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Abstract: The vegetation ecosystem in the southern hilly region of China (SHRC) plays a crucial role
in the country’s carbon reservoir. Clarifying the dynamics of net primary productivity (NPP) in this
area and its response to climate factors in the context of climate change is important for national
forest ecology, management, and carbon neutrality efforts. This study, based on remote sensing and
meteorological data spanning the period 2001 to 2021, aims to unveil the spatiotemporal patterns of
vegetation productivity and climate factors in the southern hilly region, explore interannual variation
characteristics of vegetation productivity with altitude, and investigate the response characteristics
of NPP to various climate factors. The results indicate that from 2001 to 2021, the annual average
NPP in the southern hilly region had a significant increasing trend of 2.13 ± 0.78 g m−2 a−1. The
trend of NPP varies significantly with altitude. Despite a general substantial upward trend in
vegetation NPP, regions at lower elevations exhibit a faster rate of increase, suggesting a diminishing
difference in the NPP of different elevation ranges. The overall rise in average temperature has
positive implications for the southern hilly region, while the impact of precipitation on vegetation
NPP demonstrates noticeable spatial heterogeneity. Regions in which vegetation NPP is significantly
negatively correlated with precipitation are mainly concentrated in the southern areas of Guangdong,
Fujian, and Jiangxi provinces. In contrast, other regions further away from the southeastern coast
tend to exhibit a positive correlation. Over the past two decades, there has been an asymmetry in the
diurnal temperature variation in the SHRC, with the nighttime warming rate being 1.8 times that of
the daytime warming rate. The positive impact of daytime warming on NPP of vegetation is more
pronounced than the impact of nighttime temperature changes. Understanding the spatiotemporal
patterns of NPP in the SHRC and the characteristics of its response to climate factors contributes to
enhancing our ability to protect and manage vegetation resources amidst the challenges of global
climate change.

Keywords: net ecosystem productivity; climate attribution; southern hilly region of China; nocturnal
warming

1. Introduction

As a pivotal component of the global terrestrial ecosystem, land surface vegetation
plays a crucial role in energy transfer, the water balance, the carbon cycle, and climate
regulation [1,2]. One vital indicator of ecosystem function is net primary productivity
(NPP), defined as the net carbon uptake by plants through photosynthesis (the difference
between the carbon assimilated during photosynthesis and that released during plant
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respiration) [3,4]. NPP is extensively employed for measuring vegetation dynamics and
assessing ecological security [5,6]. Recently, it has become possible to expand NPP studies
from the traditional site scale to regional and global scales [7–9] by using remote sensing
techniques which now offer convenient and efficient means for NPP estimation. Changes
in vegetation NPP in the southern hilly region of China (SHRC), the area of China with
the most concentrated distribution of hills, have important implications for China’s carbon
sink, but the region has not been the subject of any research specifically focused on this
topic. However, previous studies have analyzed the interannual variations in NPP of many
different vegetation ecosystems at regional or national scales. For example, Du et al. [4]
employed the Carnegie–Ames–Stanford Approach (CASA) model to invert and analyze
the spatiotemporal patterns of the interannual variations in NPP of forest ecosystems in
China from 1982 to 2015, while Teng et al. [6] employed the CASA model and the residual
trend method to estimate the actual NPP, potential NPP, and anthropogenic NPP, along
with their variations, in the Qilian Mountains in Northwest China from 2001 to 2012. The
spatiotemporal variations in the NPP of temperate grasslands in China over the past two
decades were analyzed Ma et al. [5] using remote sensing data. Recent studies have shown
significant variations in the impact of climate change on vegetation dynamics at different
altitudes [10]. However, it is still unclear whether there are distinct interannual variations
in vegetation productivity along the altitudinal gradient in the SHRC.

The NPP of plant ecosystems is influenced by various environmental factors, but cli-
mate factors have been shown to be the primary determinants of their carbon sequestration
capacity [4,10–12]. For instance, Peng et al. [11] suggested that recent climate changes have
led to an increase in NPP in the northern forests of central Canada. Wang et al. [12] analyzed
the impact of temperature and precipitation on the NPP in China at the beginning of the
21st century and found a relatively weak correlation between NPP and annual average tem-
perature [12]. In the northern and central regions of China, NPP is significantly positively
correlated with the annual total precipitation, whereas in the eastern Tibetan Plateau and
Sichuan Basin, there is a negative correlation [12]. Du et al. [4], relying on meteorological
and remote sensing data, observed that elevated temperatures and solar radiation have
raised the annual NPP of forests in China, while decreased precipitation has diminished the
annual NPP. Despite these prior studies analyzing the response of vegetation productivity
to climate factors in specific regions, vegetation types and time periods, there has been
relatively little attention given to the response of vegetation productivity to climate change
in the SHRC.

Over the past half-century, there has been an asymmetry in the warming trend be-
tween daytime and nighttime, with nighttime warming rates surpassing those during the
daytime [13,14]. This asymmetry in diurnal temperature variation is influenced by various
factors such as deforestation [15,16], land-use and land-cover changes [17,18], atmospheric
aerosols [19], precipitation [20,21], cloud cover [21,22], solar radiation [23,24], and planetary
boundary layer height [13]. For instance, an increase in total cloud cover tends to reduce
the amplitude of daytime warming while enhancing the rate of nighttime warming [22],
because the reduction in shortwave solar radiation reaching the Earth’s surface during the
day is offset by an increase in the downward longwave radiation received by the surface at
night [22]. The asymmetry in the rates of daytime and nighttime warming has also gained
attention due to its impact on vegetation activity [25]. Research findings based on satellite
observations and field experiments indicate differences in the response of vegetation dy-
namics and NPP to daytime and nighttime warming [25–28]. For example, Peng et al. [26]
found that in the majority of humid and cold ecosystems in northern regions, daytime
warming typically exhibited a positive impact on the increase in vegetation greenness,
whereas nighttime warming was usually negatively correlated with vegetation greenness.
However, these studies have primarily been conducted in high latitudes, high altitudes, or
inland arid regions. Research on the response of vegetation in the SHRC to daytime and
nighttime warming remains scarce.
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Based on remote sensing data and meteorological data from 2001 to 2021, this study
attempts to: (1) reveal the spatiotemporal patterns of vegetation NPP and climate factors
(i.e., average temperature, daytime temperature, nighttime temperature, and precipitation)
in the SHRC; (2) explore the differences in the interannual variation characteristics of
vegetation NPP with altitude; (3) investigate the response characteristics of NPP to different
climate factors (i.e., average temperature, daytime temperature, nighttime temperature,
and precipitation). The aim of the above analysis is to provide reference values for the
sustainable ecology and management of vegetation in the SHRC.

2. Data and Method
2.1. Dataset

The vegetation NPP data utilized in this study were acquired from the Global NPP
dataset version 6.0 (MOD17A3HGF 6.0) of the National Aeronautics and Space Admin-
istration (NASA) Earth Observing System (EOS)/Moderate Resolution Imaging Spectro-
radiometer (MODIS) and cover the years 2001 to 2021. The data were obtained from
https://lpdaac.usgs.gov/ (accessed on 12 November 2023) and have a temporal resolution
of 1 year, spatial resolution of 500 m, and are formatted in HDF [29]. The MODIS Reprojec-
tion Tool (MRT) was employed to batch stitch, format conversion, and reproject the original
NPP images. After batch stitching, standardizing coordinates, and cropping, vegetation
NPP data for the SHRC for the years 2001 to 2021 were generated. Each year’s NPP data
were multiplied by a conversion factor, and invalid values were excluded from the analysis
and calculations. The MOD17A3HGF version 6.0 dataset represents an improved product
which is based on the BIOME-BGC model and the light use efficiency model [5,30]. It
utilizes a new biome properties look-up table (BPLUT) and daily meteorological data from
the Global Modeling and Assimilation Office (GMAO) to simulate NPP values, thereby
enhancing the accuracy of NPP estimation [31]. This dataset, which has been validated and
utilized in diverse global research studies [32–34], was employed here to resample NPP
data using the mean method with a resolution of 0.05 degrees.

Historical monthly-average daily maximum and minimum temperatures (Tmax and
Tmin) and precipitation data spanning from 2001 to 2021 were acquired from the WorldClim
historical monthly weather dataset. This dataset, derived from CRU-TS-4.06 by the Climatic
Research Unit at the University of East Anglia, has been extensively employed in research
exploring the relationship between regional vegetation NPP and climate change. It has a
spatial resolution of 0.04◦ × 0.04◦ and employs angular-distance weighting interpolation.
The data were downsized and bias-corrected using WorldClim 2.1 [35]. Here, based on
previous studies [26,27], we use Tmax and Tmin to represent daytime temperature and
nighttime temperature, respectively, while Tmean is computed as the average of Tmax and
Tmin. To align with the resolution of the vegetation NPP data, the historical monthly climate
datasets were further aggregated to 0.05◦ × 0.05◦ using the nearest neighbor method.

The spatial distribution of elevation at a 0.0083◦ spatial resolution for the SHRC is
based on NASA Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model
(DEM) data. This SRTM dataset, renowned for its high accuracy and open accessibility,
has been widely utilized in environmental analyses [36–38]. The dataset was acquired
from the Research Center for Environmental and Data Sciences at the Chinese Academy
of Sciences (https://www.resdc.cn/data.aspx?DATAID=123, accessed on 20 December
2023) and resampled to a spatial resolution of 0.05◦ using the mean method. In this
study, hilly areas were designated as regions with elevations ranging from 200 to 500 m
(Figure 1). Altitudinal levels in the study area were classified into three groups: low-
altitude (200 m < DEM ≤ 300 m), mid-altitude (300 m < DEM ≤ 400 m), and high-altitude
(400 m < DEM ≤ 500 m).

https://lpdaac.usgs.gov/
https://www.resdc.cn/data.aspx?DATAID=123
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Figure 1. Spatial distribution of elevation (DEM) in southern hilly region of China.

2.2. Method
2.2.1. Linear Trend Analysis

We used least squares linear regression for the trend analysis of climate variables
and NPP. Positive and negative regression coefficients were interpreted as indicating
increasing or decreasing trends, respectively [28,39]. The significance level of the linear
regression coefficients was evaluated with a two-tailed t-test [27]. Additionally, pixel-based
calculations were employed to analyze the spatiotemporal patterns of trends in climate
variables and NPP in vegetated areas in the SHRC during 2001–2021.

2.2.2. Partial Correlation Analysis

We used a first-order partial correlation analysis to examine the impact of temperature
and precipitation on the NPP of vegetation in the SHRC from 2001 to 2021. The first-order
partial correlation coefficient can be calculated from the correlation coefficient by using the
following formula [40]:

rxy·z =
rxy − rxzryz√

1 − r2
xz

√
1 − r2

yz

(1)

where rxy·z is the first-order partial correlation coefficient between x and y after removing
the influence of variable z. rxy, rxz, and ryz are the correlation coefficients between the
two variables.

The formula for calculating the correlation coefficient is [40]:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)2

(2)

where rxy is the correlation coefficient between variables x and y. xi and yi are individual
data points for x and y. x and y are the means of x and y respectively.
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The significance of the partial correlation coefficient is conducted using a t-test,
given by:

t =
rxy,z√

1 − rxy,z

√
n − m − 1 (3)

where n represents the sample size, and m represents the number of independent variables.
In addition, we employed a second-order partial correlation analysis when examining

the impact of daytime and nighttime temperatures on the NPP of vegetation. Specifically,
the partial correlation coefficient between NPP and Tmax was calculated by restricting Tmin
and the precipitation and, similarly, the partial correlation coefficient between NPP and
Tmin was determined by constraining Tmax and precipitation. The formula for calculating
the second-order partial correlation coefficient is [40]:

rxy·z1z2 =
rxy·z1 − rxz2·z1ryz2·z1√
1 − r2

xz2·z1

√
1 − r2

yz2·z1

(4)

where rxy·z1z2 is the first-order partial correlation coefficient between x and y after removing
the influence of variables z1 and z2. rxy·z1, rxz2·z1 and ryz2·z1 are the first-order partial
correlation coefficients between the two variables.

3. Results
3.1. Spatial–Temporal Variation of Climatic Factors

The average annual temperature (Tmean) in the SHRC increased significantly at a rate
of 0.29 ◦C/decade (p < 0.05) on average from 2001 to 2021 (Figure 2A). The linear fitting
equations reveal that Tmin has increased by 0.37 ◦C/decade (p < 0.01), while Tmax has
increased by 0.21 ◦C/decade (p > 0.05), meaning the nighttime warming rate was approx-
imately 1.8 times higher than the daytime warming rate (Figure 2B,C). This observation
suggests an asymmetry in the warming patterns between the daytime and nighttime over
the past two decades (Figure 2B,C). For precipitation, there is no significant interannual
variation (p > 0.05) in the SHRC at the regional scale for the period from 2001 to 2021
(Figure 2D).

Spatially, the increase of Tmean was extensive, being observed across more than
99.5% of the study area, with 59.7% of the pixels showing significant increases (p < 0.05)
(Figure 3A). Across the entire study area, the southern regions of Guangxi, Guangdong,
Fujian, and Jiangxi provinces experienced the highest rates of temperature increase, while
the provinces situated further north exhibited lower rates of increases in Tmean (Figure 3A).
It is noteworthy that only 9.5% of Tmax shows a significant increasing trend, whereas the
proportion of Tmin exhibiting a significant increase reaches 78.7% (Figure 3B,C). This result
indicates a pronounced asymmetry in diurnal temperature changes in the study area, with
the majority of the rise in Tmean from 1982 to 2015 being driven by an increase in nighttime
temperatures. Similarly to the spatial pattern of Tmean, areas with a significant increase
in both Tmax and Tmin are predominantly located in lower-latitude regions (Figure 3B,C).
Additionally, during the same period, there is no significant decreasing trend in Tmean,
Tmax, and Tmin in the study area. For precipitation, although 92.7% of the trends show an
upward trajectory, these are only statistically significant (p < 0.05) for 4.8% of the region,
primarily in areas of the southeastern part of Anhui Province and the northwestern part of
Fujian Province (Figure 3D). No significant downward trend in precipitation was found
anywhere in the study area over the same period (Figure 3D).
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3.2. Spatial–Temporal Variation of NPP

At the regional scale, the NPP in the SHRC showed a significant increasing trend from
2001 to 2021, with a slope of 2.13 ± 0.78 g m−2 a−1 (Figure 4A). However, the increase of
NPP decreased with altitude (Figure 4B,C) with the annual mean variability of NPP ranging
from 1.52 (low-altitude) to 2.61 (high-altitude) g m−2 a−1. The trend of NPP exhibited a
significant difference with altitude (Figure 4C).
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Figure 4. Variations of annual NPP in the southern hilly region of China (SHRC) from 2001–2021.
(A) Annual NPP and trend in the SHRC. Shading denotes 95% prediction intervals. (B) Annual
NPP and trend in low-altitude (red), mid-altitude (green), and high-altitude (blue) regions. β and
R2 represent the linear regression slope and coefficient of determination, respectively. Shading
denotes 95% prediction intervals. (C) The trend of NPP at different altitudes. The central line
in the boxplot represents the median value, with box limits showing upper and lower quantiles
and whiskers showing 1.5× interquartile range. Symbols a, b, and c denote significant differences
(p < 0.05) between different altitudes as determined by the Mann-Whitney U test. The letter “a”
represents the year.

Spatially, the regions exhibiting a rising trend in annual NPP accounted for 77.9%
of the overall study area. Notably, 39.5% of individual pixels displayed a statistically
significant increase (p < 0.05), as illustrated in Figure 5. This significant increasing trend
was primarily concentrated in Hubei Province, Hunan Province, Guangxi Province, the
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southern part of Anhui Province, the southern part of Jiangxi Province, and the central
part of Zhejiang Province (Figure 5, Table 1), These findings suggest a significant ecological
shift or enhancement in vegetation productivity within these specified regions (Figure 5).
Conversely, there was a small number of pixels (2.5%) with statistically significant decreas-
ing trends in NPP (p < 0.05). These were predominantly located in the east of Guangdong
Province and in central Fujian Province (Figure 5, Table 1). At the provincial level, the
proportion of pixels with a significant increasing trend far exceeded that of those with a
significant decreasing trend in all the provinces except for Guangdong and Fujian (Table 1).
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the year.

Table 1. Percentage of pixels (%) showing different trends in NPP from 2001–2021 across different
provinces.

Province Increase Significant Increase Decrease Significant Decrease

Anhui 99.9 74.6 0.1 0.1
Fujian 44.2 5.7 55.8 3.5
Hubei 98.9 67.8 1.1 0.5
Hunan 93.0 64.3 7.0 0.7

Guangdong 49.8 9.7 50.2 10.3
Guangxi 85.1 45.0 14.9 0.4
Jiangxi 74.4 32.9 25.6 2.6

Zhejiang 91.4 30.3 8.6 0.4

3.3. NPP in Relation to Climate Factors

At the regional scale, vegetation NPP in the SHRC exhibits a significantly positive
correlation with Tmean, with a partial correlation coefficient of 0.60 (p < 0.05), while its
correlation with precipitation is not statistically significant (p > 0.05). Along the elevation
gradient, after eliminating the influence of precipitation, vegetation NPP shows a significant
positive correlation (p < 0.05) with Tmean in low, mid, and high-altitude hilly areas, with
partial correlation coefficients of 0.58, 0.61, and 0.62, respectively. However, after removing
the influence of Tmean, the correlation between vegetation NPP and precipitation is not
significant across the various altitudes.
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In terms of spatial patterns, after eliminating the influence of precipitation, NPP
exhibits a positive correlation with Tmean for 90.7% of the pixels, with 21.5% of these pixels
showing a significant positive correlation. These pixels are primarily located in the western
part of Hunan Province, southern Jiangxi Province, northern Guangxi Province, and the
western regions of Fujian Province (Figure 6, Table 2). In contrast, although 9.3% of pixels
show a negative correlation between NPP and Tmean, less than 0.1% pass the significance
test (Figure 6). After removing the influence of Tmin and precipitation, 83.0% of the pixels
in the study region exhibit a positive correlation between NPP and Tmax, with only 10.3% of
these, primarily located in the western part of Hunan Province, northern Guangxi Province,
southern Jiangxi Province, northern Guangdong Province, and the western part of Fujian
Province (Figure 6, Table 2), passing the significance test. Similarly to Tmean, areas where
NPP and Tmax exhibit a significant negative correlation make up less than 0.1% of the study
region. After removing the influence of Tmax and precipitation, 58.2% of the pixels exhibit a
positive correlation between NPP and Tmax, with only 5.0% of these passing the significance
test. In this case, the pixels with a significant positive correlation are primarily located in
the northern part of Guangxi Province, southern Jiangxi Province, and the western part of
Hunan Province (Figure 6, Table 2). Furthermore, after removing the influence of Tmean,
50.9% of the pixels exhibit a positive correlation between NPP and precipitation. Among
these, the proportion passing the significance test is 7.0%, and these are primarily located
in the western part of Guangxi Province, western Hunan Province, and central Zhejiang
Province (Figure 6, Table 2). In 49.1% of the SHRC, there is a negative correlation between
NPP and precipitation. Of these pixels, 16.3%—primarily located in the southern part of
Jiangxi Province, northern Guangdong Province, western Fujian Province, and the eastern
part of Guangxi Province (Figure 6, Table 2)—exhibit a significant negative correlation.
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hilly region of China from 2001–2021.
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Table 2. Percentages of statistically significant pixels for the partial correlation coefficients between
NPP and Tmean, precipitation, Tmax and Tmin for each province (%).

Province
Tmean Precipitation Tmax Tmin

+ − Total + − Total + − Total + − Total

Anhui 0.8 0.0 0.8 14.0 0.1 14.1 4.6 0.0 4.6 0.3 2.2 2.5
Fujian 25.7 0.1 25.8 0.0 57.6 57.7 28.2 0.0 28.2 1.4 7.6 9.0
Hubei 1.6 0.0 1.6 55.0 0.0 55.0 5.9 0.0 5.9 7.7 5.8 13.5
Hunan 29.1 0.0 29.1 2.8 0.7 3.5 3.6 0.0 3.6 8.7 0.1 8.8

Guangdong 23.5 0.1 23.6 0.0 33.1 33.1 20.4 0.0 20.4 0.7 3.9 4.6
Guangxi 19.0 0.0 19.0 1.9 2.8 4.7 8.5 0.0 8.5 4.3 3.6 7.9
Jiangxi 32.1 0.0 32.1 1.6 28.1 29.7 8.1 0.0 8.1 10.2 0.3 10.5

Zhejiang 12.2 0.1 12.3 7.9 1.1 9.0 0.6 0.0 0.6 1.1 0.2 1.3

Symbols “+” and “−” indicate statistically significant (p < 0.05) positive and negative correlation, respectively.

4. Discussion

Over the past 20 years, the SHRC has exhibited a significant increasing trend in
vegetation NPP. This trend aligns with the increased NPP observed in land vegetation in
the Northern Hemisphere [41,42] and throughout China [4,43,44] and underscores the vital
role of SHRC vegetation in carbon sequestration in recent decades. However, our study
reveals notable spatial heterogeneity in the overall trend of vegetation NPP. Inland areas,
such as northern Guangxi, western Hunan Province, and southern Jiangxi Province, have
experienced a higher rate of NPP increase, while many coastal areas in provinces such as
Guangdong and Fujian show a declining trend in NPP. These results may be related to the
shift in land-use types induced by economic development, as significant urban expansion
has counteracted the increase in NPP caused by climate change [45]. Furthermore, our
research identifies parallels with other responses to global climate change, such as mountain
tree-line dynamics [10]. Interestingly, the NPP growth rate is significantly higher in low-
altitude hilly areas than in high-altitude hilly areas (Figure 4) despite an overall lower
NPP at low altitudes. This suggests that, in the context of global change, differences in
vegetation NPP with altitude are diminishing or converging.

Previous studies on high-latitude regions [26,46], high-altitude areas [28,47,48], and
arid regions [27,49] have shown significant differences in the impact of daytime and
nighttime temperatures on vegetation activity. For instance, studies by Piao et al. [46]
revealed that in many high-latitude regions of the Northern Hemisphere, the timing
of the onset of greening for plants is primarily determined by pre-season daytime tem-
peratures. Shen et al. [47] found that nighttime temperatures have a greater impact on
vegetation greening in the Qinghai–Tibet Plateau region than daytime temperatures, while
Yang et al. [49] discovered that nocturnal warming, rather than daytime warming, en-
hanced carbon sequestration and increased the resilience of the Inner Mongolia semi-arid
temperate grassland community to drought, promoting ecosystem sustainability. Similarly,
our study demonstrates that in the SHRC, vegetation responds asymmetrically to day-
time and nighttime warming. Daytime warming benefits the enhancement of vegetation
productivity in most areas, while the impact of nighttime warming on vegetation shows
significant spatial heterogeneity (Figure 6). Although nighttime warming tends to have
adverse effects on vegetation productivity in Fujian and Guangdong provinces (Table 2), it
positively influences vegetation productivity in Hunan and Jiangxi provinces over much
larger areas than those that are affected significantly negatively (Table 2).

This study utilized the MOD17A3HGF data product to analyze spatiotemporal varia-
tions of vegetation NPP in the SHRC from 2001 to 2021 and its response to climatic factors.
Although the research results are generally consistent with previous studies in the region,
demonstrating robustness [44], the study does have some limitations. Due to the large
coverage and diverse vegetation types in the study area, as well as significant variations in
NPP for different vegetation types under different climatic and seasonal conditions, future
research should focus on further subdividing vegetation types and exploring the changing
trends of vegetation NPP in different seasons and over longer time scales in the SHRC.
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Additionally, in analyzing the relationship between NPP and climatic factors, here we only
considered multiple temperature factors and precipitation and did not incorporate other
factors such as the regional atmospheric circulation, solar radiation, evapotranspiration,
atmospheric water vapor or cloud cover into the impact of climate change on vegetation
NPP [25,27,50]. These omissions may introduce some uncertainty into the results. Further-
more, a specific analysis of the main driving factors of human activities was not conducted.
In the 21st century, substantial ecological construction initiatives have been implemented
in the SHRC. These initiatives encompass projects focused on soil and water conservation,
ecological restoration, species protection, vegetation recovery, and preservation, among
others [51,52]. Undoubtedly, these ecological projects exert an influence on vegetation
NPP. Therefore, any future research should include additional climate factors in the models
and provide a more detailed analysis of human activities, such as urban expansion and
ecological construction, to enhance the accuracy and reliability of results regarding the
factors influencing vegetation NPP.

5. Conclusions

This study, spanning the period 2001 to 2021 and utilizing remote sensing and me-
teorological data, aims to reveal spatiotemporal patterns in vegetation productivity and
climate factors in the SHRC. We explored interannual variations of vegetation productivity
along the altitudinal gradient and investigated the response of NPP to various climate
factors. Over the period from 2001 to 2021, we found a significant increasing trend in
annual average NPP of 2.13 ± 0.78 g m−2 a−1, which exhibited variation along the altitu-
dinal gradient. Despite an overall upward trend in NPP over various elevations, lower
elevations present a faster rate of increase, indicating diminishing differences in NPP with
altitude. At the regional scale, vegetation NPP exhibits a significant positive correlation
with Tmean, while the correlation with precipitation is not significant. At the pixel scale, the
overall temperature rise positively influences the southern hilly region, while the impact
of precipitation on NPP displays spatial heterogeneity. Regions with significant negative
correlations between vegetation NPP and precipitation are concentrated in the southern
areas of Guangdong, Fujian, and Jiangxi provinces. Conversely, regions further from the
southeastern coast tend to exhibit positive correlations. In terms of temperature influence,
the positive impact of daytime warming on vegetation NPP is more pronounced than the
impact of nighttime temperature changes.
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