size Elevation −0.999 0.005 0.117 0.001 ***
Convexity 0.747 0.665 0.100 0.001 ***

Slope 0.974 0.228 0.237 0.001 ***
Aspect 0.882 −0.471 0.217 0.001 ***

Middle size Topographic factor CCA1 CCA2 R2 Pr (>r)

Elevation 0.939 0.342 0.245 0.001 ***
Convexity 0.399 0.917 0.102 0.001 ***

Slope −0.929 0.368 0.113 0.001 ***
Aspect −0.723 0.691 0.064 0.001 ***

Large size Topographic factor CCA1 CCA2 R2 Pr (>r)

Elevation 0.956 −0.294 0.189 0.001 ***
Convexity 0.957 0.290 0.172 0.001 ***

Slope −0.572 0.821 0.010 0.421
Aspect 0.864 0.503 0.004 0.754

Note: strikingly significant difference: p-value < 0.001 (***).
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The investigation revealed that microtopographic factors exerted a more pronounced
influence on LWD in comparison to CWD. Notably, convexity emerged as the most influen-
tial factor affecting the distribution of LWD across various size classes. Conversely, elevation
was identified as the primary determinant influencing the distribution of CWD. Further-
more, while microtopographic factors demonstrated a significant impact, the magnitude of
their influence on the spatial patterns of both LWD and CWD was comparatively modest.

4. Discussion
4.1. General Spatial Pattern

The aggregated pattern is prevalent at the given scales within the natural plot. Ag-
gregation was also the primary distribution in the Dongling Mountains plot. The result is
consistent with prior studies undertaken in various forest ecosystems, including tropical
forests [28,41,42], subtropical forests [33,38], and temperate forests [9]. Within the context
of natural forest ecosystems, a discernible trend emerges, indicating a significant decrease
in aggregation intensity during the transition from juvenile to adult stages, subsequently
manifesting as an aggregates–random–regular distribution [43]. The Dongling Mountains
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sample site also validates these observations, illustrating a reduction in aggregation inten-
sity for both living woody (LWD) and coarse woody debris (CWD) as size class increases.
Moreover, the distribution pattern undergoes a shift from aggregation to randomization.

The alteration in spatial patterns within the forest stands primarily resulted from
two factors: the abundance of small-sized trees and the notable clustering that emerged
during the developing stage [44]. During the development phase of forest dwellers, a
noteworthy mortality incidence occurs among juvenile trees, with only a minority suc-
cessfully transitioning into adulthood. This transition is accompanied by a discernible
reduction in aggregation processes. Conversely, subsequent to the canopy growth phase,
mature trees attain a state of equilibrium, where the distribution of canopy trees is pre-
dominantly influenced by individual mortality [45]. The distribution pattern of CWD
observed across different growth phases serves as an indicator of both tree mortality and
disturbance dynamics within the community. In the current study, the examined stands
endured an extended period of undisturbed conditions. The observed clustering of CWD
across diverse size classes may be attributed to mortality influenced by density-dependent
and successional processes.

The fluctuations in spatial pattern might be seen as an indication of the survival
strategies or adaptive mechanism employed by a population [28]. One potential advantage
of aggregated patterns lies in their ability to alleviate the adverse impacts of competitively
dominant species on disadvantaged species, thereby facilitating the survival and persistence
of the latter within the community [34]. Conversely, during a developmental phase in
the community, where there is an elevated demand for resources, the aggregation may
decline as individuals disperse to acquire essential means for survival. Subsequent to
the completion of environmental screening and habitat filtering, a substantial proportion
of species experiencing a competitive disadvantage undergo mortality. Consequently,
the community attains a state of relative stability, aligning with the stabilization of the
distribution pattern [46].

4.2. Functional Traits on Spatial Pattern of LWD and CWD

Previous studies have highlighted the substantial impact of functional traits, in-
cluding abundance, size class, and dispersion limitation, on the spatial distribution of
species [28,38,47]. In this study, the CSR null model was employed to explore the rela-
tionship between species’ functional traits (abundance and max DBH) and aggregation
intensity (g0–10) at the 0~10 m scale for both LWD and CWD within the sampled plots.

The findings reveal a noteworthy negative correlation between g0–10 and both the
abundance and max DBH of LWD. This aligns with earlier research indicating a decrease
in forest aggregation indices with increasing abundance [9,28], a trend also observed in
subtropical evergreen deciduous broadleaved mixed forests [33]. In our specific sample
site, g0–10 was higher for abundant and common species at the same scale. This observation
resonates with similar occurrences documented in other forest ecosystems [48]. These pat-
terns may be attributed to elevated mortality rates resulting from intraspecific competition
and density-dependent effects exhibited by abundant and common species [49], aligning
with the documented phenomena in various forest environments.

Moreover, research has demonstrated a decline in forest stand aggregation inten-
sity g0–10 as the size class increases [44]; similar conclusions were revealed in this study.
Naturally regenerated forest stands often exhibit clustered spatial distributions, where
smaller trees tend to cluster, while larger trees display a more regular distribution pat-
tern [24]. The aggregation of smaller individuals contributes to the manifestation of the
group effect, positively impacting population renewal and biodiversity conservation. The
diminishing aggregation in larger diameter classes can be attributed to competition-induced
self-thinning [50].

The findings of this study unveil a notable and negative correlation between the
abundance of CWD and the aggregation intensity g0–10. Moreover, an inverse relationship
was observed between size class and g0–10, and upon reaching the maximum diameter,
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there was no longer any association with g0–10. The consistency in trends between CWD
and LWD suggests a relationship between the two. The more pronounced trend observed
in LWD could be attributed to the fact that CWD originates from LWD and is influenced by
the functional characteristics of their source trees.

4.3. Spatial Correlation Analysis of LWD and CWD

Research has brought to light a noteworthy association between the spatial distribution
of populations and size classes, exhibiting a higher correlation at smaller sizes. However,
as the diameter class increases, this correlation gradually weakens [51]. The findings of
this study align with the aforementioned result, as the correlation undergoes a progressive
transition towards being uncorrelated with the increase in size class. Within the specified
range of 0–50 m, a positive correlation was observed between small and medium sizes
of LWD, indicating attraction and aggregation. Conversely, a negative correlation was
identified between small and large sizes of trees, suggesting mutual repulsion between the
two. There exists a hypothesis proposing that the growth of small trees is constrained by
the availability of light resources.

This suggests that within a given community, small and medium-sized trees exhibit
limited competitiveness for soil moisture, nutrients, light, and other resources compared
to their larger counterparts. It is proposed that the evolutionary responses developed
through natural selection over an extended period necessitate that small and medium-sized
trees primarily provide shelter to one another. This fosters group effects and enhances the
likelihood of individual survival. Building upon the observed positive association, it may
be inferred that the presence of medium-sized trees has a beneficial impact on the growth
of small trees [52]. However, as individual plants undergo growth and maturation, the
competition for resources among individuals at various developmental stages intensifies.
This heightened competition leads to an enhanced ability to withstand environmental
stresses but also weakens the protective influence between plants. Consequently, there is a
tendency for a negative correlation or lack of correlation between small and large trees as
well as between medium and large trees.

A positive association was identified between the diameter classes of CWD and the
small size of LWD. However, the link between the diameter classes of CWD and the medium
and large sizes of LWD was predominantly uncorrelated. Several potential explanations for
these phenomena exist. Firstly, the creation of gaps within the forest leads to a reduction in
resource competition, establishing a conducive environment for smaller organisms. Addi-
tionally, as the decomposition process progresses, the detritus serves as vital nourishment
for regeneration. Finally, it has been observed that the existence of CWD has a beneficial
effect on the viability and establishment of new plant growth [53]. The correlation between
medium size or large size and CWD exhibited non-correlation. The correlation between
medium or large sizes and CWD exhibited no significant correlation. This is likely due to
the completion of ecological niche differentiation at this stage, resulting in a highly stable
growth period where the contribution of CWD was not deemed significant. There is a
suggestion that the correlation between populations in early successional communities is
primarily negative and uncorrelated. As the process of succession progresses, the negative
correlation gradually diminishes, while the positive correlation increases. This observation,
in turn, confirms that the sampled stand is in an intermediate stage of succession.

4.4. Microtopographic Variables on LWD and CWD

Habitat heterogeneity, widely acknowledged as a crucial process influencing aggre-
gated patterns, plays a significant role in the spatial distribution pattern of woody plants
at large scales [54]. The spatial distribution of species in tropical and subtropical forests
at regional scales is typically influenced by habitat heterogeneity [27,35]. Global research
on forest samples has consistently shown that habitat, particularly microtopographic pa-
rameters, exerts a substantial influence on the spatial distribution of tree species [55,56].
Numerous studies have demonstrated notable positive or negative associations between
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multiple species and variables such as slope, elevation, or aspect [57,58]. The interaction
between species and their habitat may exhibit variations across distinct stages of growth,
maintaining a consistent pattern from sapling to juvenile stages but undergoing a shift at
maturity [27].

The findings from the CCA indicated that four key microtopographic parameters,
elevation, slope, convexity, and aspect, played a major role in explaining the spatial patterns
of population with various size classes at the Dongling Mountains sample site (p < 0.001).
As an illustration, the collective influence of these characteristics accounted for 9.25% of
the distribution of small-sized species with respect to LWD. Notably, convexity exhibited
the most substantial contribution to the variability, while aspect had the least significant
contribution. While the total impact may be modest, it remains statistically significant,
hence supporting the necessity of implementing environmental filtration on a larger scale in
order to enhance its efficacy [59]. The available evidence from tropical [56], neotropical [60],
and subtropical forests [27] indicates a significant correlation between the distribution
of the majority of tree species and abiotic environmental factors, such as elevation. This
correlation provides support for the effect of environmental filtration on the aggregation
of trees.

Hu et al. observed that diffusion limitation, indicated by the neighborhood index, had
the most critical role in determining the distribution of small trees, while environmental
variables played the most important role in defining the distribution of large trees [61]. The
current study examined the influence of microtopographic elements on varying size class.
Contrary to expectations, no consistent pattern was seen between microtopographic factors
and diameter class. According to the study conducted by Lan et al., it was determined that
elevation showed the most significant influence on species distribution patterns compared
to other topographic variables such as convexity, slope, and aspect [62]. The primary
factor that exhibited the most significant impact on the LWD in this research was convexity,
while elevation emerged as the main variable influencing the spatial distribution of CWD.
The rationale for this study may be attributed to its focus on the distribution of various
diameter classes.

The predictive ability of microtopographic parameters in accounting for the distribu-
tion of CWD across various diameter classes was found to be lower compared to that of
LWD. This relationship is likely due to the fact that the distribution of LWD serves as a
prerequisite and foundation for the distribution of CWD.

A precise understanding of the spatial distribution of trees within a forest stand is
imperative for effective stand management and the implementation of silvicultural practices
in harmony with natural principles. Consequently, managerial decisions should be tailored
to the fundamental characteristics of the stand at each stage of its development [63]. The
overarching objectives of these interventions are to improve the structure and composition
of the stand, with specific emphasis on facilitating regeneration. In the early stage of
stand development, the principal process involves self-thinning among low- and mid-story
trees. Crop-tree thinning can be employed to expedite this inherent process or promote
increased tree diversity. In the mature tree phase, the preservation of valuable parent
trees is imperative to facilitate the establishment of new trees. Additionally, the practice
of sanitary felling can be implemented to address the concern of CWD that may serve as
potential habitats for pests and diseases.

5. Conclusions

This present investigation studied the spatial pattern of warm-temperate secondary
forests in the Dongling Mountains, serving as an initial step towards comprehending the
structure of plant communities and uncovering the mechanisms of species coexistence. The
findings indicated that the warm-temperate secondary forest had a prevalence of aggrega-
tion. It was observed that the aggregation intensity g0–10 of both LWD and CWD showed a
decreasing trend as abundance and size class increased. The spatial association between
LWD and CWD displayed predominantly positive correlations and non-correlation. Fur-
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thermore, there was a significant correlation found between the distribution of LWD and
CWD across various size classes and microtopographic variables.

Our study has unveiled that trees within the 20-hectare fixed monitoring sample
plots of warm-temperate deciduous broadleaved secondary forests tend to grow and
die in clusters. Biotic factors exert a more pronounced influence on species distribution
compared to abiotic factors, although the impact of abiotic factors remains noteworthy.
While it is premature to generalize the findings from a specific forest to all forests, the
study underscores the significance of fallen wood in shaping the growth of standing trees.
This highlights the potential to counteract the adverse impacts of logging practices on
biodiversity. Consequently, we advocate for the classification and management of trees at
various growth stages, along with the promotion of seedling nurturing and the protection
of mature trees. The empirical evidence presented in this study is integral for the effective
management of the spatial distribution pattern of secondary forests in the warm-temperate
zone, providing a crucial reference for the sustainable management of regional forests.
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41. Fibich, P.; Lepš, J.; Novotný, V.; Klimeš, P.; Těšitel, J.; Molem, K.; Damas, K.; Weiblen, G.D. Spatial patterns of tree species

distribution in New Guinea primary and secondary lowland rain forest. J. Veg. Sci. 2016, 27, 328–339. [CrossRef]
42. Nguyen, H.H.; Uria Diez, J.; Wiegand, K. Spatial distribution and association patterns in a tropical evergreen broad-leaved forest

of north-central Vietnam. J. Veg. Sci. 2016, 27, 318–327. [CrossRef]
43. Gómez Aparicio, L. The role of plant interactions in the restoration of degraded ecosystems: A meta-analysis across life-forms

and ecosystems. J. Ecol. 2009, 97, 1202–1214. [CrossRef]
44. Akhavan, R.; Sagheb Talebi, K.; Zenner, E.K.; Safavimanesh, F. Spatial patterns in different forest development stages of an intact

old-growth Oriental beech forest in the Caspian region of Iran. Eur. J. For. Res. 2012, 131, 1355–1366. [CrossRef]
45. Liu, Y.; Li, F.; Jin, G. Spatial patterns and associations of four species in an old-growth temperate forest. J. Plant Interact. 2014, 9,

745–753. [CrossRef]

https://doi.org/10.1139/X10-217
https://doi.org/10.2307/2260386
https://doi.org/10.1111/j.1365-2745.2001.00615.x
https://doi.org/10.1007/s004420100809
https://doi.org/10.1046/j.1440-1703.2001.00445.x
https://doi.org/10.1111/j.1600-0706.2009.17758.x
https://doi.org/10.1093/oxfordjournals.aob.a083317
https://doi.org/10.1016/j.foreco.2006.04.037
https://doi.org/10.1086/342823
https://doi.org/10.1111/j.1365-2745.2007.01229.x
https://doi.org/10.1111/j.1654-1103.2009.01065.x
https://doi.org/10.1126/science.288.5470.1414
https://www.ncbi.nlm.nih.gov/pubmed/10827950
https://doi.org/10.1080/00330124.2015.1102031
https://doi.org/10.1007/s11258-006-9197-1
https://doi.org/10.1371/annotation/974531b0-9da4-4575-b3d1-955b0163fde0
https://www.ncbi.nlm.nih.gov/pubmed/29294477
https://doi.org/10.1007/s11515-009-0043-4
https://doi.org/10.1111/j.1600-0706.2009.16753.x
https://doi.org/10.1007/s00442-012-2481-y
https://www.ncbi.nlm.nih.gov/pubmed/23053238
https://doi.org/10.1890/12-1983.1
https://www.ncbi.nlm.nih.gov/pubmed/24400495
https://doi.org/10.1007/s11676-020-01192-w
https://doi.org/10.1139/cjfr-2013-0084
https://doi.org/10.1111/j.0030-1299.2004.12497.x
https://doi.org/10.1111/jvs.12363
https://doi.org/10.1111/jvs.12361
https://doi.org/10.1111/j.1365-2745.2009.01573.x
https://doi.org/10.1007/s10342-012-0603-z
https://doi.org/10.1080/17429145.2014.925146


Plants 2024, 13, 638 16 of 16

46. Boyden, S.; Binkley, D.; Shepperd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth
ponderosa pine forest in the Colorado Front Range. For. Ecol. Manag. 2005, 219, 43–55. [CrossRef]

47. Zhu, Y.; Queenborough, S.A.; Condit, R.; Hubbell, S.P.; Ma, K.P.; Comita, L.S. Density-dependent survival varies with species
life-history strategy in a tropical forest. Ecol. Lett. 2018, 21, 506–515. [CrossRef] [PubMed]

48. Klaus, V.H.; Hölzel, N.; Prati, D.; Schmitt, B.; Schöning, I.; Schrumpf, M.; Solly, E.F.; Hänsel, F.; Fischer, M.; Kleinebecker, T. Plant
diversity moderates drought stress in grasslands: Implications from a large real-world study on 13C natural abundances. Sci.
Total Environ. 2016, 566–567, 215–222. [CrossRef] [PubMed]

49. Comita, L.S.; Muller-Landau, H.C.; Aguilar, S.; Hubbell, S.P. Asymmetric density dependence shapes species abundances in a
tropical tree community. Science 2010, 329, 330–332. [CrossRef] [PubMed]

50. Pu, X.; Jin, G. Conspecific and phylogenetic density-dependent survival differs across life stages in two temperate old-growth
forests in Northeast China. For. Ecol. Manag. 2018, 424, 95–104. [CrossRef]

51. Liu, Y.Y.; Jin, G.Z. Spatial distribution patterns and dynamics of four dominant tree species in a typical mixed broadleaved-Korean
pine forest. In Advances in Biodiversity Conservation and Research in China IX; China Meteorolical Press: Beijing, China, 2012;
pp. 278–296.

52. He, C.; Jia, S.; Luo, Y.; Hao, Z.; Yin, Q. Spatial distribution and species association of dominant tree species in Huangguan Plot of
Qinling Mountains, China. Forests 2022, 13, 866. [CrossRef]

53. Taylor, A.H.; Wei, J.S.; Jun, Z.L.; Ping, L.C.; Jin, M.C.; Jinyan, H. Regeneration patterns and tree species coexistence in old-growth
Abies–Picea forests in southwestern China. For. Ecol. Manag. 2006, 223, 303–317. [CrossRef]

54. Yue, K.; Yang, W.; Peng, C.; Peng, Y.; Zhang, C.; Huang, C.; Tan, Y.; Wu, F. Foliar litter decomposition in an alpine forest
meta-ecosystem on the eastern Tibetan Plateau. Sci. Total Environ. 2016, 566, 279–287. [CrossRef]

55. Queenborough, S.A.; Burslem, D.F.; Garwood, N.C.; Valencia, R. Habitat niche partitioning by 16 species of Myristicaceae in
Amazonian Ecuador. Plant Ecol. 2007, 192, 193–207. [CrossRef]

56. Gunatilleke, C.V.S.; Gunatilleke, I.A.U.N.; Esufali, S.; Harms, K.E.; Ashton, P.M.S.; Burslem, D.F.R.P. Species-habitat associations
in a Sri Lankan dipterocarp forest. J. Trop. Ecol. 2006, 22, 371–384. [CrossRef]

57. Ye, J.; Hao, Z.; Xie, P.; Li, J. Habitat associations of saplings and adults in an old-growth temperate forest in the Changbai
mountains, northeastern China. For. Stud. China 2011, 13, 13–22. [CrossRef]

58. Svenning, J. Environmental heterogeneity, recruitment limitation and the mesoscale distribution of palms in a tropical montane
rain forest (Maquipucuna, Ecuador). J. Trop. Ecol. 2001, 17, 97–113. [CrossRef]

59. Punchi Manage, R.; Getzin, S.; Wiegand, T.; Kanagaraj, R.; Savitri Gunatilleke, C.V.; Nimal Gunatilleke, I.A.U.; Wiegand, K.;
Huth, A. Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. J. Ecol. 2013,
101, 149–160. [CrossRef]

60. John, R.; Dalling, J.; Harms, K.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; et al.
Soil nutrients influence spatial distributions of tropical tree species. Proc. Natl. Acad. Sci. USA 2007, 104, 864–869. [CrossRef]

61. Hu, Y.H.; Sha, L.Q.; Blanchet, F.G.; Zhang, J.L.; Tang, Y.; Lan, G.Y.; Cao, M. Dominant species and dispersal limitation regulate
tree species distributions in a 20-ha plot in Xishuangbanna, southwest China. Oikos 2012, 121, 952–960. [CrossRef]

62. Lan, G.; Hu, Y.; Cao, M.; Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest
in China. For. Ecol. Manag. 2011, 262, 1507–1513. [CrossRef]

63. Larsary, M.K.; Abkenar, K.T.; Pourbabaei, H.; Pothier, D.; Amanzadeh, B. Spatial patterns of trees from different development
stages in mixed temperate forest in the Hyrcanian region of Iran. J. For. Sci. 2018, 64, 260–270. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.foreco.2005.08.041
https://doi.org/10.1111/ele.12915
https://www.ncbi.nlm.nih.gov/pubmed/29446220
https://doi.org/10.1016/j.scitotenv.2016.05.008
https://www.ncbi.nlm.nih.gov/pubmed/27220098
https://doi.org/10.1126/science.1190772
https://www.ncbi.nlm.nih.gov/pubmed/20576853
https://doi.org/10.1016/j.foreco.2018.04.055
https://doi.org/10.3390/f13060866
https://doi.org/10.1016/j.foreco.2005.11.010
https://doi.org/10.1016/j.scitotenv.2016.05.081
https://doi.org/10.1007/s11258-007-9328-3
https://doi.org/10.1017/S0266467406003282
https://doi.org/10.1007/s11632-011-0103-0
https://doi.org/10.1017/S0266467401001067
https://doi.org/10.1111/1365-2745.12017
https://doi.org/10.1073/pnas.0604666104
https://doi.org/10.1111/j.1600-0706.2011.19831.x
https://doi.org/10.1016/j.foreco.2011.06.052
https://doi.org/10.17221/7/2018-JFS

	Introduction 
	Materials and Methods 
	Study Site 
	Data Collection 
	Data Analyses 

	Results 
	Spatial Distribution Pattern of LWD and CWD in Each Size Class 
	Aggregation Intensity g0–10 and Attributes of LWD and CWD in Each Size Class 
	Spatial Correlation Analysis of LWD and CWD 
	Microtopographic Effect on LWD and CWD 

	Discussion 
	General Spatial Pattern 
	Functional Traits on Spatial Pattern of LWD and CWD 
	Spatial Correlation Analysis of LWD and CWD 
	Microtopographic Variables on LWD and CWD 

	Conclusions 
	References

