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Abstract: Hyperspectral imaging (HSI) is a promising tool in chlorophyll quantification, providing a
non-invasive method to collect important information for effective crop management. HSI contributes
to food security solutions by optimising crop yields. In this study, we presented a custom HSI system
specifically designed to provide a quantitative analysis of leaf chlorophyll content (LCC). To ensure
precise estimation, significant wavelengths were identified using optimal-band analysis. Our research
was centred on two sets of 120 leaf samples sourced from Thailand’s unique Chaew Khing rice
variant. The samples were subjected to (i) an analytical LCC assessment and (ii) HSI imaging for
spectral reflectance data capture. A linear regression comparison of these datasets revealed that the
green (575 ± 2 nm) and near-infrared (788 ± 2 nm) bands were the most outstanding performers.
Notably, the green normalised difference vegetation index (GNDVI) was the most reliable during
cross-validation (R2 = 0.78 and RMSE = 2.4 µg·cm−2), outperforming other examined vegetable
indices (VIs), such as the simple ratio (RED/GREEN) and the chlorophyll index. The potential
development of a streamlined sensor dependent only on these two wavelengths is a significant
outcome of identifying these two optimal bands. This innovation can be seamlessly integrated
into farming landscapes or attached to UAVs, allowing real-time monitoring and rapid, targeted N
management interventions.

Keywords: imagery; spectroscopy; nitrogen; precision; smart farming

1. Introduction

Rapid and accurate chlorophyll measurement is essential for real-time crop growth
monitoring and nitrogen (N) management in precision agriculture fields [1,2]. Devia-
tions from reasonable chlorophyll levels can help to indicate nutrient deficiencies and
diseases [3–5]—allowing farmers to address nutrient management, irrigation practices,
and disease controls. This proactive approach enhances crop yield and strengthens global
food security. Chlorophyll monitoring can assist researchers in interpreting the complex
relationship between the physiological and environmental factors that determine plant
health, growth status, and agricultural productivity [6–8]. Plant genotypes exhibit unique
spectral signatures, or patterns of reflected electromagnetic radiation, that can be identified
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using hyperspectral imaging (HSI) technology [9,10]. The precise estimation of biophysical
parameters and accurate monitoring throughout different stages of growth are essential for
customising management strategies of crop fields [11].

Achieving accurate prediction of chlorophyll content requires a comprehensive under-
standing of the distinctive spectral signatures displayed by various crop cultivars that can
be achieved using HSI technology. This study demonstrates the application of a custom
HSI system for quantifying leaf chlorophyll content (LCC) using the leaf samples of Chaew
Khing rice, a rice cultivar indigenous in southern Thailand. By employing optimal-band
analysis, this study contributes to the development of cost-effective and efficient technology
for agriculture, promoting its broader adoption in the industry.

Plant pigment analysis has conventionally relied on time-consuming and destructive
methods such as spectrophotometry [12–14], chromatography [15,16], and atomic absorp-
tion spectroscopy [17]. These methods require the destruction of leaves and subsequent
laboratory analysis, making field assessments impossible in real-time. In contrast, portable
chlorophyll metres enable in-field measurements, providing non-invasive analytical ca-
pabilities. However, their limited usability is due to the high cost and the ability to only
measure small leaf areas that may not accurately represent the chlorophyll content of the
entire leaf—making them unsuitable for large-scale imaging. For instance, the commercially
available SPAD-502 metre uses a single parameter (the green colour intensity index based
on light absorption at 650 nm) to correlate the relative LCC. Despite its fast response time
of two seconds, the metre can only measure a small area of 12.57 mm2 at a time [18].

HSI is a robust, non-destructive tool with varied applications, especially in mapping
the distribution of plant physiological features [19–21]. Being an imaging technique, HSI
offers the advantage of capturing a large area, such as an entire leaf, in a single measurement.
The HSI data is visualised in a three-dimensional map: the first two dimensions capture
spatial details, while the third captures spectral attributes. This facilitates data merging
from the imaging and conventional spectroscopy domains [22].

HSI integrates image processing with spectral data from remote sensing [23–25]. Using
a broad range of wavelengths to record an object’s reflectance or emission spectra, HSI can
produce a high-dimensional representation by capturing a sequence of monochromatic
images at a continuous range of up to thousands of wavelengths [26]. Hyperspectral
sensors can collect over one hundred continuous spectral bands with a narrow bandwidth
between 500 nm and 2500 nm in the visible to mid-infrared regions of the electromagnetic
spectrum. This allows them to provide comprehensive and insightful data regarding
chemical composition [27], structural properties, and other characteristics.

With applications ranging from crop analysis to real-time plant health and yield
monitoring, HSI has proven invaluable in the agriculture field [5,10,23,28–31]. Ground-
based HSI systems are appropriate for smaller-scale investigations, while airborne setups
are suitable for surveying large areas of land. A prominent feature of HSI is its ability to
produce complex plant pigment maps, supporting chlorophyll estimation as evidenced by
several studies [1,32–35].

Commercial HSI systems are versatile and can accommodate various applications, but
can be costly. However, due to imaging, instrumentation, and optics limitations, developing
custom-made HSI systems is challenging [36]. More research and standardisation are
necessary to overcome these challenges and optimise the performance of specially designed
HSI systems.

Using empirical vegetation indices (VIs) is an efficient and convenient method for
estimating plant characteristics, such as their structure and biochemistry, including the
chlorophyll content of plants [37]. VIs can be regarded as a modified representation
of spectral bands, incorporating established correlations between spectral response and
biophysical characteristics. For this reason, they are well-suited for monitoring temporal
changes throughout the phenological growth phases [38]. Most VIs are ratios or linear
combinations of spectral reflectance in two or more wavelength bands [39] that can be
obtained from HSI [37,40]. Consisting of a straightforward transformation of spectral bands,
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VIs are estimated without bias or presumptions about land cover class, soil type, or climate
conditions—enabling the observations of seasonal and long-term changes in a vegetation’s
structural, phenological, and biophysical characteristics [41–43]. VIs have proven to be a
valuable tool for monitoring plant health and productivity, and they are widely applied in
fields such as agriculture, forestry, and ecology.

This study evaluated two optical bands that are particularly useful in assessing LCC.
Our analysis focused on a linear regression between LCC values obtained from conventional
analytical measurements and VIs extracted with HSI. Although our main focus was the
Thai Chaew Khing rice cultivar, this study’s flexible approaches and strategies demonstrate
broad applicability. They can be modified for other kinds of crops.

The results of this study, including the tested VIs and the model validation, are elab-
orated upon in a detailed discussion. The optimal-band analysis identified two specific
wavelengths as being essential for LCC evaluation. These insights suggest that a stream-
lined device could be engineered with sensors at these wavelengths and be deployed on
UAVs or the ground. This advancement could be instrumental in N management strategies,
ensuring precise interventions for agricultural products [44].

2. Materials and Methods

To induce variation in chlorophyll content among the collected leaf samples, the
fertiliser application was varied by adding different concentrations of urea to the soil
across different plant plots. Specifically, urea was added to 12 kg of soil at the following
concentrations: 0 g, 3 g, 6 g, 9 g, and 12 g. Rice plants were cultivated in a greenhouse
until the tillering stage, when four leaves from each plant plot were randomly pruned at
various heights; this was to ensure variation in chlorophyll content among the collected
leaves. Each individual leaf was subsequently divided into six equal parts. This produced
120 unique samples in total, each representing a distinct combination of urea content and
leaf height. By employing this methodology, we hoped to generate a dataset that covered
a broad spectrum of chlorophyll concentrations, enabling us to use our specialised HSI
technology for comprehensive chlorophyll quantification.

Figure 1 illustrates the sample collection process, involving the division of each leaf
into six perpendicular parts along its midrib, resulting in a total of 120 samples. For ana-
lytical chlorophyll measurement, two circular discs with an approximate area of 0.84 cm2

each were sampled. In addition, a rectangular section of approximately 1.2 cm × 1.5 cm
was sampled for HSI to obtain spectral reflectance.

Figure 1. The workflow diagram outlines two sets of leaf samples that were prepared for analytical
chlorophyll measurement and hyperspectral imaging to collect the trait and spectral data.
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2.1. Hyperspectral Imaging

This paper introduces the design of a custom-made laboratory HSI system tailored
explicitly for chlorophyll quantification in rice leaves. The system’s design was meticu-
lously refined to eliminate unnecessary complexities and redundant features, resulting in a
streamlined, cost-effective, and adaptable configuration that utilises commonly accessible
optical components.

The system was specifically engineered to achieve maximum efficiency for the spectral
range from 450 nm to 800 nm. This range was chosen to coincide with the photosynthet-
ically active radiation band, which is recognised to be between 400 nm and 700 nm [45].
Additionally, the system was designed to include the critical band in the range of 700 nm to
760 nm, associated with important pigments found in rice leaves (chlorophyll a, chlorophyll
b, total chlorophyll, and carotenoids) [33].

To enhance its practicality, the objective was to achieve a spectral resolution of ap-
proximately 3 nm while also prioritising an image spatial resolution of 0.5 mm or finer.
This facilitated the clear visualisation of chlorophyll distribution across the leaf surface.
The imaging spectrometer plays a critical role in HSI systems. The dispersive element
used in our custom system is a grism, a transmission grating combined with a prism.
This configuration offers several advantages, including a linear spectrometer design that
simplifies optical alignment and housing assembly. The grism-based spectrometer design
also minimises the field curvature aberration, confining the dispersed rays close to the
optical axis [46].

In this study, the optical design (based on PF-0035-ALPY 600 purchased from Shelyak
Instruments, Le Versoud, France) was achieved via the ray tracing simulation in Zemax
OpticStudio (version 23.2.1) with incorporated wavelengths of 450 nm, 625 nm, and 800 nm,
as shown in Figure 2a. The figure illustrates the light rays converged using a paraxial lens
onto a slit with 25-µm width and 3-mm height. The dispersed light is projected onto the
grism-based imaging spectrometer comprising an achromatic triplet collimating lens with
a focal length of 20 mm, a grating with a groove density of 600 lines · mm−1, a single prism
with a wedge angle of 46◦, and an achromatic triplet focusing lens with a focal length of
20 mm.
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Figure 2. (a) The ray tracing simulation for the optical design of the custom hyperspectral imaging
system using Zemax OpticStudio at 450 nm, 625 nm, and 800 nm. (b) The simulation indicates slight
aberration or image distortion across the field of view (FOV) from −40 mm to 40 mm, with resolutions
ranging from 1.4 nm to 2.0 nm. At 625.0 nm the best resolution is obtained, while 800.0 nm has the
worst resolution. (c) Estimation of spectral resolution at the central wavelength near 625.0 nm, based
on the convolution of the point spread function and a slit with a width of 25 µm.
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Figure 2b displays the simulation result of the spot where the field of view (FOV) in
the cross-track scan is set to be −40 mm, 0 mm, and 40 mm. All simulated wavelengths
demonstrate slight aberration or image distortion across the operational FOV, with resolu-
tions ranging from 1.4 nm to 2.0 nm; 625.0 nm exhibits the best resolution, while 800.0 nm
has the worst resolution.

Figure 2c depicts the optimal spectral resolution obtained from the central wavelength
of the optical axis (approximately 625.0 nm), evaluated from the convolution of the extracted
point spread function (PSF) with a 25-nm slit width. The resolving ability of the two adjacent
slit images at 623.6 nm and 625.0 nm in a detector’s plane was assessed using the Rayleigh
criterion of minimum resolvable peaks [47].

Figure 3 illustrates the HSI components, including an imaging spectrometer, a varifocal
objective lens (Witrue, Shenzhen, China), a translation stage, a broadband light source, and
a computing unit. The system’s light source (400 nm to 900 nm) is two 50-W spectrum-
extended LED lamps (Shenzhen Learned Optoelectronics Technology, Shenzhen, China).
The light is directed onto a specimen with 45◦ angles of incident. The reflected light is
focused onto an order-sorting filter (Thorlabs, NJ, USA) with a cut-on wavelength of 450 nm
that helps to prevent an overlap of diffraction orders of adjacent bands. The light is then
passed through the objective lens, placed at an optimal working distance (250 mm away
from the specimen), and the imaging spectrometer, before being captured by a detector—a
1-inch monochrome CMOS camera (with a resolution of 5488 pixels × 3672 pixels, with
each pixel measuring 2.4 µm in size).

Plants 2024, 13, x FOR PEER REVIEW 5 of 16 
 

 

Figure 2b displays the simulation result of the spot where the field of view (FOV) in 
the cross-track scan is set to be −40 mm, 0 mm, and 40 mm. All simulated wavelengths 
demonstrate slight aberration or image distortion across the operational FOV, with reso-
lutions ranging from 1.4 nm to 2.0 nm; 625.0 nm exhibits the best resolution, while 800.0 
nm has the worst resolution. 

Figure 2c depicts the optimal spectral resolution obtained from the central wave-
length of the optical axis (approximately 625.0 nm), evaluated from the convolution of the 
extracted point spread function (PSF) with a 25-nm slit width. The resolving ability of the 
two adjacent slit images at 623.6 nm and 625.0 nm in a detector’s plane was assessed using 
the Rayleigh criterion of minimum resolvable peaks [47]. 

Figure 3 illustrates the HSI components, including an imaging spectrometer, a vari-
focal objective lens (Witrue, Shenzhen, China), a translation stage, a broadband light 
source, and a computing unit. The system’s light source (400 nm to 900 nm) is two 50-W 
spectrum-extended LED lamps (Shenzhen Learned Optoelectronics Technology, Shen-
zhen, China). The light is directed onto a specimen with 45° angles of incident. The re-
flected light is focused onto an order-sorting filter (Thorlabs, NJ, USA) with a cut-on wave-
length of 450 nm that helps to prevent an overlap of diffraction orders of adjacent bands. 
The light is then passed through the objective lens, placed at an optimal working distance 
(250 mm away from the specimen), and the imaging spectrometer, before being captured 
by a detector—a 1-inch monochrome CMOS camera (with a resolution of 5488 pixels × 
3672 pixels, with each pixel measuring 2.4 µm in size). 

 
Figure 3. A complete system of custom hyperspectral imaging (HSI). 

The captured image was calibrated using a standard Hg-Ar lamp with a Lorentzian-
fitted atomic emission line at 576.96 nm, revealing a 0.72 ± 0.03 nm resolution. This reso-
lution exceeded the initial simulation results (1.4 nm to 2.0 nm). Such resolution allows 
the HSI system to capture 486 spectral bands, making it suitable for various applications 
requiring detailed spectral analysis. 

A linear translational stage (OpticFocus, Singapore) with an increment step of 0.5 mm 
was used to accomplish the spatiospectral scanning of the leaf reflectance data. Rice leaves 
were divided into 120 pieces, each measuring 1.2 cm × 1.5 cm, and securely affixed onto 
five acrylic trays using double-sided tape, ensuring that the leaf surfaces were facing up-
ward; this is the adaxial surface. These sample trays, each containing 24 samples, were 
then placed on the sample stage for scanning, with the field of view measuring 80 mm 
(cross-track) × 150 mm (in-track). The images acquired during the scanning process were 

Figure 3. A complete system of custom hyperspectral imaging (HSI).

The captured image was calibrated using a standard Hg-Ar lamp with a Lorentzian-
fitted atomic emission line at 576.96 nm, revealing a 0.72 ± 0.03 nm resolution. This
resolution exceeded the initial simulation results (1.4 nm to 2.0 nm). Such resolution allows
the HSI system to capture 486 spectral bands, making it suitable for various applications
requiring detailed spectral analysis.

A linear translational stage (OpticFocus, Singapore) with an increment step of 0.5 mm
was used to accomplish the spatiospectral scanning of the leaf reflectance data. Rice leaves
were divided into 120 pieces, each measuring 1.2 cm × 1.5 cm, and securely affixed onto
five acrylic trays using double-sided tape, ensuring that the leaf surfaces were facing
upward; this is the adaxial surface. These sample trays, each containing 24 samples, were
then placed on the sample stage for scanning, with the field of view measuring 80 mm
(cross-track) × 150 mm (in-track). The images acquired during the scanning process were
compiled into a data cube with a spectral dimension consisting of 351 wavelengths and
spatial dimensions of 152 pixels (height) × 280 pixels (width), as shown in Figure 4.
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2.2. Analytical Chlorophyll Measurement

The samples were placed into a glass tube filled with 4 mL of DMF (N,N-
dimethylformamide) before being covered and stored in the dark for 24 h at 4 ◦C. Then,
the solution was measured for absorbance at 647 nm (A647) and 664 nm (A664) via a spec-
trophotometer UV-1900i (Shimadzu, Kyoto, Japan). Finally, the leaf chlorophyll content,
that is, the total chlorophyll content per unit leaf area in (µg · cm−2), was obtained via

LCC = (20.27A647 + 7.04A664)×
4 mL

2 × 0.82 cm2 , (1)

where the term in the parentheses was retrieved from [13]. This measurement determined
the total chlorophyll, which includes chlorophyll a and chlorophyll b. Chlorophyll a
primarily absorbs red and orange light, while chlorophyll b absorbs blue and purple
light [26]. The presence of both pigments is crucial for the photosynthetic efficiency of
plants [48], as they complement each other’s light absorption spectra.

2.3. Optimal-Band Analysis

Linear regression analysis was conducted to optimise the utilisation of LCC infor-
mation derived from hyperspectral reflectance data. The study involved assigning VIs as
independent variables and LCC as the dependent variable. Based on existing literature,
three distinct groups of VIs were categorised: the simple ratio (SR), the normalised differ-
ence (ND), and the chlorophyll index (CI) [49,50]. The VIs, formulated as combinations of
two specific bands (λi and λj), were expressed via the following equations:

SR =
Rλi

Rλj

(2)

ND =
Rλi − Rλj

Rλi + Rλj

(3)

CI =
Rλi

Rλj

− 1. (4)

The analysis focused on two bands within the 450 nm to 800 nm wavelength range.
These VIs, formed by combining the selected bands, were used as variables in the regres-
sion models. The model flowchart, presented in Figure 5, outlines the process, which
incorporated ten-fold cross-validation. This involved equally dividing the original dataset
collected from the leaf samples into ten parts, reserving one part as validation data, and
using the remaining nine parts for training. The process was iterated ten times to ensure
that each part was used for validation.
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train and validate the model. The original dataset containing 120 leaf samples was divided into ten
equally sized parts. One part was used as the validation set, and the remaining four parts were used
for training. This process was repeated ten times until each part was used as validation.

2.4. Statistical Analysis

The model performance was evaluated by taking the mean accuracy of the k-models
validation data, using the coefficient of determination:

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 ; (5)

and the root mean square error:

RMSE =

√√√√ N

∑
i=1

(
yi − ŷi

yi

)2
, (6)

where yi and yi are the measured LCC and its mean, and ŷi is the predicted LCC. The
evaluation of the model’s performance involved a comparison of the discrepancies between
the coefficient of R2 and RMSE. A combination of a high R2 and a low RMSE suggests
reasonable estimate precision and accuracy of the model for predicting the LCC of Chaew
Khing rice.

The strength of the model was evaluated using the correlation coefficient, which can
be expressed as

r = ∑(xi − x)(yi − y)√
∑ (xi − x)2∑(yi − y)2

, (7)

where x denotes the mean values of the variables. The r value lies in the interval [−1, 1],
with the negative and positive values indicating negative and positive linear relationships.
The strength of the correlation can be interpreted using the absolute value of r: negligible
(0.00–0.10), weak (0.10–0.39), moderate (0.40–0.69), strong (0.70–0.89), and very strong
(0.90–1.00) [51]. It is common to report r with the p-value. A low p-value (typically
≤0.05) suggests the statistical significance of the model, with strong evidence against the
null hypothesis.

For each tested VI, a contour map of R2 was plotted with wavelengths λi and λj on
the horizontal and vertical axis, respectively. The optimal band was chosen based on the
wavelengths that resulted in the highest R2. The arithmetic mean position of all points
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on the contour with the highest R2 was calculated to determine its centroid, that was
calculated via: {

Cx, Cy
}
=

{
M10

M00
,

M01

M00

}
, (8)

where M10 and M01 are the first moments in the x and y directions, respectively. M00 is the
zeroth moment, which is the total area under the contour curve with the highest R2.

3. Results
3.1. Leaf Reflectance

The mean spectral reflectance curve of the leaf samples is presented in Figure 6. The
curve exhibits a peak within the green light region, with lower reflectance observed in
the red and blue regions. Additionally, the near-infrared region shows higher reflectance
compared to the visible region.

Plants 2024, 13, x FOR PEER REVIEW 8 of 16 
 

 

the contour with the highest 𝑅  was calculated to determine its centroid, that was calcu-
lated via: 𝐶 , 𝐶 = 𝑀𝑀 , 𝑀𝑀 , (8)

where M10 and M01 are the first moments in the x and y directions, respectively. M00 is the 
zeroth moment, which is the total area under the contour curve with the highest 𝑅 . 

3. Results 
3.1. Leaf Reflectance 

The mean spectral reflectance curve of the leaf samples is presented in Figure 6. The 
curve exhibits a peak within the green light region, with lower reflectance observed in the 
red and blue regions. Additionally, the near-infrared region shows higher reflectance 
compared to the visible region.  

 
Figure 6. The mean spectral reflectance and standard deviation of 120 leaf samples demonstrate 
characteristic features of healthy vegetation, including a peak in reflectance within the green light 
range (500 nm to 600 nm) in the visible region, as well as a distinct increase in reflectance around 
700 nm, from the red to the near-infrared regions. There are significant variations in the standard 
deviation within the green and near-infrared regions. 

3.2. The Leaf Chlorophyll Content (LCC) 
The results of analytical chlorophyll measurement of all samples showed that the ob-

tained LCC range was 4 µg·cm−2 to 23 µg·cm−2, with a standard deviation of 5 µg·cm−2. To 
examine the relationship between LCC and the selected VIs, linear regression models were 
developed and plotted as contour maps in Figure 7, with the 𝑅  values indicated by the 
contour lines. 

Figure 6. The mean spectral reflectance and standard deviation of 120 leaf samples demonstrate
characteristic features of healthy vegetation, including a peak in reflectance within the green light
range (500 nm to 600 nm) in the visible region, as well as a distinct increase in reflectance around
700 nm, from the red to the near-infrared regions. There are significant variations in the standard
deviation within the green and near-infrared regions.

3.2. The Leaf Chlorophyll Content (LCC)

The results of analytical chlorophyll measurement of all samples showed that the
obtained LCC range was 4 µg · cm−2 to 23 µg · cm−2, with a standard deviation of
5 µg·cm−2. To examine the relationship between LCC and the selected VIs, linear regression
models were developed and plotted as contour maps in Figure 7, with the R2 values
indicated by the contour lines.

Linear regression analysis (Figure 8) revealed that all selected VIs were significantly
correlated with LCC, albeit with varying degrees of correlation. The optimal wavelengths
for each VI were determined by the centroid of the contour map with the highest R2

value. The corresponding statistics are presented in Table 1. Notably, the optimal wave-
lengths for all VIs were found to be in the green (572 nm to 575 nm) and near-infrared
(784 nm to 788 nm) regions of the electromagnetic spectrum, with a RMSE of 2.4 µg·cm−2

to 2.5 µg·cm−2.
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Further analysis of the correlation between LCC and each VI indicated that ND had
the strongest correlation with LCC, with an R2 value of 0.78, followed by SR and CI, which
exhibited comparable performance with R2 values of 0.76 each. Regarding the r-value, all
VIs strongly correlated with LCC, exceeding the significant threshold of 10%. ND and SR
exhibited equally high positive correlations with LCC, both with a value of 0.87. In contrast,
CI exhibited a slightly weaker positive correlation with LCC, with a coefficient of 0.76.
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Table 1. The optimal wavelengths with the corresponding root mean square error (RMSE) and
correlation coefficient (r) for the linear regressions models of Leaf Chlorophyll Content (LCC) versus
the VIs, namely normalised difference (ND), simple ratio (SR), and chlorophyll indices (CI). (Model
significant at the 0.01 level of probability).

VI Formula Optimal λi
nm

Optimal λj
nm

Determination
Coefficient (R2)

Root Mean Square
Error (RMSE) µg·cm−2

Correlation
Coefficient (r)

ND Rλi−Rλj
Rλi+Rλj

788 ± 2 575 ± 2 0.78 2.40 0.87

SR Rλi
Rλj

786 ± 4 572 ± 4 0.76 2.47 0.87

CI Rλi
Rλj

− 1 784 ± 4 574 ± 4 0.76 2.47 0.76

The statistics above indicate that the VI with the most outstanding performance is the
normalised difference between the green and near-infrared regions of the electromagnetic
spectrum. This VI, commonly referred to as the green normalised difference vegetation
index (GNDVI), is formulated as follows:

GNDVI =
Rλ788 − Rλ575

Rλ788 + Rλ575

. (9)
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The stimulated equation obtained from this study is

LCC = (53.5 × GNDVI)− 5.8. (10)

GNDVI resembles the typical normalised difference vegetation index (NDVI), albeit
with the substitution of the green spectral band for the red. GNDVI facilitates the assess-
ment of the photosynthetic activity and exhibits greater sensitivity towards variations
in chlorophyll concentration compared to NDVI [52]. GNDVI provides advantages in
scenarios where hyperspectral data are deficient in an extreme red channel [53]. VIs using
the green wavelength can detect changes in chlorophyll contents at the leaf and canopy
scale, and are appropriate for determining the developmental phases and stress levels of a
plant [54]. Figure 9 illustrates a Chaew Khing rice leaf, visualised using conventional optical
(RGB) images and the LCC quantified via GNDVI. The custom HSI system facilitated the
visualisation of chlorophyll concentration differences, further highlighting the potential of
this technology in precision agriculture and crop management.

Figure 9. Images of a Chaew Khing rice leaf captured using (a) traditional optical (RGB) and (b) the
green normalised difference vegetation index (GNDVI) calculations. The custom hyperspectral
imaging system enables the visualisation of chlorophyll concentration variations.

4. Discussion

This research demonstrated the utilisation of a custom HSI as a non-invasive tool to
evaluate LCC in Cheaw Khing rice. The chlorophyll concentration, the primary photo-
synthetic pigment responsible for absorbing photosynthetically active radiation in plant
leaves, exhibits variation across diverse phenotypes. Nonetheless, the existing body of
literature concerning the correlation between alterations in phenotype and LCC in Thai
rice still needs to be expanded. Spectral data for the rice samples were collected using a
custom HSI with a spectral range spanning from 450 nm to 800 nm. The observed LCC is
in the range of 23 µg · cm−2 to 40 µg · cm−2.

A consistent trend in spectral reflectance was observed across all samples, with a
decrease in the red and blue regions and an increase in the green and near-infrared regions.
Figure 6 displays considerable variations in LCC in the green and near-infrared regions. The
visible spectrum (400 nm to 700 nm) embodies the photosynthetically active region of the
electromagnetic spectrum. The obtained spectra display typical features of healthy green
vegetation, which highly reflects green light (500 nm to 600 nm) but has low reflectance in
the blue (450 nm to 500 nm) and the red (600 nm to 700 nm) regions due to the absorption
of chlorophyll for photosynthesis [55]. A rapid increase in reflectance around 700 nm,
from the red to the near-infrared region—referred to as the ‘red edge’—often appears
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as a steep slope [56], owing to light scattering in the inter-cellular volume of the leaves
mesophyll [57]. This research involved an assessment of VIs formulated as combinations of
two wavelengths within the observed hyperspectral regions of 450 nm to 800 nm, namely
simple ratio (SR), normalised difference (ND) and chlorophyll index (CI). Linear regression
analyses were performed to identify the active bands associated with LCC in Chaew Khing
rice for the selected VIs. The results imply that LCC is highly influenced by the spectral
bands in the green and near-infrared ranges.

Among the various combinations of wavelength ranges systematically tested, the
combination of two bands at the green and near-infrared regions demonstrated the highest
degree of accuracy in predicting LCC across all Vis. Our study suggests that the most
reliable approach for predicting LCC involves utilising GNDVI, the normalised difference
between 575 nm and 788 nm. This VI has been used in numerous studies, proving to be a
versatile indicator for predicting not only chlorophyll content [58–61] but also grain protein
content [62], nitrogen concentration [63], and fertilisation rate [64]. The combination of
the green and near-infrared spectral bands via GNDVI has demonstrated the potential to
enhance the precision of LCC estimation. Furthermore, the proposed methodology presents
a novel concept comprising solely two spectral parameters that could yield a more precise
estimate of chlorophyll. This implies that implementing hardware in the field would only
require light sensors in two bands. Therefore, a viable approach is utilising a hyperspectral
system for laboratory analysis and a more cost-effective and compact multispectral system
for in-field monitoring.

The versatility of our HSI system can conform to diverse optical configurations, which
is a significant benefit for agricultural applications. Modifying the spatial resolution, field-
of-view, and working distance of the system can be achieved by altering the lens modules
and objective lens focal length, catering to various samples’ diverse requirements. In
addition, the system can be equipped with alternative light sources, thereby facilitating
the investigation of additional spectroscopic techniques, such as fluorescence imaging and
Raman spectroscopy [65]. The adaptability and multifunctionality of our system enable
the development of novel imaging techniques and applications, especially for specimens
unsupported by conventional methods. The adaptability of our system to diverse optical
configurations and supplementary methodologies considerably broadens its potential
applications in the domain of agriculture.

Our study has yielded significant insights into the most effective spectral bands for
predicting chlorophyll in Chaew rice leaves. This finding holds promise for developing a
viable strategy for real-time monitoring of LCC in the field. This study focused on a Thai
rice cultivar, which needs spectral data, and the findings contribute to the understanding
of locally grown Thai rice. However, this work’s methodology and techniques are versatile
compared to other studies [6,8,9,12,34], have broader applicability, and can be extended to
other crop varieties. Subsequent investigations should prioritise incorporating more exten-
sive crop samples from diverse growth and planting stages to enhance the classification
framework’s reliability and generalisability. Furthermore, to improve the model’s validity,
machine learning approaches can be employed to update the model via a larger sample
size and incorporate additional factors, such as plant growth stages, planting conditions,
plant nitrogen utilization ability, and applied nitrogen fertilization rates, as these factors
influenced the nitrogen utilization in Thai rice [66–69].

The findings of this study have significant implications for developing a compact
device capable of LCC measurement using only the identified two wavelengths. This
suggests that one can develop a compact, non-destructive device for LCC quantification
comprising only two optical sensors at the green and NIR wavelength, offering a cost-
effective solution for farmers. Such a device could be integrated into UAVs or deployed
in field settings for real-time monitoring of LCC. Leveraging the capabilities of HSI, we
identified these informative wavelengths, which opens up possibilities for effective and
efficient LCC monitoring in agricultural applications.
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5. Conclusions

This research demonstrates the use of a custom HSI system (450 nm to 800 nm) to
evaluate LCC in Chaew Khing rice. Linear regression analysis revealed that the green and
near-infrared spectral bands significantly influenced LCC, especially with their combination
as simple ratio and normalised difference, both revealing a correlation coefficient of 0.87.
The GNDVI using wavelengths 575 ± 2 nm and 788 ± 2 nm was the most reliable VI for
predicting LCC (R2 = 0.78).

The versatility of the HSI system used in this study allows for adjustments in optical
configurations, such as spatial resolution, field-of-view, and working distance, catering to
diverse sample requirements. Furthermore, the system can be equipped with alternative
light sources, enabling the exploration of additional spectroscopic techniques.

While this study focused on a specific Thai rice cultivar, the methodology and tech-
niques employed have broader applicability and can be extended to other crop varieties.
Future research should include a broader range of crop samples from different growth
stages and planting conditions to enhance the reliability and generalisability of the clas-
sification framework. Machine learning approaches can also be considered to update the
model with a larger sample size and incorporate additional factors.

The findings of this study have significant implications for developing a compact
device that can measure LCC using only the identified two wavelengths. Such a device
offers a cost-effective solution for farmers and can be integrated into UAVs or deployed
in field settings for real-time monitoring of LCC. Leveraging the capabilities of HSI, the
informative wavelengths identified in this research provide opportunities for effective and
efficient LCC monitoring in agricultural applications.
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