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Abstract: In plants exposed to ultraviolet B radiation (UV-B; 280–315 nm), metabolic responses are
activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-
B stress have been identified in plants, the accumulation of these metabolites at different time points
under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites
have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B
treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show
that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid
and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents
of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with
the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of
many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in
osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H.
Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these
genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid
and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is
an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in
regulating UV-B stress responses in rice.

Keywords: UV-B radiation; metabolites; phenylpropanoid and flavonoids biosynthesis; regulator; rice

1. Introduction

With the depletion of the stratospheric ozone layer, an increasing amount of ultraviolet-
B (UV-B) irradiation (280–315 nm) reaches the Earth’s surface and the surfaces of plants.
Natural levels of UV-B irradiation act as an environmental regulator that controls gene
expression and plant growth and development [1,2]. However, excessive UV-B irradiation
can cause damage to macromolecules, such as proteins, nucleic acids, and lipids, due to
the absorption of the energy-rich irradiation [1,3,4]. Numerous studies have shown that
UV-B irradiation reduces the yield indicators of rice, including the number of ears, number
of grains, and grain weight, by inhibiting the growth, development, and physiological
activities of rice [5–7]. Therefore, it is crucial to understand how rice protects itself against
the potentially harmful effects of UV-B irradiation.

UV-B irradiation is a significant factor that enhances the production of defense-related
secondary metabolites in plants [8,9]. In recent years, it has been demonstrated that certain
plant metabolites, including flavonoids [10–13], phenolics [14,15], ascorbate [16,17], and
tocopherol [18], actively protect plants against harmful UV-B radiation. Flavonoids, espe-
cially glycosylated flavonoids and phenylacylated flavonols, have attracted considerable
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attention as antioxidants to protect against UV-B damage from early plants to green plants
throughout evolution [19]. Several studies have reported that UV-B irradiation induces the
accumulation of flavonoids and the upregulation of genes in the phenylpropanoid pathway,
which serve as protective mechanisms against UV-B damage [20–23]. There is evidence in-
dicating that UV-B induces the biosynthesis of flavonoids with higher hydroxylation levels
in Populus trichocarpa and Petunia hybrida [24,25]. However, the effects of UV-B irradiation
at different times on rice metabolism are unknown.

Amino acids are major primary metabolites in plants. Apart from their protein syn-
thesis, they can also undergo catabolism to form intermediates of the tricarboxylic acid
(TCA) cycle, which are essential for generating energy [26,27]. Previous studies have found
that several amino acids, including proline, serine, leucine, isoleucine, glutamate, and
lysine, accumulate in plants after being exposed to intense UV-B irradiation [28–30]. These
amino acids are closely associated to other metabolic pathways that regulate amino acid
metabolism and defense responses. As such, BCAAs can provide electrons directly to
the electron transport chain via the electron transfer flavoprotein complex. They can also
indirectly contribute because their catabolic products directly enter the TCA cycle [31].
The catabolism of lysine into acetyl-CoA can likely help supplement the TCA cycle with
energy to compensate for the energy lost in G. uralensis leaves due to UV-B stress [32].
The aromatic amino acids can be converted to numerous secondary metabolites, such as
isoquinoline, indole alkaloids, phenylpropanoids, glucosinolates, and auxin, which can
protect plants from various stresses [14,33–38]. These results suggest that UV-B irradiation
has significantly disrupted primary metabolism in rice. It would be beneficial to investigate
possible changes in rice metabolism in response to UV-B irradiation, primarily focusing on
primary metabolites and their potential connection to secondary metabolism.

Molecularly, UV-B light with photomorphogenesis is effective in triggering differen-
tial gene expression in Arabidopsis thaliana. In response to UV-B, the UV RESISTANCE
LOCUS8 (UVR8) rapidly interacts with the multifunctional E3 ubiquitin ligase known as
CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) [39,40]. This interaction plays a role
in promoting UV-B-induced photomorphogenesis by regulating protein stability [39–41].
COP1 degrades two multi-functional UV-B signaling repressors, known as REPRESSOR
OF UV-B PHOTOMORPHOGENESIS (RUP1) and RUP2. Ultimately, COP1 stabilizes the
central transcription factor ELONGATED HYPOCOTYL5 (HY5), which promotes photo-
morphogenesis [41–44]. The expression of numerous genes involved in metabolic pathways,
including phenylpropanoid and flavonoid biosynthesis [44,45], anthocyanin [46], chloro-
phyll, and carotenoid biosynthesis [47], has been proven to be regulated by it. UV-B also
induces the expression of other transcription factors in plants. For example, the transcrip-
tion factor MYB13 in Arabidopsis promotes the accumulation of flavonoids by regulating
the expression of flavonoid synthesis pathway genes [48]. The B-BOX transcription factor,
BBX11, whose expression is induced by UV-B, protects plants from UV-B damage by regu-
lating the accumulation of photoprotective phenols and antioxidants [49]. In rice, OsBBX14
directly interacts with OsHY5 through its second B-box domain to activate anthocyanin
biosynthesis genes, OsC1 or OsB2 [50,51]. OsbZIP18, a HY5 homologous gene in rice, has
been identified as a positive regulator of branched chain amino acids (BCAAs) biosynthesis,
including valine, leucine, and isoleucine, as well as serotonin biosynthesis, under UV-B
irradiation [52,53]. However, whether OsbZIP18 is involved in regulating phenylpropanoid
and flavonoid metabolites accumulation under UV-B stress remains unclear.

In this study, metabolomics was employed to uncover potential response mecha-
nisms to UV-B irradiation. Metabolites extracted from leaves were analyzed using liquid
chromatography–mass spectrometry (LC/MS). The statistical assessment of changes in
metabolites was conducted through principal component analysis (PCA) and dynamic
change analysis to gain insights into the cellular metabolism associated with the duration of
UV-B irradiation in the plant. We compared the metabolome of both the ZH11 and osbzip18
mutants under various durations of UV-B treatment. The results of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis revealed significant enrichment in
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the biosynthesis of phenylpropanoid and flavonoid. Gene expression analysis revealed a
decrease in the expression levels of OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H,
in osbzip18 mutants under UV-B irradiation. EMSA assays confirmed OsbZIP18 could
directly bind to the ACGT element in the promoters of these genes.

2. Results
2.1. Metabolic Profile of Rice Leaves under Different Periods of UV-B Irradiation Treatment

To investigate the effects of UV-B irradiation on the metabolome of rice, the ZH11
variety was treated with UV-B irradiation for different durations. We utilized a broadly
targeted metabolomics approach to construct a metabolome database of rice leaves under
UV-B irradiation treatment, and then we detected the metabolites of the samples using the
QTrap system (QTRAP 6500, AB SCIEX, Toronto, ON, Canada). A total of 308 metabolites
were identified by standards and databases, which can be classified into 8 different groups,
including 84 phenylpropanoids, 63 amino acids and their derivatives, 33 organic acids and
their derivatives, 27 lipids, 26 nucleotides and their derivatives, 17 vitamins and cofactor
derivatives, 9 carbohydrates, and 49 other compounds (Figure 1A). Principal component
analysis (PCA) was performed to evaluate the overall differences between samples under
the unsupervised model. PCA could clearly differentiate between the samples with different
duration of UV-B irradiation from the control samples (Figure 1B). The control group’s
data points showed a high concentration, suggesting that the collection process was highly
repeatable. Furthermore, based on the first principal component (PC1) and the second
principal component (PC2), the four groups of UV-B irradiation samples were divided into
different regions, and the interpretation rate of the first principal component PCA1 was
22.02% and that of the second principal component PCA2 was 18.82% (Figure 1B). These
data suggest that the different UV-B irradiation durations significantly affect metabolites
accumulation in rice leaves.

Plants 2024, 13, x FOR PEER REVIEW 3 of 16 
 

 

In this study, metabolomics was employed to uncover potential response mecha-
nisms to UV-B irradiation. Metabolites extracted from leaves were analyzed using liquid 
chromatography–mass spectrometry (LC/MS). The statistical assessment of changes in 
metabolites was conducted through principal component analysis (PCA) and dynamic 
change analysis to gain insights into the cellular metabolism associated with the duration 
of UV-B irradiation in the plant. We compared the metabolome of both the ZH11 and 
osbzip18 mutants under various durations of UV-B treatment. The results of the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed significant 
enrichment in the biosynthesis of phenylpropanoid and flavonoid. Gene expression 
analysis revealed a decrease in the expression levels of OsPAL5, OsC4H, Os4CL, OsCHS, 
OsCHIL2, and OsF3H, in osbzip18 mutants under UV-B irradiation. EMSA assays con-
firmed OsbZIP18 could directly bind to the ACGT element in the promoters of these 
genes. 

2. Results 
2.1. Metabolic Profile of Rice Leaves under Different Periods of UV-B Irradiation Treatment 

To investigate the effects of UV-B irradiation on the metabolome of rice, the ZH11 
variety was treated with UV-B irradiation for different durations. We utilized a broadly 
targeted metabolomics approach to construct a metabolome database of rice leaves under 
UV-B irradiation treatment, and then we detected the metabolites of the samples using 
the QTrap system (QTRAP 6500, AB SCIEX, Toronto, ON, Canada). A total of 308 me-
tabolites were identified by standards and databases, which can be classified into 8 
different groups, including 84 phenylpropanoids, 63 amino acids and their derivatives, 33 
organic acids and their derivatives, 27 lipids, 26 nucleotides and their derivatives, 17 
vitamins and cofactor derivatives, 9 carbohydrates, and 49 other compounds (Figure 1A). 
Principal component analysis (PCA) was performed to evaluate the overall differences 
between samples under the unsupervised model. PCA could clearly differentiate be-
tween the samples with different duration of UV-B irradiation from the control samples 
(Figure 1B). The control group’s data points showed a high concentration, suggesting 
that the collection process was highly repeatable. Furthermore, based on the first princi-
pal component (PC1) and the second principal component (PC2), the four groups of 
UV-B irradiation samples were divided into different regions, and the interpretation rate 
of the first principal component PCA1 was 22.02% and that of the second principal 
component PCA2 was 18.82% (Figure 1B). These data suggest that the different UV-B ir-
radiation durations significantly affect metabolites accumulation in rice leaves. 

 
Figure 1. Comparison of rice metabolism under different UV-B duration treatments. (A) The 
composition and classification of metabolites are known. (B) Principal component analysis (PCA) 
of known metabolites under different UV-B duration treatments. Three biological replicates were 
taken for the analyses from every treatment (n = 3), and each replicate was mixed with eight 
different plants. 

Figure 1. Comparison of rice metabolism under different UV-B duration treatments. (A) The compo-
sition and classification of metabolites are known. (B) Principal component analysis (PCA) of known
metabolites under different UV-B duration treatments. Three biological replicates were taken for the
analyses from every treatment (n = 3), and each replicate was mixed with eight different plants.

2.2. Temporal Analysis of Metabolites in Rice Leaves under Different UV-B Duration Treatment

We then used the average value of each differentially abundant metabolites at the
four time points to analyze their dynamics under UV-B irradiation, forming six dynamic
patterns (Tables 1 and S1). Among these, cluster 1 was composed of amino acids and their
derivatives, organic acids and their derivatives, and phenylpropanoids, which significantly
increased at 6 h of UV-B irradiation and returned to a lower level at 24 h (Figure 2A and
Supplemental Table S1). Cluster 2 included amino acids, nucleotides, organic acids and
their derivatives, and phenylpropanoids, with higher levels at 12 h followed by a decrease at
24 h (Figure 2B and Supplemental Table S1). The levels of certain amino acids and deriva-
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tives, organic acids and their derivatives, phenylpropanoids, and vitamins consistently de-
creased within 24 h of UV-B irradiation in cluster 3 (Figure 2C and Supplemental Table S1).
Cluster 4 consisted of amino acids, organic acids and their derivatives, and phenyl-
propanoids, which significantly decreased at UV-B 6 h and UV-B 12 h and remained
at a low level at UV-B 24 h (Figure 2D and Supplemental Table S1). Interestingly, the
metabolite content of cluster 5, including amino acids and phenylpropanoids, had lower
levels at UV-B 6 h and UV-B 12 h, but began to increase significantly at UV-B 24 h (Figure 2E
and Supplemental Table S1). However, the metabolites in cluster 6 mainly comprised amino
acids and phenylpropanoids, with their levels consistently showing an increase within
24 h of UV-B irradiation (Figure 2F and Supplemental Table S1). These results indicate that
UV-B treatment has different effects on the accumulation pattern of different metabolites.

Table 1. Distribution of the compounds identified in this study among different clusters.

Compounds Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Amino acids and theis derivatives 9 8 12 15 5 14
Carbohydrates 1 2 4 0 1 1

Lipids 11 2 3 2 8 1
Nucleotides and their derivatives 3 5 4 7 3 4

Organic acid 5 9 8 4 6 1
Phenylpropanoids 10 8 20 8 26 12

Vitamins and their derivatives 1 6 4 1 3 2
Others 6 10 13 5 6 9
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grouped the expression profiles of the rice metabolite into six clusters. The x-axis shows different UV-
B treatment times, and the y-axis depicts the Z-score standardized per metabolite. The membership
factor denotes consistency with the trends in metabolite change in each cluster.

2.3. Analysis of Different Metabolites in Rice Leaves Treated with Different UV-B Duration

To further investigate the effects of UV-B irradiation on metabolites in rice leaves, we
analyzed the metabolic pathways of screened different metabolites, using the KEGG to
analyze genes expression information and metabolite accumulation. In this study, different
metabolites were identified based on the duration of UV-B treatment, and these metabolites
were classified according to their pathways. With the different time of UV-B treatment,
the content changes of these metabolites were visualized in a heat map (Figure 3A). The
enrichment of metabolic pathways was mainly related to amino acids’ metabolism under
UV-B 6 h (Figure 3B, Supplemental Table S2) and UV-B 12 h (Figure 3C, Supplemental
Table S2) treatments, while phenylpropanoid biosynthesis was enriched in the UV-B 24 h
(Figure 3D, Supplemental Table S2) treatments. These results suggest that UV-B mainly
affects amino acids metabolism and phenylpropanoid biosynthesis.
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Figure 3. Comparative analysis of metabolome under different UV-B treatment duration in rice.
(A) Heat map of differential metabolomes under different UV-B treatment durations. Red indicates a
high abundance, and blue indicates low relative abundance metabolites. (B–D) KEGG enrichment of
differential metabolites between the comparison groups (UV-B 0 h vs. UV-B 6 h/12 h/24 h). Each
bubble in the plot represents a metabolic pathway whose abscissa and bubble size jointly indicate
the magnitude of the impact factors of the pathway. The bubble colors represent the p-values of the
enrichment analysis, with a red color showing a higher degree of enrichment.

2.4. UV-B Treatment Alters the Expression Levels of OsbZIP18 in Rice

To understand the impact of core transcription factors in the UV-B signaling pathway
on metabolites, we decided to analyze the homologues of AtHY5. The phylogenetic tree
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of the HY5 protein in Arabidopsis, rice, maize, wheat, soybean, and tomato indicates that
OsbZIP18 shares the highest sequence similarity with AtHY5 compared to the others
(Figure 4A). Subsequently, we detected the expression of OsbZIP18 under UV-B stress.
The transcript levels of OsbZIP18 showed a significant increase at 6 h and 12 h after UV-B
treatment (Figure 4B). These results suggest that OsbZIP18 may play a crucial role in the
UV-B response in rice.
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Figure 4. Effects of UV-B treatment on transcription levels of OsbZIP18 in rice. (A) Phylogenetic
tree of HY5 protein in Arabidopsis, rice, maize, wheat, soybean, and tomato, with the bootstraps
values from 1000 replicates indicated. (B) Expression analysis of OsbZIP18 under control and UV-B
treatments. The relative expression levels were normalized to the ubiquitin gene and were quantified
by RT-qPCR. Asterisks indicate a significant difference between the control group and UV-B treatment
at individual time points (n = 3, ** p < 0.01, Student’s t-test). (C) Identification of osbzip18 mutants.
The osbzip18-1 is 5 bp GGACG deletion and the osbzip18-2 is 1 bp C insertion in the first exon of
OsbZIP18 genome.

2.5. Analysis of Differential Metabolites of Osbzip18 Mutants Treated with Different
UV-B Duration

To determine the function of OsbZIP18 in rice, we generated osbzip18 CRISPR (osbzip18-1
and osbzip18-2) lines in the japonica cultivar Zhonghua11 (ZH11) background. Osbzip18-1
carried a deletion of five bases and osbzip18-2 had an insertion of one base at the target site,
which truncated the open reading frame of OsbZIP18.

To understand the changes in metabolism in UV-B signaling caused by OsbZIP18,
a comparison was carried out between the osbzip18 mutant and the wide type under
different durations of UV-B treatments (Figure 5A–H). Under the normal condition (UV-
B 0 h treatment), 70 different metabolites were screened and displayed on a heat map
(Figure 5A). KEGG enrichment analysis was performed on the differential metabolites.
Four pathways related to phenylpropanoid biosynthesis, flavonoid biosynthesis, arginine
biosynthesis, and aminoacyl-tRNA biosynthesis were significantly enriched (Figure 5B and
Supplemental Table S3). Under the UV-B 6 h treatment, the levels of phenylpropanoid and
flavonoid were significantly decreased in osbzip18 mutant plants (Figure 5C). Seven path-
ways were significantly enriched, including pyrimidine metabolism, purine metabolism,
phenylpropanoid biosynthesis, nicotinate and nicotinamide, flavonoid biosynthesis, argi-
nine biosynthesis, and aminoacyl-tRNA biosynthesis (Figure 5D and Supplemental Table S3).
For the UV-B 12 h treatment, there were 56 different metabolites in the comparison of ZH11
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vs. osbzip18 (Figure 5E). These metabolites were enriched in the pathways of nicotinate
and nicotinamide, flavonoid biosynthesis, and aminoacyl-tRNA biosynthesis pathway
(Figure 5F and Supplemental Table S3). The phenylpropanoid and flavonoid biosynthesis
pathway were significantly enriched in the comparison of ZH11 vs. osbzip18 after UV-
B exposure for 6 h and 12 h, suggesting that OsbZIP18 played a key role in regulating
phenylpropanoid and flavonoid accumulation in rice.
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Figure 5. Comparative analysis of differential metabolites of osbzip18 mutants under different UV-B
durations. Heat map of differential metabolites of osbzip18 mutants under different treatment duration,
UV-B 0 h (A), UV-B 6 h (C), UV-B 12 h (E), and UV-B 24 h (G). Red indicates a high abundance, and
blue indicates low relative abundance metabolites. KEGG pathways enriched significantly in osbzip18
mutant vs. ZH11 comparison under different treatment duration, UV-B 0 h (B), UV-B 6 h (D), UV-B
12 h (F), and UV-B 24 h (H). The bubble colors represent the p-values of the enrichment analysis, with
red color showing a higher degree of enrichment.
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2.6. OsbZIP18 Regulates the Expression of Phenylpropanoid and Flavonoid Biosynthesis Pathway
Genes under UV-B Duration

To investigate whether the expression levels of phenylpropanoid and flavonoid biosyn-
thesis pathway genes were affected in osbzip18 mutant plants, we performed qRT-PCR anal-
ysis. The data showed that the transcription of most genes involved in phenylpropanoid
and flavonoid biosynthesis pathways was significantly reduced in osbzip18 mutants at
6 h, including OsPAL, OsC4H, Os4CL, OsCHS, OsCHI, and OsF3H (flavanone 3β-Hydroxylase)
(Figure 6). These results indicated that OsbZIP18 positively regulated the expression
of phenylpropanoid and flavonoid biosynthesis pathway genes under UV-B duration
in rice.
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Figure 6. Expression levels of genes involved in phenylpropanoid and flavonoid biosynthesis
pathways in ZH11 and osbzip18 mutants. Abbreviations for enzymes: (A) PAL, phenylalanine
ammonia lyase; (B) C4H, cinnamate 4-hydroxylase; (C) 4CL, 4-coumarate CoA ligase; (D) CHS,
chalcone synthase; (E) CHIL2, chalcone isomerase; (F) F3H, flavanone 3β-hydroxylase. The relative
expression levels were normalized to those of ubiquitin and were quantified by RT-qPCR. Asterisks
indicate a significant difference between the control and UV-B treatments at individual time points
(n = 3, * p < 0.05 and ** p < 0.01, Student’s t-test).

2.7. OsbZIP18 Binds to Promoters of OsPAL, OsC4H, Os4CL, OsCHS, OsCHI, and OsF3H
In Vitro

Recent research showed that OsbZIP18 regulates branched chain amino acid and sero-
tonin synthesis by binding directly to the ACE and C-box cis-elements in the promoters of
biosynthetic genes. There was at least one or more ACE-containing or G-box (CACGTG) el-
ement within the 1.2 kb region upstream of the transcription start site of the OsPAL, OsC4H,
Os4CL, OsCHS, OsCHIL2, and OsF3H genes (Figure 7A). To investigate whether OsbZIP18
could bind to the promoters of these genes in vitro, an EMSA assay was performed. The
results showed that OsbZIP18 binds directly to the promoters of OsPAL5, OsC4H, Os4CL,
OsCHS, OsCHIL2, and OsF3H (Figure 7B). These results suggested that OsbZIP18 regu-
lated the expression of phenylpropanoid and flavonoid biosynthesis genes by binding to
their promoters.
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Figure 7. Analysis of cis-binding elements in phenylpropane and flavonoid pathway gene promoter
region and electrophoretic mobility shift assays (EMSA). (A) Diagram of the OsPAL5, OsC4H, Os4CL,
OsCHS, OsCHIL2, and OsF3H promoter regions showing the relative positions of the ACE and G-box
cis-elements. The red rectangles represent the ACE elements and the G-box. (B) EMSA analysis of
OsbZIP18 binding to the ACE and G-box motif in the OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2,
and OsF3H promoters. Twenty-five-fold molar excesses of unlabeled probes were used in the
competition assay.

3. Discussion

In this study, we identified six patterns of metabolic changes under sustained UV-B
stress and revealed that OsbZIP18 is a key regulator of phenylpropanoid and flavonoid
biosynthesis by comparing the metabolome at different time points under UV-B stress.

Metabolic adjustments play a significant role in plant adaptation to different abiotic
stresses [30]. UV-B is an important environmental signal perceived by plants to regulate
plant growth and development. Prolonged exposure to UV-B may increase the production
of reactive oxygen species (ROS) [2]. To adapt to UV-B stress condition, plants accumulate
many protective metabolites such as flavonoids, hydroxycinnamic acid esters, carotenoids,
and vitamin C to minimize the harmful effects [51]. Fox example, Arabidopsis mutants that
do not accumulate flavonols are highly sensitive to UV-B, whereas the overaccumulation
of flavonols in Arabidopsis and rice enhances tolerance to UV-B. Flavonoids, along with
other phenylpropanoids, are synthesized from phenylalanine [54]. In this study, we found
that the levels of many flavonoids, such as apigenin, luteolin, eriodictyol, kaempferol,
and quercetin, with glycosylation increased significantly after UV-B irradiation. Phenyl-
propanoid biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis were
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significantly enriched under UV-B stress (Figures 2 and 3). These results suggested that
flavonoids are essential for resistance to high levels of UV-B in rice.

Many effects of UV-B on plants involve differential gene expression. Transcriptomic
analyses with maize [55,56] and Arabidopsis [57,58] demonstrate that UV-B regulates numer-
ous genes concerned with various cellular processes. In Arabidopsis, HY5 acts as a central
regulator of UV-B protection, promoting photomorphogenesis downstream of multiple
photoreceptors and initiating the expression of light-induced genes [59]. HY5 induces the
expression of flavonoid biosynthetic genes under both visible and UV-B light, resulting in
flavonoid accumulation [44,45,60,61]. HY5 and HYH play a complementary role in regulat-
ing flavonoid biosynthesis in the vegetative and reproductive organs of Grapevine (Vitis
vinifera) after the UV-B stimulus [62]. In rice, three homologs of AtHY5 (OsbZIP01, OsbZIP18,
and OsbZIP48) have been identified, and all were induced by UV-B radiation [52,63,64].
OsbZIP18 and OsbZIP48 can respond to UV-B stress, but OsbZIP18 positively regulates
the accumulation of serotonin by regulating the biosynthesis pathway genes OsTDC and
OsT5H and improves the sensitivity to UV-B stress [53]. OsbZIP48 regulates the accumula-
tion of flavonoids by controlling the gene expression of the flavonoid biosynthesis pathway,
thereby improving the tolerance to UV-B stress [50]. In addition, OsbZIP48 is activated by
the phosphorylation of protein kinase RLCK160 to regulate the accumulation of flavonoids,
but OsbZIP18 has not been found to be regulated by other kinases. In our study, our results
revealed that the loss of OsbZIP18 impairs phenylpropanoid and flavonoid biosynthesis
under UV-B treatment.

Flavonoids constitute one of the most abundant groups of secondary metabolites in
plants and are synthesized via the phenylpropanoid pathway. General phenylpropanoid
metabolism starts with phenylalanine and involves the activity of three enzymes: pheny-
lalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumaroyl CoA
ligase (4CL) [65]. Together, these enzymes produce p-coumaroyl CoA, which acts as
the activated intermediate for various branches of phenylpropanoid metabolism [66,67].
P-Coumaroyl-CoA is condensed with three molecules of malonyl-CoA to naringenin chal-
cone by chalcone synthase (CHS), which is then converted to the flavanone naringenin
by chalcone isomerase (CHI) [68–70]. The transcription levels of genes involved in the
phenylpropanoid and flavonoid biosynthesis pathway, such as OsPAL, OsC4H, Os4CL,
OsCHS, OsCHIL2, and OsF3H, were decreased in osbzip18 mutants (Figure 6). Additionally,
the levels of flavonoids, including kaempferol, eriodictyol, quercetin, apigenin, luteolin,
and their C-glycosylated or O-glycosylated derivatives, showed a decreasing trend in
osbzip18 mutants under UV-B irradiation. Therefore, our results indicated that OsbZIP18
functions as a positive regulator of phenylpropanoid and flavonoid biosynthesis under
UV-B duration, which mediated phenylpropanoid and flavonoid accumulation by modu-
lating the key biosynthetic genes, suggesting an instance of divergent evolution of gene
functions. In summary, we demonstrated that OsbZIP18 plays a crucial role in regulating
phenylpropanoid and flavonoid biosynthesis under the UV-B stress in rice.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The japonica rice variety Zhonghua 11 (ZH11) was used as the wild type. The os-
bzip18 mutants were obtained using the CRISPR-Cas9 method as previously described [53].
Crispr-1 is 5 bp GGACG deletion and crispr-2 is 1 bp C insertion in the first exon of OsbZIP18
genome. Seeds of the osbzip18 mutants and ZH11 were germinated for 3 d at 37 ◦C on
filter paper soaked with distilled water. After germination, the seeds were transferred
to a net floating on distilled water in a greenhouse for 7 d. The seedlings used in the
following experiments were transferred to a plastic container for hydroponic culturing
in a greenhouse. The nutrient solution contained 1.43 mM NH4NO3, 0.32 mM NaH2PO4,
0.51 mM K2SO4, 1.00 mM CaCl2, 1.64 mM MgSO4, 0.17 mM Na2SiO3, 16 µM EDTA-Fe (II),
0.075 µM (NH4)6Mo7O24, 19 µM H3BO3, 9.47 µM MnCl2, 0.16 µM CuSO4, 0.15 µM ZnSO4,
35.61 µM FeCl3, and 70.78 µM citric acid (pH 5.0), which was renewed every 3 d.
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For UV-B experiments, rice seedlings were cultivated in a plant growth chamber with
supplemental narrowband UV-B. The intensity of UV-B was measured at 3.2 mW/cm2,
using a UV radiometer equipped with a UV-295 detector from the photoelectric instru-
ment factory of Beijing Normal University, China. Philips, Netherlands, TL8W/302 nm
narrowband UV-B tubes were used, as mentioned in a previous study [53]. The control
group did not have UV-B lamps installed. Then, the leaves of two-week-old seedlings
were collected separately with three biological replications to determine the metabolite
content as previously described [53]. Each biological replication was mixed with eight
different plants.

4.2. Metabolites Extraction, Detection and Analysis

The freeze-dried leaves were crushed using a mixer mill (MM 400; Retsch, Haan,
Germany) with a zirconia bead for 45 s at 30 Hz. Then, 100 mg of the dry powder were
extracted overnight at 4 ◦C with 1 mL of 70% aqueous methanol (methanol: H2O, 7:3, v/v).
After centrifugation (4 ◦C, 10,000 rpm, 10 min) and filtration (SCAA-104, 0.22 µm pore size;
Angel, Shanghai, China), the metabolites in the mixture were analyzed using an LC-electro
spray ionization (ESI)-MS/MS system as previously described [71,72].

The sample extracts were broadly targeted for detection by the QTrap system (QTRAP
6500+; AB Sciex). The detection results were then compared with the standard and the
database, and a total of 308 metabolites were identified. For the QTrap system, the ESI
source parameters were set as follows: the temperature at 500 ◦C, GSI at 50 psi, GSII at
60 psi, CUR at 35 psi, and IS at 5500 V in positive mode or −4500 V in negative mode.
The collision gas used was high in the schedule multiple reaction monitoring (sMRM)
scan mode. The total cycle time for sMRM was set to 0.8 s, and the dwell time for each
MRM transition was automatically adjusted in accordance with the total cycle time. This
ensured that each peak had a minimum of 10 points. The mass raw data obtained were
processed using MultiQuant 3.0.3 software, and the peak areas were integrated using the
MQ4 integration algorithm.

The quantification of metabolites was carried out using a scheduled multiple reaction
monitoring (MRM) method, with an MRM detection window of 80 s and a target scan
time of 1.5 s. The differential metabolites were screened out by combining VIP (Variable
Importance in the Projection) of OPLS-DA model ≥ 1, log2|fold change| ≥ 1, and p < 0.05
(Student’s t-test).

4.3. Principal Component Analysis and KEGG Enrichment

The Factoextra R package was used for principal component analysis of metabolites.
KEGG pathway enrichment analysis of the differentially abundant metabolites was per-
formed using MetaboAnalyst 4.0 (http://www.metaboanalyst.ca/ accessed on 20 June
2022). The model organism selected was Oryza sativa L. ssp. Japonica. The metabolome
view was visualized by ggplot2 in R [73], with the adjusted p values and pathway impact
values arranged on the Y and X axes, respectively.

4.4. Phylogenetic Analysis

The amino acid sequences in this study were extracted from the NCBI (https://
www.ncbi.nlm.nih.gov/ accessed on 26 June 2022). Multiple-sequence alignments were
performed with ClustalW (v.1.83) program, and phylogenetic analysis was conducted by
MEGA7 (http://megasoftware.net/ accessed on 25 June 2022) using the neighbor-joining
method with 1000 bootstrap replications.

4.5. RNA Extraction and Expression Analyses

The samples of wild type ZH11 and osbzip18 mutants were collected separately with
three biological replications to determine the expression level. RT-qPCR was performed
using total RNA extracted with the TransZol RNA Extraction Kit (TransGen Beijing, China).
Three micrograms of RNA were used to synthesize the first-strand cDNAs in 20 µL of

http://www.metaboanalyst.ca/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://megasoftware.net/
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reaction mixture using EasyScript One-Step gDNA Removal and cDNA Synthesis SuperMix
(TransGen) according to the manufacturer’s instructions. The quantitation of transcript
abundance was performed using the SYBR Premix Ex Taq kit (TaKaRa, Tokyo, Japan) on
the ABI 7500 Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). The rice
UBIQUITIN5 gene was used as the internal reference. The primer sequences are listed in
Supplemental Table S4.

4.6. Statistical Analysis

The data were analyzed using Microsoft Office Excel 2013 and SPSS 23.0 (SPSS, IBM,
Chicago, IL, USA). The results are expressed as means ± SD of at least three independent
experiments. The differences among groups were determined using a Student’s t-test or a
one-way ANOVA.

4.7. Accession Numbers

The accession numbers of genes in this article are: OsbZIP18 (LOC_Os02g10860),
OsPAL (LOC_Os04g43760), OsC4H (LOC_Os05g25640), Os4CL (LOC_Os03g05780), OsCHS
(LOC_Os11g32650), OsCHIL2 (LOC_Os12g02370), OsF3H (LOC_Os03g03034). Sequence
data from this article can be found in the Rice Genome Annotation Project website (http:
//rice.plantbiology.msu.edu/ accessed on 5 January 2023 ) and NCBI (https://www.ncbi.
nlm.nih.gov/ accessed on 5 January 2023).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants13040498/s1. Table S1: The clustering of metabolites
in ZH11 leaves under different duration UV-B irradiation. Table S2: KEGG enrichment of different
metabolites in ZH11 leaves under UV-B irradiation for different durations. Table S3: KEGG enrich-
ment of different metabolites in osbzip18 mutant and ZH11 leaves under different durations of UV-B
irradiation. Table S4: Primers used in this study.
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