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Abstract: Hydroponic lettuce was prone to pest and disease problems after transplantation. Manual
identification of the current growth status of each hydroponic lettuce not only consumed time and
was prone to errors but also failed to meet the requirements of high-quality and efficient lettuce
cultivation. In response to this issue, this paper proposed a method called YOLO-EfficientNet for
identifying the growth status of hydroponic lettuce. Firstly, the video data of hydroponic lettuce were
processed to obtain individual frame images. And 2240 images were selected from these frames as
the image dataset A. Secondly, the YOLO-v8n object detection model was trained using image dataset
A to detect the position of each hydroponic lettuce in the video data. After selecting the targets based
on the predicted bounding boxes, 12,000 individual lettuce images were obtained by cropping, which
served as image dataset B. Finally, the EfficientNet-v2s object classification model was trained using
image dataset B to identify three growth statuses (Healthy, Diseases, and Pests) of hydroponic lettuce.
The results showed that, after training image dataset A using the YOLO-v8n model, the accuracy and
recall were consistently around 99%. After training image dataset B using the EfficientNet-v2s model,
it achieved excellent scores of 95.78 for Val-acc, 94.68 for Test-acc, 96.02 for Recall, 96.32 for Precision,
and 96.18 for F1-score. Thus, the method proposed in this paper had potential in the agricultural
application of identifying and classifying the growth status in hydroponic lettuce.

Keywords: hydroponic lettuce; growth status; object detection; object classification

1. Introduction

Lettuce is considered a vegetable with high economic value, so it is widely cultivated
within China. China’s lettuce cultivation area accounts for more than half (51.6%) of the
global cultivation area. Furthermore, China is the largest lettuce producer in the world,
with a total output greater than the sum of all other countries (India, USA, Spain, Italy,
Turkey, Japan, Mexico, and other countries). Its share of the global harvest is 56.4% [1].
In terms of its nutritional value, lettuce has the characteristics of low calorie, low fat,
and low sodium content, and it also contains a large amount of carotene, antioxidants,
vitamins B1, B6, E, and C, as well as rich dietary fiber and various trace elements [2,3]. The
currently promoted method of cultivating lettuce is through hydroponics, mainly because
this method has the advantages of high production efficiency and minimal environmental
pollution [4,5]. However, there are some challenges in growing hydroponic lettuce due to
the large scale of planting, the complexity of the hydroponic environment, and the growth
characteristics of lettuce itself. One of them is that lettuce is fragile and vulnerable to
diseases and pest infestations during the transplanting and growth process [6,7]. In order
to avoid further spread of pests and diseases and to ensure the growth quality and yield of
hydroponic lettuce, manual inspection and replacement of problematic lettuce becomes a
necessary measure.

The traditional identification of the growth status in hydroponic lettuce mainly relies
on manual identification by experts and growers, which faces many problems in practical
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production management such as being time-consuming, laborious, and inefficient [8]. With
the application of modern information technologies in agriculture, such as big data, artifi-
cial intelligence, and cloud computing, intelligent identification methods have gradually
been applied to monitor the growth status and identify pests and diseases of various
crops [9]. Currently, intelligent recognition methods mainly include machine learning
techniques and deep learning techniques. Machine learning techniques can extract relevant
features of growth status by performing mathematical operations and image processing on
plant growth images and then train classifiers to achieve recognition of growth status. For
example, Pantazi et al. [10] applied a support vector machine (SVM) algorithm to create
three one-class classifiers for detecting powdery mildew, downy mildew, and black rot
on the leaves of 46 crops, achieving a classification accuracy of 95.0%. Lu et al. [11] used
three classification models, sequential discriminant analysis (SDA), fisher discriminant
analysis (FDA), and k-nearest neighbors (KNN) algorithm, to classify early-stage anthrac-
nose crown rot infection on strawberry leaves. The average classification accuracies of
SDA, FDA, and KNN were 71.3%, 70.5%, and 73.6%, respectively. Xie et al. [12] defined
KNN sorting features and used hyperspectral imaging to classify healthy and gray moldy
tomato leaves with 97.2% classification accuracy. Sun et al. [13] combined simple linear
iterative clustering (SLIC) with SVM to detect anthracnose and brown blight of tea tree
in a complex background with 96.8% classification accuracy. However, the establishment
of these recognition models is challenging as it requires manual adjustment of numerous
model parameters and the model training process is prone to overfitting.

Deep learning technology is indeed an important branch in the field of machine
learning. It simulates the functioning of the human brain by constructing multi-layer
neural network models, enabling automated data analysis and feature extraction such as
color, texture, and shape [14,15]. In deep learning, convolutional neural networks (CNN)
are widely used for image processing and visual-related tasks. Athanikar and Badar [16]
applied a CNN to classify potato leaf images as healthy or sick. Their experimental results
show that CNN can effectively detect disease spots and classify specific disease types with
92% accuracy. Sladojevic et al. [17] proposed a CNN-based deep neural network model
that can recognize 13 different plant diseases from a collection of images of healthy and
diseased leaves and is able to distinguish plant leaves from their surrounding environment.
The recognition accuracy of the model ranges from 91% to 98% with an average accuracy
of 96.3%. Mohanty et al. [18] tested classic network models AlexNet and GoogLeNet using
a training set of 14 crop varieties and 26 types of pests and diseases in the PlantVillage
database to predict crop pests and diseases for plant leaf images. Too et al. [19] fine-
tuned and compared various classic convolutional neural networks, such as VGG-16,
Inception-V4, DenseNets-121, and ResNet-50, using data from 14 plants and 38 categories
of pests and diseases from the PlantVillage dataset. The experimental results showed that
the accuracy of DenseNets consistently improved without overfitting as the number of
iterations increased. Moreover, DenseNets achieved a testing accuracy of 99.75% with few
parameters and a short training time. Therefore, deep learning may have more advantages
in crop variety identification.

Based on the above research status, this paper focused on hydroponic lettuce as the
research subject and proposed a hydroponic lettuce disease and pest recognition method
using YOLO-EfficientNet. The paper used the YOLO-v8n model to select and crop target
objects from a video dataset of hydroponic lettuce and then utilized the EfficientNet-v2s
model to recognize and classify three different growth stages of the cropped images. This
proposed approach provided a new perspective and method for identifying disease and
pest damage in hydroponic lettuce, and it could serve as a reference for further research in
related fields.
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2. Materials and Methods
2.1. Experimental Field

The variety of hydroponic lettuce used in this article was Romaine lettuce and the
seed supplier was China Vegetable Planting Industry Technology Co., Ltd. (Beijing, China).
The hydroponic lettuce growth experiment was conducted in a greenhouse at Yangdu
Research and Innovation Base of Zhejiang Academy of Agricultural Sciences during
March 2023–June 2023 (latitude 30◦43′83′′ N, longitude 120◦41′58′′ E), as shown in Figure 1a.
During the transplanting process, hydroponic lettuce seedlings were selected with a
seedling age of approximately two weeks and a leaf count of 3 to 5 leaves. The seedlings
were planted on holed foam boards, with each board accommodating 12 hydroponic lettuce
seedlings (as shown in Figure 1b), and the spacing between each seedling was 0.3 m. In
order to facilitate the collection of image data on the growth status of hydroponic lettuce
after transplantation, this study conducted hydroponic lettuce transplanting every 7 days,
with 30 trays and 360 seedlings planted each time. During the growth process of hydro-
ponic lettuce, the nutrient solution in the cultivation tank was replaced every 2 days. The
nutrient solution used for hydroponic lettuce was the Knop Classical Universal Hydroponic
Formula, with specific ingredient content, as shown in Table 1.

Figure 1. Experimental environment of hydroponic lettuce. (a) Experimental base for growing
hydroponic lettuce. (b) Lettuce seedlings planted on holed foam boards.

Table 1. Knop Classical Universal Hydroponic Formula.

Ingredient Name Volume (mg/L)

Ca(NO3)2·4H2O 1150
KNO3 200

MgSO4·7H2O 200
KH2PO4 200

Total salt content 1750

2.2. Image Data Acquisition

After transplanting the hydroponic lettuce, videos of the lettuce growth were taken at
fixed intervals every day during the following week. The shooting period was from 9:00 to
10:00 and from 15:00 to 16:00. The videos were recorded at a resolution of 2560 × 1440 and
a frame rate of 30 fps. To ensure consistency in the collected image data, the camera was
kept perpendicular to the tray surface at a distance of 60 cm. In total, four transplanting
experiments were conducted and a total of 56 videos were recorded with a duration of
60 min each. Figure 2 shows the original video shooting effect.
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Figure 2. Video shooting effect.

2.3. Image Data Preprocessing

Image data A: first, the captured lettuce videos were processed by using a video image
algorithm. The algorithm was programed in Python and utilized the OpenCV and Random
libraries. It was capable of batch processing video files and randomly extracted frame
images from each video. A total of 40 images were randomly intercepted from each video,
yielding a total of 2240 hydroponic lettuce images. Next, each lettuce image was labelled by
using LabelImg 1.8.1 software and their labels were set to “lettuce” (as shown in Figure 3).
Finally, the dataset was divided according to the ratio of 60% as training set, 20% as test set,
and 20% as validation set.

Figure 3. Annotated image of hydroponic lettuce in image dataset A.

Image data B: first, the YOLO-v8n model was used to detect 56 hydroponic lettuce
videos and extract individual hydroponic lettuce images from each frame of the videos. Due
to limitations in GPU memory and training time considerations, a total of 12,000 randomly
selected individual lettuce images were included in this dataset. The dataset consisted
of images of hydroponic lettuce that depicted three different growth statuses, including
healthy lettuce, lettuce with diseases, and lettuce infested with pests (as shown in Figure 4),
with 6412, 2814, and 2774 images, respectively. Finally, the dataset was divided into training
set, test set, and validation set according to a 3:1:1 ratio.

Figure 4. Images of hydroponic lettuce in different growth statuses from image dataset B. (a) Healthy
lettuce. (b) Lettuce with diseases. (c) Lettuce with pests.
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2.4. General Architecture of YOLO-EfficientNet

The recognition of the growth state of hydroponically grown lettuce faced several
challenges, including strong background interference of lettuce growth, high similarity
of lettuce leaves, and difficulty in classifying the growth state of lettuce. To solve these
problems, this paper proposed a new method, namely YOLO-EfficientNet. The core idea of
the YOLO-EfficientNet method was to combine the object detection model with the object
classification model. The YOLO object detection model could accurately locate and identify
the target objects in the image, while the EfficientNet object classification model could
efficiently and accurately classify the target objects in the image. By combining the two, the
YOLO-EfficientNet method could simultaneously achieve the localization and classification
of target objects, thereby effectively solving the problem of difficulty in recognizing the
growth state of hydroponically grown lettuce.

The overall architecture scheme is shown in Figure 5. The YOLO-EfficientNet method
first used the YOLO object detection model to predict the hydroponic lettuce image, ac-
curately marking the growth area of individual hydroponic lettuce with bounding boxes
and cropping it. Then, the EfficientNet object classification model was used to classify the
cropped images, distinguishing the three growth statuses of hydroponic lettuce: Healthy,
Diseases, and Pests.

Figure 5. YOLO-EfficientNet model.

2.5. YOLO-v8 Model

The object detection part in this study adopted the state-of-the-art YOLO-v8 model
from the YOLO series. YOLO-v8 was divided into YOLO-v8n, YOLO-v8s, YOLO-v8m,
YOLO-v8l, and YOLO-v8x. Considering the model size, image resolution, GPU memory,
and the requirement for accurate detection, this paper chose the YOLO-v8n network, which
has a small size and high accuracy. The YOLO-v8n model detection network mainly
consists of four parts (as shown in Figure 6): Input, Backbone, Neck, Head, and Output.

In the Input of YOLO-v8n, Mosaic technology was used for data augmentation of
images, and this technology was turned off in the last 10 epochs of training. The specific
operation of Mosaic technology was to combine four randomly selected images to create a
new training sample, thereby increasing the diversity and richness of the data. Backbone in
YOLO-v8n was primarily used for feature extraction. It consisted of modules like Conv,
C2f, and spatial pyramid pooling fast (SPPF). In particular, the Conv module performed
convolution, batch normalization (BN), and SiLU activation function operations on the
input image. The C2f module was the main module for learning residual features, enabling
YOLO-v8n to maintain rich gradient flow information while being lightweight. The SPPF
module could transform feature maps of any size into fixed-size feature vectors.

Neck was primarily used for the fusion of multi-scale features to generate a feature
pyramid. YOLO-v8n utilized the PANet structure as the core of its neck network. PANet
consisted of two parts: feature pyramid network (FPN) and path aggregation network
(PAN). FPN utilized a top-down pathway with up-sampling and fusion of coarser fea-
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ture maps to achieve feature fusion across different levels. However, it lacked precise
localization information of objects. PAN, on the other hand, used a bottom-up pathway
with convolutional layers to fuse features from different levels, thus effectively preserving
spatial information. The combination of FPN and PAN fully integrated the top-down and
bottom-up information flow in the network, thereby improving the detection performance.

Figure 6. Yolo-v8n network structure.

Head was the final prediction part of the model, used to obtain information about
the class and location of objects of different sizes based on feature maps of different sizes.
YOLO-v8n also used the non-maximum suppression (NMS) algorithm to further improve
detection performance.

2.6. EfficientNet-v2 Model

EfficientNet-v2 is a CNN model designed for image classification tasks. It is an
improved and optimized version based on the EfficientNet series by Google [20]. The
EfficientNet-v2 series includes EfficientNet-v2s, EfficientNet-v2m, Efficient-Net-v2l, and
EfficientNet-v2xl. In this paper, the EfficientNet-v2s network (as shown in Figure 7),
which has a small size and high accuracy, was chosen as the main network for object
classification. The EfficientNet-v2s model incorporated a series of innovative network
architecture designs and training strategies, further improving the recognition performance
and training efficiency of the model. There were some improvements of EfficientNet-v2
compared to the v1 version:

(1) Network structure optimization: compared to v1, EfficientNet-v2 replaced the orig-
inal strategy of equally scaling the models with a nonuniform scaling strategy to
speed up model training. EfficientNet-v2 also introduced more diverse width and
depth variations to adapt to different task requirements. Moreover, EfficientNet-v2
introduced MBConv and Fused-MBConv modules (as shown in Figure 8) to facilitate
feature information transmission and communication.
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(2) Training strategy optimization: EfficientNet-v2 introduced an improved progressive
learning method, which dynamically adjusted the regularization methods based
on the size of training images to enhance training speed and accuracy. Through
experiments compared with some previous networks, the improved EfficientNet-v2
training speed was increased by 11 times and the number of training parameters was
reduced to 1/7 of the original.

Figure 7. EfficientNet-v2s network architecture.

Figure 8. Architecture of the MBConv module and the Fused-MBConv module.

3. Results
3.1. Model Evaluation

The validation of model performance was crucial. True positive (TP) referred to the
number of samples that were actually positive and predicted as positive in the sample
set. True negative (TN) referred to the number of samples that were actually negative
and predicted as negative in the sample set. False positive (FP) referred to the number
of samples that were actually negative but predicted as positive in the sample set. False
negative (FN) referred to the number of samples that were actually positive but predicted
as negative in the sample set. Based on TP, TN, FP, and FN, various metrics were defined,
including Accuracy, Precision, Recall, mAP, and F1-Score. The specific definitions were
as follows:

Accuracy: It was defined as the ratio of correctly predicted samples to all samples.

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision: It was defined as the ratio of the number of samples correctly predicted as
positive to the total number of samples predicted as positive.

Precision =
TP

TP + FP
(2)

Recall: It was defined as the ratio of the number of samples correctly predicted as
positive to the total number of actual positive samples.

Recall =
TP

TP + FN
(3)
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F1-Score: It was defined as the weighted average of Precision and Recall.

F1 − Score =
2 × Recall × Precision

Recall + Precision
(4)

mAP: The term “mAP@0.5” referred to the average precision value when the IoU
threshold was set to 0.5 for a particular class of samples. It reflected how the precision of the
model changed with respect to recall. A higher value indicated that the model was more
likely to maintain high precision at high recall rates. On the other hand, “mAP@0.5:0.95”
represented the mean average precision across different IoU thresholds ranging from 0.5 to
0.95. The calculation method was as follows:

AP@0.5 =
1
n

n

∑
i=1

Pi =
1
n

p1 +
1
n

p2 + · · ·+ 1
n

pn (5)

mAP@0.5 =
1
C

C

∑
k=1

AP@0.5k (6)

mAP@0.5 : 0.95 =
1
10

mAP@0.5 +
1

10
mAP@0.55 + · · ·+ 1

10
mAP@0.95 (7)

3.2. Experimental Operation Environment

The experimental hardware environment for this study is shown in Table 2. In this
project, Python 3.8 was used as the programing language and GPU acceleration was em-
ployed during model training using CUDA and CUDNN. Additionally, the deep learning
framework PyTorch 1.13.1 was utilized for constructing the models.

Table 2. Configuration of experimental hardware environment.

Hardware Model Number

Main board MAG B660M MORTAR WIFI DDR4 1
CPU i5-12490F 1
GPU RTX 3070 2

Memory 32 GB 2
Solid state drives WDC WD20EZBX-00AYRAO(2 T) 1

Hard disk WD Blue SN570 500GB SSD (500 GB)
Great Wall GT70 1 TB (1 TB) 1

3.3. Model Training Parameter

The training parameters for the object detection model in this study are shown in
Table 3 and the training parameters for the object classification model are shown in Table 4.

Table 3. Object detection model training parameter.

Parameter Value Parameter Value

Optimizer SGD Lrf 0.01
Epochs 400 Weight decay 0.0005

Batch size 16 momentum 0.937
Workers 16 Warmup epochs 3

Image size 640 × 640 Warmup momentum 8
Lr0 0.001 Close mosaic 10
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Table 4. Object classification model training parameter.

Parameter Value

Optimization Adam
Learning rate 0.0001

Epochs 250
Batch size 16
Workers 16

Image size 224 × 224

3.4. Object Detection Results

The YOLO-v8n model was trained using the object detection model training parame-
ters (as shown in Table 3) and used image dataset A as the training data for the model. The
resulting training curve, as depicted in Figure 9, provided a visual representation of the
model’s performance across the training epochs.

Figure 9. YOLO-v8n model training results. The blue line represents the actual data, while the orange
line represents the data after smoothing.

After carefully analyzing the training results, several key pieces of data were obtained.
Notably, the YOLO-v8n model exhibited remarkable stability in its Precision and Recall
rates, consistently achieving approximately 99% in both metrics for object detection tasks.
This performance level indicated that the model had high accuracy in correctly identifying
objects and was able to minimize the occurrence of misidentifying objects to the greatest
extent. In addition to this, the model also demonstrated high competency in terms of
the mAP, reaching a commendable level of 99%. The mAP was a crucial metric in object
detection models, as it provided a comprehensive measure of the model’s precision and
recall capabilities. The high mAP score indicated that the model was not only accurate but
also reliable in its predictions.

Upon evaluation, the conclusion was drawn that the YOLO-v8n model exhibited
excellent performance in object detection tasks, particularly in the context of hydroponic
lettuce targets. The final detection results not only met but exceeded the initial expectations
set for the model. Figure 10 provided a visual demonstration of the model’s detection
capabilities. The hydroponic lettuce in the image was accurately identified and encased
within a rectangular bounding box, a standard practice in object detection tasks. Above the
box, the confidence value of the model’s prediction was displayed, further demonstrating
the model’s high level of certainty in its detection of the lettuce plant.
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Figure 10. YOLO-v8n model object detection effect.

3.5. Object Classification Results

The EfficientNet-v2s model was trained using the object classification model training
parameters (as shown in Table 4). In this experiment, image data B were used as the input
for training the EfficientNet-v2s model. The training process was carried out for 250 epochs,
which referred to the number of times the entire dataset was passed through the model
during training. By training the model for a sufficient number of epochs, it led to improved
classification accuracy. In order to evaluate the effectiveness of the EfficientNet-v2s model,
a comparative analysis was conducted on six different deep learning network models.
These models were selected to represent various architectures and object classification
methods. The purpose of this comparison was to demonstrate the superior performance
of our model compared to these existing models. To ensure fair and unbiased evaluation,
all experiments were conducted under the same conditions. This included using the same
training configuration, training strategy, and dataset. By keeping these factors consistent
across all models, any differences in performance could be attributed to the architectural
design and capabilities of the models themselves, rather than external factors.

Based on the results presented in Table 5, it was evident that EfficientNet-v2s model
exhibited superior performance compared to the other six models across multiple evalua-
tion metrics. These metrics included Val-acc (validation accuracy), Test-acc (test accuracy),
Recall, Precision, and F1-score. In terms of Val-acc and Test-acc, the model of this paper
achieved higher accuracy rates compared to the other models. This indicated that the
EfficientNet-v2s model was more effective in correctly classifying objects during both vali-
dation and testing phases. Furthermore, the EfficientNet-v2s model demonstrated notable
improvements over the best-performing DenseNet169 model among the other six models.
Specifically, results showed a 3.54% increase in Val-acc, a 4.42% increase in Test-acc, a 7.9%
increase in Recall, a 6.1% increase in Precision, and a 6.54% increase in F1-score. Through
rigorous experimental setup and comparative analysis, strong support was provided for
the superiority of the EfficientNet-v2s model over other testing models in terms of object
classification accuracy and performance. This also demonstrated its effectiveness and
application potential in the task of classifying images of diseases and pests in hydroponic
lettuce in agriculture.

In this paper, a comparison of the recognition performance of different models was
also conducted. Each model was tasked with recognizing the growth status of hydroponic
lettuce images. After recognition, the Ground Truth class, Predicted class, and Prob (Prob-
ability: score used to represent the predicted results of the image) for each image were
outputted. As shown in Figure 11, it can be observed that VGG16 exhibited the worst
recognition performance. Not only did it have low confidence scores but it also tended to
misclassify lettuce with pests as healthy lettuce. The next model, DenseNet169, produced
correct recognition results but its confidence scores were significantly lower compared to
the model used in this paper.
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Table 5. Recognition results of various object classification models.

Models Train-acc/% Val-acc/% Test-acc/% Recall/% Precision/% F1-Score/%

VGG16 91.43 86.32 78.48 80.72 81.62 81.12
ResNet50 97.34 90.82 88.34 86.88 88.02 87.14

GoogleNet 99.21 92.24 90.26 88.12 90.22 89.64
DenseNet169 99.72 93.42 89.14 90.24 91.24 90.72
MobileNet-v1 94.46 88.l8 84.28 84.68 85.24 84.92
MobileNet-v2 96.31 90.54 88.42 88.72 89.48 89.10
ShuffleNet-v1 93.68 88.26 83.18 84.72 86.02 85.36
ShuffleNet-v2 95.18 92.58 90.46 89.42 90.48 89.92

ours 99.32 95.78 94.68 96.02 96.32 96.18

Figure 11. Comparison of model recognition effect.

Therefore, through analysis, YOLO-EfficientNet combined the advantages of object
detection and object classification. It reduced the interference of growth background in
lettuce images and increased the amount of training data for the object classification model,
greatly improving the overall performance and effectiveness of model recognition.

4. Discussion

This study investigated the potential application of YOLO-EfficientNet in identifying
the growth status in hydroponic lettuce. The results indicated that the model achieved a
high level of accuracy in identifying the growth status. Compared to other recognition
models, this method demonstrated higher accuracy and robustness. This was because this
study leveraged the YOLO object detection model, which accurately located individual
hydroponic lettuce images, and also utilized the advantages of the EfficientNet object
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classification model to more precisely determine whether the lettuce in hydroponic images
had been affected by pests or diseases.

The results of this study were consistent with those of previous research. Phan et al. [21]
proposed combining the Yolov5 with a convolutional neural network model in a deep learn-
ing framework, applied to classify tomatoes into three growth statuses: mature, immature,
and damaged. This study demonstrated the effectiveness of using the YOLO-EfficientNet
method, which combines the object detection model with the object classification model,
in image classification tasks. Furthermore, a study also explored the potential practical
application of semantic segmentation models in the machine sorting system for harvesting
hydroponic lettuce. Wu et al. [22] utilized the DeepLabV3+ model with four different
backbones (ResNet-50, ResNet-101, Xception-65, and Xception-71) to develop a visual seg-
mentation system for identifying abnormal hydroponic lettuce leaves (yellowing, withering,
and rotting). This method enabled the rapid removal of abnormal leaves from hydroponic
lettuce, reducing manual sorting costs, extending the shelf life of hydroponic lettuce, and
increasing its market value.

Although the application of image recognition technology in agriculture had tremen-
dous potential, it was necessary to acknowledge the limitations of this study. These
included the need for further validation of the method’s recognition performance under
different environmental conditions. Testing the model on various lettuce varieties and even
different types of crops was essential to evaluate the effectiveness and generalizability of
this approach. Future research should focus on addressing these limitations and exploring
the integration of image recognition models with automated monitoring systems to provide
timely and accurate management recommendations for growers.

5. Conclusions

This paper addressed the issue of pest and disease detection in hydroponic lettuce after
transplanting and proposed a method called YOLO-EfficientNet for identifying the growth
status of hydroponic lettuce. The YOLO-v8n network was used to crop and segment each
hydroponic lettuce plant, reducing the interference of environmental backgrounds in lettuce
images. The segmented dataset provided sufficient training data for the EfficientNet-v2s
model. In the recognition results of YOLO-EfficientNet, excellent scores were achieved
in Val-acc, Test-acc, Recall, Precision, and F1-score, with values of 95.78, 94.68, 96.02,
96.32, and 96.18, respectively, surpassing other recognition models. YOLO-EfficientNet
simplified the problem of group classification into individual classification, overcoming
challenges such as similarity among small object crops and background interference, thus
improving the accuracy of object detection. Furthermore, the YOLO-EfficientNet model
effectively handled limited sample data during training, partially addressing the issue of
insufficient data.

In conclusion, the application of the YOLO-EfficientNet method significantly improved
the performance of object recognition in hydroponic lettuce, providing accurate and efficient
detection of the growth status.
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