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Abstract: Chenopodium ambrosioides (L.) is a medicinal and aromatic plant widely used in the Moroccan
traditional medicine for its important pharmacological properties. In order to contribute to the
valorization of this plant, the current study aimed at evaluating, for the first time, the variation in
the yield, chemical composition, and insecticidal and phytotoxic activities of C. ambrosioides essential
oil (CAEO) isolated from leaves and inflorescences. The results obtained showed that the CAEO
yields vary significantly according to the distilled plant part, with 0.75 ± 0.15% for the leaves and
1.2 ± 0.34% for the inflorescences. CAEO profiling showed quantitative more than qualitative
differences. Leaf CAEO was rich in δ-3-carene (61.51%), followed by p-cymene (14.67%) and 1,2:3,4-
diepoxy-p-menthane (6.19%). However, inflorescence CAEO was dominated by the same compounds
but with variable levels (δ-3-Carene: 44.29%; 1,2:3,4-diepoxy-p-menthane: 19.46%; and p-cymene:
17.85%). The CAEOs from the leaves and inflorescences showed a very interesting inhibiting effect on
the germination and growth of the three species used, namely Medicago sativa, Linum rusitatissimum,
and Raphanus sativus. However, there was no significant difference between these CAEOs. Similarly,
for the insecticidal activity, CAEOs exhibited an important and similar toxicity against Tribolium
confusum adults with LD50 of 4.30 and 4.46 µL/L of air and LD90 of 6.51 and 9.62 µL/L air for toxicity
by fumigation, while values for contact toxicity on filter paper were 0.04 and 0.05 µL/cm2 for LD50

and 0.08 and 0.09 µL/cm2 for LD90.

Keywords: Chenopodium ambrosioides (L.); essential oils; chemical composition; phytotoxic activity;
insecticidal activity

1. Introduction

Within the Chenopodiaceae family, the genus Chenopodium has been considered one
of the largest genera in this family, with an estimated number of around 1400 species [1].
This genus includes spontaneous and cultivated species widely distributed across Europe,
Africa, Asia, Australia, and North America. Species in this genus are herbaceous and
perennial plants found in coastal saline environments, plains, high-altitude valleys (Andes,
Himalayas), and barren deserts (Atacama, Australia) [2]. Since ancient times, many species
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of Chenopodium genus have been used in a wide variety of ways, and play a significant
role in therapeutic applications. Indeed, the aerial parts of these species are commonly
used in form of powders and decoctions to treat cold illnesses, abdominal pain, and
leishmaniasis, and also as anti-inflammatories, antiasthmatics, antipyretics, antispasmodics,
hypotensives, and carminatives [3–5]. Concerning the chemical composition, most species
of the Chenopodium genus owe their activities and properties to their contents of several
secondary metabolites, especially essential oils rich in terpenoids. Several studies have
shown that these substances have significant antimicrobial, antioxidant, and insecticidal
activities [6–8].

In Morocco, the genus Chenopodium is represented by 10 spontaneous and introduced
species [9]. Among these species, Chenopodium ambrosioides, commonly known as Mexican
tea and “M’khinza” in Arabic, is an annual plant with a strong aromatic odor, reaching
up 0.3 to 1 m in height. This species grows in uncultivated fields, along roadsides and in
abandoned places [9]. C. ambrosioides is among the species most frequently used in Moroc-
can folk medicine. In fact, the species is used as an infusion for the treatment of various
illnesses, including gastrointestinal disorders, typhoid, dysentery in children and adults,
and fever [10]. Many pharmacological studies supported the cytostatic, hypotensive, anti-
inflammatory, analgesic, and antipyretic activities of C. ambrosioides crude extracts [10,11]. On
the other hand, it has been reported that the essential oils isolated from the aerial parts of
C. ambrosioides exhibit a variety of biological activities including antimicrobial, antioxidant,
and acaricidal activities [12–15]. These properties have been ascribed to the presence of
numerous monoterpenes including, α-terpinene, ascaridole, carvacrol, p-cymene, and
o-cymene [12–15].

As known, the yield and chemical composition of essential oils isolated from several
medicinal and aromatic plants, and consequently their biological activities, are influenced
by several factors, including the part of the plant used for distillation [16–18]. However, to
our knowledge, no work has been published on the effect of this factor on the quantity and
quality of C. ambrosioides essential oils (CAEO). In this context, the aim of the present study
is to evaluate for the first time the variation in yield, chemical composition, insecticidal
effects, and phytotoxic activities of CAEO isolated from the leaves and inflorescence. The
insecticidal properties were evaluated against the common pest Tribolium confusum known
for attacking and infesting stored flour and grain. The phytotoxic effects were determined
in seeds obtained from three species, namely Medicago sativa, Linum usitatissimum, and
Raphanus sativus, widely used to determine the phytotoxic activity of essential oils.

2. Results and Discussion
2.1. CAEO Yield

Essential oils obtained from C. ambrosioides leaves and inflorescences were character-
ized by an orange color with an unpleasant odor. Average essential oil yields (v/w on dry
weight basis) are shown in Table 1. The results indicated that the essential oil yields varied
according to the plant part, with 0.75 ± 0.15% for leaves and 1.2 ± 0.34% for inflorescences.
The essential oil yield obtained in this study for leaves is comparable to that found by other
authors [19,20]. To our knowledge, no data have been published on the essential oil yield of
C. ambrosioides inflorescences. According to the literature, the essential oil yield of several
aromatic and medicinal plants varies depending on plant material parts. Indeed, according
to [13], the yield of essential oil from Coriandrum sativum leaves (0.1%) is lower than that
recorded for seeds of the same species (1.1%). Another study carried out on Hippophaer
hamnoides showed that essential oil yields differed between seeds, leaves, and pulp (0.033,
0.365, and 1.26%, respectively) [14]. This phenomenon can be explained by differences in
the enzymatic activity of the different parts of the plant, resulting in a notable variation in
the synthesis of volatile compounds [21].
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Table 1. Percentage composition of essential oils obtained from leaves and inflorescences of C.
ambrosioides (L.).

RT RI Compound a Leaves Inflorescences

22.95 1035 δ-3-Carene 61.51 44.29
23.48 1044 p-Cymene 14.67 17.85
23.63 1048 Limonene 0.64 0.35
23.92 1053 β-Phellandrene 0.12 0.10
25.11 1076 γ-Terpinene 1.07 0.67
35.44 1281 1,4-epoxy-p-menth-2-ene 6.19 19.46
36.06 1294 Ascaridole 0.98 2.36
37.10 1316 Thymol 2.75 2.08
37.62 1327 Carvacrol 1.46 1.54
38.55 1348 1,2:3,4-diepoxy-p-menthane 8.15 6.30

Monoterpene hydrocarbons 78.01 63.26
Oxygenated monoterpenes 19.53 31.74

Total (%) 97.54 95.00
Yield (% (v/w)) 0.75 ± 0.15 1.2 ± 0.34

a Compounds listed in order of elution; RT, retention time; RI, retention indices measured relative to n-alkanes
(C-9 to C-24) on the non-polar DB-5 column.

2.2. Chemical Composition of CAEOs

The essential oils obtained from the different samples were subjected to detailed
GC/MS analysis in order to determine different volatiles in our CAEOs according to
plant part. The general chemical profiles of the tested oils (percentage content of the
individual components, retention time, retention index, and chemical class distribution) are
summarized in Table 1. A representative chromatogram for CAEOs isolated from leaves
and inflorescences is depicted in Figure 1.
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In total, 10 compounds were identified, representing 97.54 and 95% of total con-
stituents, respectively. Essential oils extracted from C. ambrosioides leaves and inflorescences
were characterized by a high concentration of hydrocarbon monoterpenes (78.01–63.26%),
the main compounds being δ-3-carene (61.51–44.29%), p-cymene (14.67–17.85%) and 1,2:3,4-
diepoxy-p-menthane (6.19–19.46%). These results differ from those obtained for the same
species collected in Morocco in the Meknes and Rhamna region [11,22]. In these studies,
CAEOs were characterized mainly by a high content of α-terpinene (61.04% and 23.77%,
respectively). Our CAEOs differ from those described in the literature by a high content of
δ-3-carene and an absence of α-terpinene. These results suggest that our studied essential
oil can be considered a δ-3-carene chemotype.

A comparison of the chemical composition of essential oils extracted from leaves and
inflorescences of C. ambrosioides showed quantitative rather than qualitative differences.
Indeed, the oil obtained from leaves showed high levels of δ-3-carene (61.51%), followed
by p-cymene (14.67%) and 1,2:3,4-diepoxy-p-menthane (8.15%), while that obtained from
inflorescences was characterized by the dominance of δ-3-carene (44.29%), followed by 1,4-
epoxy-p-menth-2-ene (19.46%), and p-cymene (17.85%). This chemical variation between
the different parts of C. ambrosioides is in line with what has been previously reported for
other aromatic and medicinal plants such as Hippophae rhamnoides, Coriandrum sativum,
and Eucalyptus carnaldulensis [13,14,23]. These differences in the constituents of essential
oil between leaves and inflorescences of C. ambrosioides can be related to the influence
of several intrinsic factors on the plant biosynthetic pathways of some terpenoids and
consequently the relative changes in the number and the content of the main characteristic
compounds [23].

2.3. Phytotoxic Activity of CAEOs

The phytotoxic effect of CAEOs on Medicago sativa, Linum rusitatissimum, and Raphanus
sativus seeds was assessed by determining the germination parameters (germination per-
centage (GP) and mean time of germination (MGT)) and growth parameters (size, fresh
weight (FW), dry weight (DW), and vigor index (VI)), as presented in Tables 2–4. The
results obtained showed that these oils have a strong and variable inhibitory effect on
germination and growth of all the seeds studied. This variation depends essentially on the
seed and the concentration used.

Table 2. Phytotoxic effect of essential oils from the leaves and inflorescences of C. ambrosioides on
Medicago sativa seeds.

Parameters GP
(%) MTG (Days) Size

(cm) VI FW
(mg/Plant)

DW
(mg/Plant)

Control 96.3 ± 4.8 a 4.0 ± 0.0 c 2.6 ± 0.6 a 248.1 ± 6 a 18.5 ± 3.2 a 1.3 ± 0.2 a
Leaves

1 µL/mL 0.0 ± 0.0 c 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c
0.5 µL/mL 62.5 ± 6.5 b 4.4 ± 0.1 b 0.6 ± 0.1 cd 39.3 ± 8.9 c 8.5 ± 1.4 b 0.8 ± 0.1 b
0.25 µL/mL 92.5 ± 2.5 a 4.1 ± 0.1 c 1.1 ± 0.5 bc 100.1 ± 41.3 b 13.6 ± 2.9 a 1.1 ± 0.2 ab

0.125 µL/mL 92.5 ± 5.0 a 4.1 ± 0.0 c 2.6 ± 0.6 a 235.6 ± 43.9 a 17.9 ± 3.5 a 1.2 ± 0.1 ab
Inflorescence

1 µL/mL 0.0 ± 0.0 c 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c
0.5 µL/mL 56.3 ± 14.4 b 4.4 ± 0.2 b 0.4 ± 0.0 cd 23.8 ± 4.9 c 7.3 ± 1.1 b 1.1 ± 0.1 ab
0.25 µL/mL 91.3 ± 8.5 a 4.1 ± 0.1 c 1.6 ± 0.2 b 144.4 ± 6.4 b 17.0 ± 2.8 a 1.1 ± 0.1 ab

0.125 µL/mL 93.8 ± 2.5 a 4.1 ± 0.0 c 2.4 ± 0.4 a 218.6 ± 37.8 a 17.4 ± 1.6 a 1.3 ± 0.2 a

GP: germination percentage; MTG: mean time of germination in days; VI: vigor index; FW: fresh weight; DW:
dry weight. Within each column, values followed by the same letter are not significantly different at p < 0.05.
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Table 3. Phytotoxic effect of essential oils from the leaves and inflorescences of C. ambrosioides on
Linum usitatissimum seeds.

Parameters GP
(%)

MTG
(Days)

Size
(cm) VI FW

(mg/Plant)
DW

(mg/Plant)

Control 90.0 ± 0.0 a 4.5 ± 0.0 c 13.4 ± 0.6 a 1202.7 ± 53.9 a 54.4 ± 3.5 a 4.8 ± 0.5 a
Leaves

1 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 c
0.5 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 c
0.25 µL/mL 38.7 ± 8.5 c 4.6 ± 0.1 bc 0.32 ± 0.11 d 12.2 ± 3.8 d 17.7 ± 6.3 c 4.3 ± 0.5 ab

0.125 µL/mL 77.5 ± 2.0 b 4.6 ± 0.0 bc 3.24 ± 0.51 c 249.5 ± 32.6 c 31.7 ± 2.9 b 4.2 ± 0.4 ab
Inflorescence

1 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 c
0.5 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 d 0.0 ± 0.0 c
0.25 µL/mL 43.7 ± 11.1 c 4.8 ± 0.2 b 0.22 ± 0.02 d 9.8 ± 3.1 d 18.7 ± 1.6 c 3.9 ± 0.5 b

0.125 µL/mL 68.7 ± 7.5 b 4.6 ± 0.1 bc 4.46 ± 0.13 b 306.8 ± 38.8 b 33.6 ± 2.7 b 4.7 ± 0.2 a

GP: germination percentage; MTG: mean time of germination in days; VI: vigor index; FW: fresh weight; DW: dry
weight. Within each column, values followed by the same letter are not significantly different at p < 0.05.

Table 4. Phytotoxic effect of essential oils from the leaves and inflorescences of C. ambrosioides on
Raphanus sativus seeds.

Parameters GP
(%) MTG (Days) Size

(cm) VI FW
(mg/Plant)

DW
(mg/Plant)

Control 86.7 ± 4.7 a 4.1 ± 0.0 e 6.2 ± 0.7 bc 537.5 ± 36.8 c 70.9 ± 10.6 a 5.0 ± 0.7 ab
Leaves

1 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 e 0.0 ± 0.0 d 0.0 ± 0.0 c
0.5 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 e 0.0 ± 0.0 d 0.0 ± 0.0 c
0.25 µL/mL 57.5 ± 18.5 b 4.7 ± 0.1 b 5.0 ± 1.5 c 282.2 ± 93.3 d 50.4 ± 8.4 b 5.3 ± 0.9 ab

0.125 µL/mL 90.0 ± 4.1 a 4.3 ± 0.1 c 7.6 ± 1.1 ab 678.0 ± 76.9 b 74.8 ± 2.9 a 6.2 ± 0.6 ab
Inflorescence

1 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 e 0.0 ± 0.0 d 0.0 ± 0.0 c
0.5 µL/mL 0.0 ± 0.0 d 7.0 ± 0.0 a 0.0 ± 0.0 d 0.0 ± 0.0 e 0.0 ± 0.0 d 0.0 ± 0.0 c
0.25 µL/mL 30.0 ± 4.1 c 4.6 ± 0.2 bc 0.6 ± 0.3 d 19.7 ± 11.3 e 19.6 ± 5.6 c 4.1 ± 1.1 b

0.125 µL/mL 92.5 ± 2.9 a 4.4 ± 0.1 cd 8.3 ± 0.5 a 772.8 ± 54.6 a 80.4 ± 4.9 a 7.3 ± 2.7 a

GP: germination percentage; MTG: mean time of germination in days; VI: vigor index; FW: fresh weight; DW:
dry weight. Within each column, values followed by the same letter are not significantly different at p < 0.05.

The germination results showed that there was no significant difference (p < 0.05)
between the effect of the essential oils studied on the seeds tested. These data also showed
that L. rusitatissimum and A. sativus seeds were the most sensitive compared with M. sativa.
All CAEOs concentrations showed a lower germination percentage (GP) and a longer mean
germination time (MGT) than the control. The high concentrations of 1 and 0.5 µL/mL
expressed a total inhibitory effect on L. rusitatissimum and A. sativus seeds. However, this
total inhibitory effect on germination was only observed at a concentration of 1 µL/mL for
M. sativa seeds.

With regard to growth, both CAEOs showed a significant negative effect with a non-
significant difference (p < 0.05) on seedlings of the species studied. This effect increased
with the concentration used. The results showed that M. sativa and A. sativus seedlings
were the most resistant to the effect of CAEOs, since the decrease in growth parameters
compared to control was only observed at the 0.25 µL/mL concentration. However, this
growth-inhibiting action was recorded at the lowest concentration (0.125 µL/mL) for L.
rusitatissimum seedlings.

The phytotoxic potency of CAEOs observed in this study is comparable to what has
been reported in the literature on this species [24,25] and justifies the considerable potential
of this plant as a bio-herbicide. The phytotoxic activity of these oils can be attributed to
the presence of high concentrations of two hydrocarbon monoterpenes, δ-3-carene and
p-cymene. Indeed, several studies have reported that hydrocarbon monoterpenes present
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in essential oils are known for their important phytotoxic effect [26,27]. This activity could
be explained by the ability of these compounds to disrupt germination as well as radicle
growth, to reduce proteins and nucleic acids, and to cause alterations in ion absorption,
water balance, phytohormonal balance, photosynthesis, and respiration [16,28,29].

2.4. Insecticidal Activity of CAEOs

The insecticidal activity of CAEOs was assessed by two tests, namely contact toxicity
on filter paper and fumigant toxicity. The percentage of mortality (%) and lethal dose
values (LD50 and LD90) are summarized in Tables 5 and 6. The data showed that EOs tested
exhibited an interesting toxicity towards adults of T. confusum. Moreover, in the treatment of
essential oils against this insect, mortality was a concentration-dependent response (Table 5).
In fact, the mortality percentages increased with increasing the concentration of the oils,
reaching the highest values in the highest applied doses. The mortality percentage values
ranged from 13.33 to 82.66% and from 12.33 to 100%, for contact and fumigant toxicity
assays, respectively. Based on Table 6, the results obtained from both tests showed that
there was no significant difference between leaf and inflorescence oils against T. confusum,
since no overlap between the confidence limits was observed. For the fumigant assay, the
values obtained were in order of 4.30–4.46 µL/L of air for LD50 and 6.51–9.62 µL /L of air
for LD90. For the contact assay, the LD50 values obtained are 0.04 and 0.05 UL/cm2, and
for the LD90 values are 0.08 and 0.09 µL/cm2. These results are in line with other work on
the insecticidal activity of essential oils of the same species against several insect pests of
stored food products [19,30,31].

Table 5. The percentage of mortality (%) of leaves and inflorescences of CAEOs against the adults of
T. confusum in contact and fumigant toxicity bioassays.

Tests Mean Mortality (%)

Contact
Toxicity

Concentrations
(µL/cm2) Leaves Inflorescences

0 0 ± 0 0 ± 0
0.016 13.33 ± 6.66 17.23 ± 5.25
0.031 33.33 ± 8.81 39.23 ± 4.12
0.050 50.33 ± 6.12 60.33 ± 6.58
0.063 82.66 ± 5.35 80.33 ± 6.66

Fumigant
Toxicity

Concentrations
(µL/Lair)

0 0 ± 0 0 ± 0
2.083 12.33 ± 3.33 16.66 ± 6.66
4.166 30.33 ± 5.77 36.66 ± 4.23
8.333 59.33 ± 8.81 66.66 ± 10.01

16.666 100 ± 0 100 ± 0

Table 6. LD50 and LD90 values of essential oils from the leaves and inflorescences of C. ambrosioides
applied by contact and fumigant toxicity bioassays against T. confusum.

Tests Essential
Oils

LD50
(95% CL) a

LD90
(95% CL) Slope± SE

Chi
Square

(χ2)
df

Contact
(µL/cm2)

Leaves 0.05
(0.04–0.09)

0.08
(0.06–0.60) 6.73 ± 2.67 0.02 2

Inflorescences 0.04
(0.03–00.06)

0.09
(0.06–0.49) 3.77 ± 1.25 1.37 2

Fumigant
(µL/Lair)

Leaves 4.46
(2.99–6.18)

9.62
(6.81–22) 3.84 ± 1.01 3.45 2

Inflorescences 4.30
(3.19–5.65)

6.51
(5.11–14.45) 7.10 ± 2.32 0.28 2

LD: lethal dose; a confidence limits.
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Generally, the insecticidal activity of essential oils isolated from both leaves and
inflorescences can be ascribed to their chemical composition and especially to their major
compounds and synergetic effects cannot be discarded. Thus, the important toxic effect
of CAEOs against T. confusum adults is probably due to their high content of δ-3-carene, a
hydrocarbon monoterpene well documented for its acetylcholinesterase inhibitory activity,
hence its strong insecticidal activity [32]. The toxicity of these oils can also be attributed to the
presence of significant quantities of p-cymene. The insecticidal effect of this compound has
previously been demonstrated against various insect pests of stored food products [33,34]. In
addition, the components in lower amounts may also contribute to insecticidal activity of
the essential oils, likely involving some type of synergism with other active compounds [33].

3. Materials and Methods
3.1. Plant Material

The aerial parts of C. ambrosioides were collected at the flowering stage during 2020
from the Marrakech region (Wahate sidi Ibrahim, 31◦30′ N/07◦40′ W). This species was
identified by Prof. Abdelaziz Abbad at the Biology Department, Faculty of Sciences
Semlalia, Marrakech. Freshly harvested plant parts (leaves and inflorescences) were cut
separately into small pieces to facilitate extraction of the essential oils. Both parts were then
dried at room temperature, protected from light and humidity.

3.2. Essential Oils Isolation

Essential oils were obtained by hydro-distillation using a Clevenger-type apparatus.
Each dried part (leaves and inflorescences, 200 g) was distilled for 4 h. At the end of
extraction, we noticed that an important amount of essential oil remained in the hydrolate.
In order to recover this amount, the mixture hydrolate/essential oil was subjected to
a second solvent extraction using dichloromethane. The dichloromethane was chosen
thanks to its low boiling point (40 ◦C). The lower phase (essential oil + dichloromethane)
recovered was then subjected to evaporation (removal of the extraction solvent) using a
rotary evaporator at a low temperature to remove completely the solvent used but also to
avoid any changes in our oil chemical profile. The recovered essential oil was dried with
anhydrous sodium sulfate, then stored at 4 ◦C in the dark.

3.3. Chromatographic Analysis of Essential Oils

The analytical GC/MS system used was an Agilent 6890/5973 GC/MSD system
(Agilent Technologies, Palo Alto, CA, USA) equipped with an Agilent DB-5ms cap. column
(30.0 m 0.25 mm i.d., film thickness 0.25 mm; model number 122-5532). The oven temp.
was programmed to rise from 60 to 246 ◦C at 3 ◦C/min; injector, transfer, source, and
quadrupole temperatures were 260, 280, 230, and 150 ◦C, respectively; carrier gas, He (high
purity; constant linear velocity of 37 cm/s); injection volume, 1.0 µL (of samples of 60 µL of
EO diluted with 2 mL of acetone); split ratio, 1:50; ionization voltage, 70 eV; m/z range,
41–450 amu.

The identification of the individual components was based on (i) the comparison
of their mass spectra with those of authentic reference compounds where possible and
with those listed in the WILEY275 and NBS75K libraries and Adams terpene library [35]
and (ii) the comparison of their retention indices (RIs) determined on a DB5 cap. column
(nonpolar, 5% phenyl polysilphenylene-siloxane) relative to the retention times (tR) of a
series of n-alkanes (C9–C24) with linear interpolation, with those of authentic compounds
or the literature data. For semi-quantification purposes, the normalized peak area of each
compound was used without any correction factors, to establish relative contents.

3.4. Phytotoxic Activity of Essential Oils

The test was carried out using the method described in [36]. Preliminary testing is
essential to define the concentration range to be used for seed treatment. The essential oils
were emulsified with Tween 80, at a ratio of 1:1 (v/v). The mixture was dissolved in distilled
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water to obtain concentrations of 1, 0.5, 0.25, and 0.125 µL/mL, while a solution of Tween
80 in water was used as a control. Subsequently, aliquot of 5 mL of each concentration
was added to glass Petri dish (9 cm) with two layers of filter papers (Whatman No. 1).
Seeds of the species tested Medicago sativa, Linum usitatissimum, and Raphanus sativus were
sterilized with a sodium hypochlorite solution (1%) for 20 min. The seeds were then rinsed
three times with distilled water. Four replicates were prepared for each concentration of
the oils, each comprising 20 seeds for each species tested. Petri dishes were sealed with
a Parafilm® tape and kept at 27 ◦C in a dark growth chamber. Germinated seeds (2 mm
root length) were counted daily. Germination percentage (GP), mean germination time
(MGT), growth parameters (height, fresh weight (FW), dry weight (DW)) and vigor index
(VI) were calculated on the seventh day according to the following formulas:

Germination percentage (GP) = n/N × 100

Mean germination time (MGT) = ((n.d)/N)

Vigor index (IV) = Seedling length (cm) × PG

where n = number of germinated seeds, N = total number of seeds, and d = number of days.

3.5. Insecticidal Activity of Essential Oil
3.5.1. Insect Rearing

Colonies of the brown flour beetle, T. confusum. (Coleoptera: Tenebrionidae), were
maintained in the laboratory without exposure to insecticides. Sixty insects of both sexes
were reared on a mixture of wheat flour, wheat germ, and yeast extract (13:6:1 by w/w/w)
in glass containers (16 cm diameter × 22 cm height). All containers were covered with a fine
mesh cloth for ventilation. The culture was carried out in a growth chamber at 26 ± 1 ◦C,
with a relative humidity (RH) of 70–85% and 16:8 h light/dark photoperiod. Only young
adults were used in the tests. All tests were carried out under conditions identical to those
of the cultures. In all bioassays, insects were considered dead when no leg or antennal
movements were observed. The bioassays were designed to assess median lethal doses
(LD50 and LD90 values) (doses that killed 50% and 90% of the exposed insects, respectively).

3.5.2. Contact Toxicity on Filter Paper

The test was carried out according to the method described by [37]. Several preliminary
tests were carried out to select the doses to be used for CAEOs. Four doses were prepared
by diluting 1, 2, 3, and 4 µL of essential oils in 1 mL acetone, corresponding to doses of
0.016, 0.031, 0.050, and 0.063 µL/cm2. One mL of each solution was dispensed on a 9 cm
diameter (63.62 cm2 surface area) filter paper disk (Whatman n◦1) placed in a glass Petri
dish of the same diameter. For the control, filter papers were treated with acetone only.
After 10 min, once the solvent had been evaporated, 10 unsexed adults freshly collected
from their rearing environment, aged 7 to 14 days, were introduced into each Petri dish,
which were then resealed. Three replicates were performed for e each dose. Mortality was
recorded after 24 h. Insects were considered dead if no movement of legs or antennae
was recorded.

3.5.3. Fumigant Toxicity of Essential Oils

The test was carried out according to the method described by [37]. Several preliminary
tests were carried out to select the doses to be used for each species. Four doses were
prepared by depositing respective volumes of 0.125, 0.25, 0.5, and 1 µL of CAEOs on
2 cm-diameter filter papers (Whatman No. 1) attached to the screw caps of 60 mL Plexiglas
bottles. These volumes correspond to fumigant concentrations of 2.083, 4.166, 8.333, and
16.666 µL/L of air. For the control, the filter paper square was not impregnated with
essential oil. A total of 10 unsexed adults, freshly collected from their rearing environment
and aged between 7 and 14 days, were introduced into each bottle, which was then
immediately resealed. Three replicates were carried out for each dose. Mortality was
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recorded after 24 h. Insects were considered dead when no movement of legs or antennae
was recorded.

3.6. Data Analysis

Measurements and determinations were performed in triplicate and then averaged [38].
The results of phytotoxic activity of the studied essential oils were analyzed using IBM
SPSS Statistics version 25 (IBM Corp., Armonk, NY, USA) for analysis of variance (ANOVA).
The statistically significant differences were separated using the Student–Newman–Keuls
test (p < 0.05). Mortality results for different concentrations of CAEOs were transcribed
and analyzed by the same software using the probit-log model [39]. The analysis was used
to determine LD50 and LD90 values with their confidence limits and Chi-square (χ2).

4. Conclusions

In conclusion, the essential oils from C. ambroisoides leaves and inflorescences studied
showed a quantitative variation in the chemical composition and interesting phytotoxic
and insecticidal activities. The results showed that the highest yield of essential oil was
observed in the inflorescences. An analysis of the chemical composition of these oils
showed quantitative rather than qualitative differences, with the dominance of δ-3-carene,
p-cymene, and 1,2:3,4-diepoxy-p-menthane. These oils also showed a significant inhibitory
effect, with a non-significant difference in the germination and growth of Medicago sativa,
Linum rusitatissimum, and Raphanus sativus. They also showed an interesting and similar
toxicity against the T. confusum pest. Essential oils from the leaves and inflorescences of
C. ambroisoides can be recommended as bio-herbicides and bio-insecticides against weeds
and food pests, as alternatives to harmful synthetic chemical products. This approach
can help to reduce the applied quantity, and subsequently reduce the negative impact
of synthetic agents on human health and the environment. For the application of such
essential oils for foods conservation, it is imperative to conduct further investigations to
determine the possible toxic effects of the studied oils on human health.
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