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Abstract: (1) Background: Heterotrophs can affect plant biomass and alter species diversity–productivity
relationships. However, these studies were conducted in systems with a low nitrogen (N) availability,
and it is unclear how heterotroph removal affects the relationship between plant species diversity and
productivity in different N habitats. (2) Methods: Three typical understory herbaceous plants were
selected to assemble the plant species diversity (three plant species richness levels (1, 2, and 3) and
seven plant species compositions), and the control, insecticide, fungicide, and all removal treatments
were performed at each plant species diversity level in systems with or without N addition treatments.
(3) Results: In systems without N addition, the insecticide treatment increased the plant aboveground
biomass, total biomass, and leaf area, while the fungicide treatment reduced the plant belowground
biomass, root length, and root tip number; the presence of Bidens pilosa increased the plant aboveground
biomass. Similarly, the presence of Bletilla striata increased the plant belowground biomass and root
diameter under each heterotroph removal treatment. In systems with N addition, all removal treatments
reduced the plant belowground biomass and increased the plant leaf area; the presence of B. pilosa
significantly increased the plant aboveground biomass, total biomass, and root length under each
heterotroph removal treatment. The presence of B. striata significantly increased the plant belowground
biomass and leaf area under insecticide and fungicide treatments. (4) Conclusions: Heterotroph removal
alters the plant species diversity–biomass relationship by affecting the plant functional traits in systems
with different N availabilities. The impact of biodiversity at different trophic levels on ecosystem
functioning should be considered under the background of global change.

Keywords: nitrogen addition; heterotroph removal; species identity; productivity; functional traits

1. Introduction

Biodiversity is an important determinant of ecosystem function [1]. Plant species
diversity (species richness and species identity) could enhance plant productivity through
the selection effect and complementary effect [1–4]. However, most productivity measures
did not account for the effects of heterotrophs on productivity [5–7]. Heterotrophs include
herbivores, predators, scavengers, and pathogens. Previous studies showed that the
removal of arthropods and foliar fungi increased plant biomass [8–10], while the removal of
soil fungi increased the forb biomass in grassland systems [11]. Removing foliar fungi also
increased the biomass of trees in forest systems [12]. Increasing the plant species diversity
can increase the abundance of arthropods [13,14] or decrease the abundance of fungal
pathogens [15], and the impact of heterotrophs on plant biomass may increase or decrease
with an increasing plant species diversity. In addition, plant and microbial diversities
may have complementary effects on nutrient cycling [16]; plant and herbivore diversities
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may have opposite effects on plant productivity [17]. Thus, considering the influence of
heterotrophs on the plant species diversity–biomass relationship is necessary.

A few studies have concentrated on the impact of heterotroph removal on plant species
diversity–biomass relationships [8,12]. In the grassland system, insecticide and fungicide
treatments promoted the impact of plant diversity on productivity [8]. In forest systems,
the positive relationship between tree species richness and productivity was eliminated
when tree crowns were under a fungicide treatment [12]. However, all these studies were
conducted in habitats with relatively low nitrogen (N) levels. The impact of heterotroph
removal on the plant species diversity–biomass relationship in habitats with a high N level
remains unclear.

Human activities such as industrial development and agricultural production have
continuously increased atmospheric N deposition in the terrestrial ecosystem [18–21]. In
habitats with a low N availability, N deposition could increase plant biomass [6,22,23].
Nevertheless, continuous N deposition could lead to N saturation, inhibited plant
growth, and reduced plant biomass [24]. The increase in N availability in habitats may
promote the growth of dominant plants, thereby increasing the selection effects [25]; it
may also increase the complementary utilization of N by plants or promote interspecies
interactions to enhance the complementary effect [7,26]. In addition, the increase in
N availability in habitats may also alter the abundance of heterotrophs. For example,
N addition reduced the number of soil microorganisms [27,28]. Thus, exploring the
influence of heterotroph removal on plant species diversity–productivity relationships
in high N habitats is necessary.

The functional traits of plant leaves and roots, such as the leaf area, root length, and
root diameter, can reflect plants’ adaptability to the environment, their self-regulation
ability in complex habitats, and their essential characteristics and effective utilization of
resources [29]. Previous research showed that N deposition promoted the growth of the
aboveground biomass of plants and specific leaf area [30,31], but excessive N would de-
crease the specific root length and belowground biomass [32]. The presence of herbivorous
insects reduced the plant leaf area [33]. There was a direct interaction between soil micro-
bial communities and roots; fungi and rhizobia could affect the ability of roots to capture
nutrients from the soil [8,34].

To test how N addition and heterotroph exclusion affect the effect of plant species
diversity on plant biomass, we conducted a three-factor (N addition, plant species diver-
sity, and heterotrophic removal) control experiment, selecting three typical understory
herbaceous plants, Perilla frutescens, Bletilla striata, and Bidens pilosa, to assemble the
plant species diversity, and heterotroph removal was performed at each plant species
diversity level. N deposition was simulated by N addition (10 g N m−2 yr−1). The plant
above- and belowground biomasses and leaf and root functional traits of herbaceous
plants were measured. We investigated the influence of heterotroph removal on plant
biomass and functional traits in the system without/with N addition. We further inves-
tigated the effect of heterotroph removal on the plant diversity–biomass relationship
in the system without/with N addition. We predicted that heterotroph exclusion and
N addition may affect the plant species diversity–biomass relationship through the
plant functional traits.

2. Results
2.1. Plant Biomass Responds to N Addition and Heterotroph Removal

N addition increased the plant biomass, with the plant aboveground, belowground,
and total biomasses increased by 294.3%, 61.6%, and 178.5% on average, respectively
(Figure 1). Under different heterotroph removal treatments, N addition improved the
plant total and aboveground biomasses; under control and fungicide treatment groups,
N addition also improved the plant belowground biomass (Figure 1).
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Figure 1. Difference in plant (a) aboveground, (b) belowground, (c) total biomass among heterotroph
removal with or without N addition. Significant differences between systems without or with nitrogen
addition were indicated in capital letters, and significant differences among heterotroph removal were
indicated in lowercase letters. Each circle represents the average biomass of all species compositions
under each heterotroph removal treatment. Blue: control; orange: insecticide; gray: fungicide; yellow:
all removal.

In systems without N addition, the insecticide treatment increased the plant above-
ground biomass by 98.9%, and all removal treatments increased the plant aboveground
biomass by 90.3% relative to the control (Figure 1a); insecticide treatment also increased the
plant total biomass by 45.9% relative to the control (Figure 1c). In systems with N addition,
the study did not discover significant differences in the aboveground and total biomasses
among various heterotroph removal treatments (Figure 1a,c). In systems with or without N
addition, all removal treatments decreased the plant belowground biomass by 42.9% and
43.9% relative to the control, but insecticide treatment did not affect the plant belowground
biomass (Figure 1b).

2.2. The Relationship between Plant Species Diversity and Plant Biomass

Plant species richness significantly improved the plant aboveground biomass, but
plant belowground and total biomasses did not respond to plant species richness (Table S1).
Plant species compositions also significantly affected the plant aboveground, belowground,
and total biomasses (Table S1).

In systems without N addition, the aboveground biomass of the B. pilosa monoculture
was significantly higher than that of the P. frutescens monoculture and B. striata monoculture
(Figure 2a), and the presence of B. pilosa significantly increased the plant aboveground and
belowground biomasses under each heterotroph removal treatment (Table 1). It is worth
noting that the plant total biomass was not affected by plant species identity in the control
treatment. However, the plant total biomass was improved with fungicide treatment by
110.2% and all removal treatments by 155.8% when B. pilosa was present (Table 1).

Table 1. Plant biomass (aboveground, belowground, and total) responses to species identity without
N addition; p values are displayed in bold font when p < 0.05.

Source of Variation
Aboveground Biomass Belowground Biomass Total Biomass

p Value Change p Value Change p Value Change

Control
P. frutescens 0.223 ns 0.135 ns 0.061 ns
B. striata 0.357 ns <0.001 ↑ 381.67% 0.058 ns
B. pilosa <0.001 ↑ 343.78% 0137 ns 0.818 ns
Insecticide
P. frutescens 0.121 ns 0.109 ns 0.003 ↓ 49.72%
B. striata 0.942 ns <0.001 ↑ 356.69% 0.071 ns
B. pilosa <0.001 ↑ 300.77% 0.216 ns 0.189 ns
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Table 1. Cont.

Source of Variation
Aboveground Biomass Belowground Biomass Total Biomass

p Value Change p Value Change p Value Change

Fungicide
P. frutescens 0.554 ns 0.152 ns 0.126 ns
B. striata 0.102 ns <0.001 ↑ 252.87% 0.645 ns
B. pilosa <0.001 ↑ 472.00% 1.000 ns 0.001 ↑ 110.19%
Insecticide + Fungicide
P. frutescens 0.567 ns 0.056 ns 0.144 ns
B. striata 0.397 ns 0.003 ↑ 138.16% 0.765 ns
B. pilosa <0.001 ↑ 506.20% 0.635 ns <0.001 ↑ 155.78%

Notes: Values and arrows in ‘Change’ column show significant increase (↑) or decrease (↓) of the variables with
the presence of a certain species compared to its absence, and ‘ns’ means no significant change.
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Figure 2. Difference in monoculture plant aboveground biomass (a), belowground biomass (c), and
total biomass (e) in systems without N addition and plant aboveground biomass (b), belowground
biomass (d), and total biomass (f) in systems with N addition among heterotroph exclusion with
or without N addition. Significant differences between heterotroph removal groups were indicated
in capital letters, and significant differences between plant species monocultures were indicated in
lowercase letters. Blue bars: P. frutescens monoculture; yellow bars: B. striata monoculture; gray bars:
B. pilosa monoculture.

In systems with N addition, the aboveground and total biomasses of the B. pilosa
monoculture were significantly higher than those of the P. frutescens monoculture and B.
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striata monoculture (Figure 2b,f). Plant aboveground and total biomasses were improved
when B. pilosa was present under each heterotroph removal treatment (Table 2). Significantly,
the presence of B. striata decreased the aboveground biomass by 58.1% under control
treatment, while the presence of B. striata did not affect the plant aboveground biomass
after heterotroph removal. The presence of B. striata also increased the plant belowground
biomass by 170.9% and 174.2%, respectively, under control and fungicide treatments
(Table 2).

Table 2. Plant biomass (aboveground, belowground, and total) responses to species identity with N
addition; p values are displayed in bold font when p < 0.05.

Source of Variation
Aboveground Biomass Belowground Biomass Total Biomass

p Value Change p Value Change p Value Change

Control
P. frutescens 0.235 ns 0.487 ns 0.095 ns
B. striata 0.016 ↓ 58.09% <0.001 ↑ 170.89% 0.357 ns
B. pilosa <0.001 ↑ 735.36% 0.040 ↓ 46.65% 0.002 ↑ 122.13%
Insecticide
P. frutescens 0.247 ns 0.002 ↓ 75.01% 0.009 ↓ 52.30%
B. striata 0.111 ns 0.178 ns 0.114 ns
B. pilosa <0.001 ↑ 425.05% 0.516 ns <0.001 ↑ 220.75%
Fungicide
P. frutescens 0.316 ns 0.134 ns 0.069 ns
B. striata 0.464 ns 0.018 ↑ 174.19% 0.555 ns
B. pilosa <0.001 ↑ 270.44% 0.237 ns 0.003 ↑ 85.24%
Insecticide + Fungicide
P. frutescens 0.432 ns 0.014 ↓ 60.88% 0.980 ns
B. striata 0.077 ns 0.236 ns 0.148 ns
B. pilosa <0.001 ↑ 355.43% 0.347 ns <0.001 ↑ 211.94%

Notes: Values and arrows in ‘Change’ column show significant increase (↑) or decrease (↓) of the variables with
the presence of a certain species compared to its absence, and ‘ns’ means no significant change.

2.3. Functional Traits of Plant Leaves and Roots Respond to N Addition and Heterotroph Removal

N addition increased the plant leaf area, root length, and root tip number by 49.5%,
95.9%, and 53.0% on average, respectively (Figure 3a,b,d). N addition increased the leaf
area under control and all removal treatments (Figure 3a); N addition also increased the
root length and root tip number in the insecticide, fungicide, and all removal treatment
groups (Figure 3b,d); N addition reduced the root diameter under fungicide treatment
(Figure 3c).

In systems without N addition, the insecticide treatment increased the leaf area by
98.1% relative to the control (Figure 3a). Fungicide treatment decreased the root length by
46.2% relative to the control (Figure 3b). Insecticide treatment increased the root diameter
by 19.5%, and fungicide treatment increased the root diameter by 20.0% relative to the all
removal treatment (Figure 3c). The insecticide, fungicide, and all removal treatments de-
creased the root tip number by 30.0%, 41.7%, and 10.9% relative to the control, respectively
(Figure 3d). In systems with N addition, the all removal treatment increased the leaf area
by 54.7%, and fungicide treatment decreased the root diameter by 16.0% relative to the
control (Figure 3a,c). There were no significant differences found in the plant root length
and tip number among heterotroph removal treatments (Figure 3b,d).
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Figure 3. Difference in plant functional traits of plant leaf area (a), root length (b), root diameter (c),
and root tip number (d) among heterotroph removal with or without N addition. Significant dif-
ferences between systems without or with nitrogen addition were indicated in capital letters, and
significant differences between heterotroph removals were indicated in lowercase letters. Each circle
represents the average plant functional traits of all species compositions. Blue: control; orange:
insecticide; gray: fungicide; yellow: insecticide and fungicide.

2.4. The Relationship between Plant Species Diversity and Functional Traits of Plant Leaves
and Roots

Species richness significantly affected the plant leaf area and root tip number but did
not affect the root length and diameter (Table S1). The plant leaf area decreased when the
species richness increased to two and three, while the root tip number increased when
species richness increased to three. Plant species compositions also significantly affected
the plant leaf area, root length, root diameter, and root tip number (Table S1).

In systems without N addition, the leaf area of the B. striata monoculture was signif-
icantly higher than that of the P. frutescens monoculture under control treatment groups
(Figure 4a). However, the root diameter of the B. striata monoculture was significantly
higher than that of the P. frutescens monoculture under each heterotroph removal treatment
(Figure 4e), and the plant leaf area and root diameter were improved when B. striata was
present (Table 3). The responses of plant root length and root tip number to the species
identity were various under different heterotroph removal treatments. The presence of B.
striata reduced the root tip number and root length of plants under control and insecticide
treatments (Table 3), but the plant species identity did not affect root length under all
heterotroph removal treatments.

In systems with N addition, the root length of the B. striata monoculture was signifi-
cantly lower than that of the B. pilosa monoculture (Figure 4d), and the presence of B. striata
reduced the root length and root tip number under each heterotroph removal treatment.
The presence of B. pilosa increased the plant root length under each heterotroph removal
treatment (Table 4). The response of plant root length to the species identity remained
unchanged after heterotroph removal treatment. The root diameter of the B. striata mono-
culture was significantly higher than that of the P. frutescens monoculture and B. pilosa
monoculture (Figure 4f), and the presence of B. striata increased the root diameter under
each heterotroph removal treatment (Table 4).
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Figure 4. Difference in monoculture plant leaf area (a), root length (c), root diameter (e), root tip
number (g) in systems without N addition and leaf area (b), root length (d), root diameter (f), root tip
number (h) in systems with N addition among heterotroph exclusion with or without N addition.
Significant differences between heterotroph removals were indicated in capital letters, and significant
differences between plant species monocultures were indicated in lowercase letters. Blue bars:
P. frutescens monoculture; yellow bars: B. striata monoculture; gray bars: B. pilosa monoculture.

Table 3. Functional traits of plant leaves and roots respond to species identity without N addition;
p values are displayed in bold font when p < 0.05.

Source of Variation
Leaf Area Root Length Root Diameter Root Tip Number

p Value Change p Value Change p Value Change p Value Change

Control
P. frutescens 0.136 ns 0.063 ns 0.208 ns 0.007 ↑ 62.01%
B. striata <0.001 ↑ 95.19% 0.002 ↓ 52.62% 0.012 ↑ 51.69% 0.016 ↓ 37.89%
B. pilosa 0.133 ns 0.341 ns 0.037 ↓ 25.67% 0.138 ns
Insecticide
P. frutescens 0.123 ns 0.311 ns 0.035 ↓ 21.59% 0.480 ns
B. striata 0.006 ↑ 96.78% <0.001 ↓ 40.80% <0.001 ↑ 53.61% 0.010 ↓ 34.62%
B. pilosa 0.004 ↓ 57.27% 0.235 ns 0.494 ns 0.589 ns
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Table 3. Cont.

Source of Variation
Leaf Area Root Length Root Diameter Root Tip Number

p Value Change p Value Change p Value Change p Value Change

Fungicide
P. frutescens 0.177 ns 0.180 ns 0.255 ns 0.032 ↓ 25.80%
B. striata 0.002 ↑ 129.53% 0.413 ns <0.001 ↑ 59.98% 0.432 ns
B. pilosa 0.368 ns 0.036 ↑ 41.28% 0.619 ns 0.378 ns
Insecticide + Fungicide
P. frutescens 0.744 ns 0.119 ns 0.268 ns 0.052 ns
B. striata 0.002 ↑ 81.35% 0.135 ns <0.001 ↑ 51.78% 0.039 ↓ 21.53%
B. pilosa 0.275 ns 0.876 ns 0.109 ns 0.445 ns

Notes: Values and arrows in ‘Change’ column show significant increase (↑) or decrease (↓) of the variables with
the presence of a certain species compared to its absence, and ‘ns’ means no significant change.

Table 4. Functional traits of plant leaves and roots respond to species identity with N addition;
p values are displayed in bold font when p < 0.05.

Source of Variation
Leaf Area Root Length Root Diameter Root Tip Number

p Value Change p Value Change p Value Change p Value Change

Control
P. frutescens 0.111 ns 0.542 ns 0.693 ns 0.913 ns
B. striata 0.025 ↑ 55.64% 0.007 ↓ 53.30% <0.001 ↑ 73.57% <0.001 ↓ 48.59%
B. pilosa 0.762 ns <0.001 ↑ 225.29% <0.001 ↓ 36.05% 0.001 ↑ 90.01%
Insecticide
P. frutescens 0.023 ↓ 34.55% 0.865 ns 0.077 ns 0.678 ns
B. striata 0.090 ns 0.008 ↓ 64.61% <0.001 ↑ 67.27% <0.001 ↓ 41.13%
B. pilosa 0.664 ns 0.018 ↑ 79.98% 0.900 ns 0.667 ns
Fungicide
P. frutescens 0.180 ns 0.824 ns 0.406 ns 0.826 ns
B. striata 0.832 ns 0.014 ↓ 36.42% <0.001 ↑ 62.31% 0.048 ↓ 34.31%
B. pilosa 0.781 ns 0.003 ↑ 94.93% 0.046 ↓ 27.22% 0.239 ns
Insecticide + Fungicide
P. frutescens 0.273 ns 0.432 ns 0.252 ns 0.622 ns
B. striata 0.810 ns <0.001 ↓ 64.46% <0.001 ↑ 90.17% <0.001 ↓ 57.71%
B. pilosa 0.026 ↓ 26.22% 0.015 ↑ 76.82% 0.164 ns 0.180 ns

Notes: Values and arrows in ‘Change’ column show significant increase (↑) or decrease (↓) of the variables with
the presence of a certain species compared to its absence, and ‘ns’ means no significant change.

3. Discussion
3.1. The Effect of Heterotroph Removal on Plant Biomass

Previous work found that heterotroph removal can increase plant biomass, and the
effects of different heterotroph removals on plant biomass were different, with the highest
increase in insecticide treatment groups [8,12,35]. In systems without N addition, the
insecticide treatment increased the plant aboveground biomass by 99.0% and total biomass
by 54.0%, relative to the control (Figure 1a). Meanwhile, the insecticide treatment increased
the leaf area by 98.1% relative to the control (Figure 3a). According to the plant survival
strategy, the plant biomass increased with the increase in plant leaf area [36]. We also found
a positive correlation between the plant total biomass and leaf area (Figure 5). Insecticide
treatment may increase plant biomass by increasing the plant leaf area. Another reason may
be that arthropods have a negative impact on biomass [11]; thereby, insecticide treatment
accumulates the biomass removed by herbivorous insects. Unlike previous research results,
the plant biomass usually increases after fungicide treatment [11]; the plant aboveground
and total biomasses did not increase, and even the plant belowground biomass decreased
after fungicide treatment in this study (Figure 1b). Fungicide could remove some pathogens.
However, some symbiotic bacteria in the soil that are beneficial for plant growth were
affected by the fungicide treatment [9]. In addition, the plant root length and root tip
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number for fungicide treatment groups were lower than those under the control treatment
(Figure 3b,d). These results indicated that heterotroph removal may influence the plant
biomass by affecting the plant functional traits.
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In systems with N addition, heterotroph removal did not affect the plant aboveground
and total biomasses (Figure 1a,c). This result differs from those in systems without N
addition (Figure 1a,c). N addition altered the effect of heterotroph removal on plant
biomass. The possible reason may be that N addition provided sufficient environmental
resources, increased plant N absorption, promoted photosynthesis, and increased plant
biomass production [37], thereby reducing the effect of heterotroph removal on the plant
biomass. The root system is the organ in which plants absorb nutrients from the soil, and
roots can affect the plant biomass by affecting the soil nutrient turnover, nutrient utilization
efficiency, and mycorrhizal infection. Heterotroph removal may affect the ecosystem
function through plant functional traits [29,38,39]. In this study, there were no significant
differences in the plant root length and diameter among heterotroph removal treatments
in systems with N addition (Figure 3b,c). In addition, N addition may reduce the soil
microbial community [40,41], further weakening the influence of heterotroph removal on
plant biomass. These results indicated that the effect of heterotroph removal on plant
biomass depends on the habitat N availability.

3.2. The Effect of Heterotroph Removal on Plant Species Richness–Biomass Relationship

Most research showed that plant productivity increased with the increase in plant species
richness, and heterotroph removal altered the plant species diversity effect [4,8,12,42]. In the
grassland system, removing the insecticide and fungicide treatments promoted the effect of
plant species diversity on productivity [8]. However, in forest systems, a fungicide treatment
eliminated the positive relationship between tree species richness and productivity [12]. In
this study, the plant biomass did not respond to species richness under each heterotroph
removal treatment in systems without N addition (Figure S1a,c,e). The reason may be that
only three lower levels of richness were set in this experiment (1, 2, and 3), while most
experiments were set to high levels of richness [9,14,43].
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In systems with N addition, the impact of the plant species richness on plant above-
ground and total biomasses was positive under all removal treatments (Figure S1b,f). High
plant species richness improved the plant biomass through enhancing nutrient utiliza-
tion [44], and N addition may promote this effect. Meanwhile, insecticide and fungicide
treatments removed arthropods, leaf fungi, and soil fungi that could reduce plant biomass,
causing a significant increase in the plant aboveground and total biomasses when species
richness was three (Figure S1b,f). However, plant species richness had a negative impact
on the plant belowground biomass under an insecticide treatment (Figure S3d). The rea-
son may be that the abundance of arthropods increased with an increasing plant species
richness [45], which may consume more plant leaf area. There was a positive correlation
between the plant leaf area and belowground biomass (Figure 5), ultimately leading to
a decrease in the plant belowground biomass with an increasing species richness under an
insecticide treatment.

3.3. The Effect of Heterotroph Removal on the Effect of Plant Species Identity on Plant Biomass

Plant species identity is an important part of plant species diversity [1], and many
studies have shown that the plant species identity affects plant biomass [42,46]. In systems
without N addition, the presence of B. striata increased the plant belowground biomass
under each heterotroph removal treatment (Table 1); the presence of B. striata also increased
the plant leaf area and root diameter (Table 3). There was a significant positive correlation
between the leaf area, root diameter, and plant belowground biomass (Figure 5). These
results suggested that plant species identity affected the plant biomass by influencing the
plant functional traits.

In systems with N addition, the presence of B. striata increased the plant belowground
biomass in the control group, while this effect was dismissed after insecticide and fungicide
treatments (Table 2). Meanwhile, the change pattern in the plant leaf area of B. striata
was consistent with that of the plant belowground biomass (Table 4). Moreover, there
was a significant positive correlation between the plant leaf area and plant belowground
biomass (Figure 5), indicating that heterotroph removal altered the effect of species identity
on the plant biomass by influencing the plant leaf area. In addition, N addition may change
the interaction between plant species [26]. In this study, under insecticide or fungicide
treatments, the relative yield of B. striata in systems with N addition was higher than
that in systems without N addition (Figure S2). We also found that the selection effect
became increasingly important in systems with N addition, resulting in an increase in the
net biodiversity effect (Figure S3). Interestingly, the presence of B. striata decreased the
plant aboveground biomass in the control group but did not affect the plant aboveground
biomass after heterotroph removal treatment (Table 4). This study also found that the
presence of B. striata increased the plant root diameter but decreased the plant root length
and root tip number under each heterotroph removal treatment (Table 4). We observed
a significant positive correlation between the plant root length, root tip number, and plant
aboveground biomass, and a negative correlation between the root diameter and plant
aboveground (Figure 5). These results also indicated that heterotroph removal changed the
plant species identity’s effect on plant biomass by affecting the plant functional traits.

4. Materials and Methods
4.1. Experimental Design

The experiment was set up in a greenhouse at Wenzhou University in Wenzhou, Zhe-
jiang Province, China (120◦42′4′′ E, 27◦55′46′′ N). The climate was a subtropical monsoon
climate. The greenhouse has a transparent plastic roof, shielding the experiment from
rainwater while maintaining temperature and humidity levels. A shading net was installed
above the plastic roof to simulate the light environment under the forest. A three-factor
control experiment was conducted (Figure 6): (1) species diversity: based on the functional
trait, three local common understory herbaceous plants were chosen: Perilla frutescens (L.)
Britt, Bletilla striata, and Bidens pilosa L. (Table S2) for plant species diversity configura-
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tion (all seven plant species compositions); (2) heterotroph removal treatments: control,
insecticide, fungicide, and both insecticide and fungicide treatments; (3) N addition: N
deposition was simulated by N addition, using without N addition as the control. There
are four repetitions for each treatment. In total, 224 pots (30 cm diameter and 20 cm height)
were constructed.
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Figure 6. Experimental design (one block). The letters above the uppermost boxes represent plant
species compositions, and species compositions within each group are randomly arranged. Colors
represent heterotroph removal treatments: blue: control; orange: insecticide; gray: fungicide; yel-
low: insecticide and fungicide. The three-species treatment is depicted here, with different shapes
representing different species. Six plants are planted in each experimental system uniformly.

In April 2022, the seedlings of the plants were transplanted into pots, with six individ-
uals planted in each pot. From the end of April to the beginning of September, heterotroph
removal treatment and N addition treatment were conducted once a month. According to
Seabloom et al. (2017), insects were removed by spraying an insecticide water emulsion
(0.03% permethrin), fungi were removed by spraying fungicide (30% carbendazim), and
the control group added an equal volume of water. Based on the environmental wet N
deposition rate in Zhejiang Province (2.69 g N m−2 yr−1), we added ammonium nitrate
(NH4NO3) solution every month to simulate high N conditions, with an average amount
added each time (10 g N m−2 yr−1), and we added water as a control group.

Pesticides may impact plant growth even in the system without heterotrophs. There-
fore, we designed a laboratory to test the impact of insecticides and fungicides on the plant
biomass. The soil was homogenized and subjected to high-pressure steam treatment. Three
plant species were treated with four heterotroph removal treatments, and each treatment
had four replicates, totaling 48 pots with one individual in each pot. The heterotroph
removal treatment was applied once a month, and the application amount was the same
as the field experiment. Plants were allowed to grow for a total of ten weeks. After ten
weeks, harvest each plant and divide it into aboveground and belowground biomasses.
Results showed that heterotroph removal treatments do not affect plant biomass in the
indoor experiment without consumers (Figure S4).

4.2. Sample Collection and Calculation

Plants were harvested at the end of the plant growth period. After washing harvested
plants, three complete leaves and three roots were taken from each plant in each pot. After
scanning with a scanner (EPSON GT-X980, Hangzhou, China), the images were analyzed
and processed using the Wanshen leaf processing system (version 2018; www.Wseen.com)
to obtain the leaf area, root length, root diameter, and number of root tips. Divide the
plants into aboveground and belowground parts, dry at 105 ◦C for 20 min, then dry at
65 ◦C for 48 h to obtain each species’ aboveground and belowground biomass for each pot.

www.Wseen.com
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The net effects, complementary effects, and selection effects were calculated according to
Loreau and Hector’s calculation method [47]. The net effect refers to the difference between
the observed yield (actual yield) and the expected yield (weighted average of individual
yield corresponding to species in the mixture based on planting proportion) of the mixture.
Complementary effects are measured from changes in the relative yield of species. The
selection effect is measured by subtracting the complementary effect from the net effect.

1. Plant functional traits of leaves and roots:

To evaluate the response of plant functional traits to N addition and heterotroph
removal treatments at the community level, the functional traits’ community weighted
mean (CWM) was calculated:

CWM = ∑s
i=1 Eic × Bic (1)

where Eic represents species i’s plant functional traits in composition c, Bic represents species
i’s biomass in composition c (when calculating plant leaf area’s CWM, the Bic referred to the
proportion of species i’s aboveground biomass in composition c’s aboveground biomass;
when calculating plant root traits’ CWM, the Bic referred to the proportion of plant species
i’s belowground biomass in composition c’s belowground biomass of composition c), and s
referred to species’ amount in composition c.

2. Relative yield:

To evaluate whether N addition alter the competitiveness of specific species in the
mixture, relative yield (RY) of the plant was calculated:

RYi =
Oi
Ei

(2)

where Oi represents the aboveground biomass of species i per plant in the mixture, while
Ei represents the aboveground biomass of species i per plant in the monoculture. If RYi > 1,
species i is the dominant species in the mixture.

4.3. Statistical Analysis

The influence of species diversity (species compositions and species richness), N addition,
and heterotroph removal treatment on the plant biomass (aboveground, belowground, and
total) and functional traits of plant leaves and roots was determined using a three-way
ANOVA. The effects of plant species richness on plant biomass under each heterotroph
removal treatment were tested using linear regression analysis. The difference in the above
parameters between systems with and without N addition under the same heterotroph
removal treatment was tested using an independent sample t-test. The effect of heterotroph
removal treatment or plant species compositions on the above parameters under the same N
habitat level was determined using a one-way ANOVA. If there were significant differences,
the Tukey method was conducted. The effect of the plant species identity (the presence of
certain species) on each parameter was determined using an independent sample t-test. The
difference between the zero and net effects, complementary effects, and selection effects was
examined using a single sample t-test. The correlations of various parameters were verified
using Pearson’s correlation analysis. Before analysis, the data were ln-transformed to satisfy
the equality of variance (Levene’s test) and assumptions of normality (Kolmogorov–Smirnov
test). If the data after conversion still did not fulfill the assumptions, a nonparametric Kruskal–
Wallis test was employed. All statistical analyses were conducted using the R4.1.1 program.
All data were delivered as the mean ± standard error, and the statistical significance level was
set as α = 0.05.

5. Conclusions

This study investigated the relationship between the plant species diversity and
biomass response to heterotroph removal in systems with and without N addition. Our
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research findings indicate that heterotroph removal affected plant biomass by influencing
the plant leaf area in both systems with or without N addition, and altered the effect of
the plant species richness–plant biomass relationship by influencing the plant leaf area in
systems with N addition but not in systems without N addition. Heterotroph removal also
affected the effect of species identity on the plant biomass by influencing the plant functional
traits in both systems with or without N addition. Therefore, it is recommended that in
the background of global N deposition, the impact of other trophic level organisms on
ecosystem functioning cannot be ignored when analyzing the species diversity–ecosystem
functions relationship. In terms of ecosystem management, biodiversity at different trophic
levels should be protected. In the future, more high plant species diversity experiments
with long-term research are needed to determine the impact of heterotrophs on biodiversity–
ecosystem function relationships in high-N habitats.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13020258/s1, Table S1: Three-way ANOVA Table (a) Effects of nitrogen
addition, species compositions, heterotrophs removal treatment, and (b) Effects of nitrogen addition,
species richness, and heterotrophs removal treatment on above-, below-ground, total biomass and func-
tional traits of plant leaves and roots; Table S2: The plant functional traits of Perilla frutescens, Bletilla striata
and Bidens pilosa; Figure S1. Linear regression of species richness on plant aboveground biomass (a),
belowground biomass (c), and total biomass (e) in systems without N addition and plant aboveground
biomass (b), belowground biomass (d), and total biomass (f) in systems with N addition under different
heterotrophs removal treatment. Figure S2. The relative yield of B. pilosa under different heterotroph
treatments and N availability. Significant differences between heterotroph removal were indicated in
capital letters, and significant differences between N availability were indicated in lowercase letters. Blue
circle: without N addition; yellow, with N addition. Figure S3. Net effect of aboveground biomass (a),
belowground biomass (b), and total biomass (c); complementary effect of aboveground biomass (d),
belowground biomass (e), and total biomass (f); selection effect of aboveground biomass (g), below-
ground biomass (h), and total biomass (j) under different heterotroph removal treatments. * Represents
a significant effect under this treatment. Blue bar: control; orange, insecticide; gray, fungicide; yellow,
insecticide and fungicide. Figure S4. Aboveground (a), belowground (b), and total biomass (c) of plant
monoculture under different heterotrophs treatments. Same lowercase letters indicate no difference
between het-erotrophs removal. Blue bar: control; orange, insecticide; gray, fungicide; yellow, insecticide
and fungicide.
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