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Abstract: The basic leucine zipper (bZIP) transcription factors constitute the most widely distributed
and conserved eukaryotic family. They play crucial roles in plant growth, development, and re-
sponses to both biotic and abiotic stresses, exerting strong regulatory control over the expression of
downstream genes. In this study, a genome-wide characterization of the CebZIP transcription factor
family was conducted using bioinformatic analysis. Various aspects, including physicochemical
properties, phylogenetics, conserved structural domains, gene structures, chromosomal distribution,
gene covariance relationships, promoter cis-acting elements, and gene expression patterns, were
thoroughly analyzed. A total of 70 CebZIP genes were identified from the C. ensifolium genome, and
they were randomly distributed across 18 chromosomes. The phylogenetic tree clustered them into
11 subfamilies, each exhibiting complex gene structures and conserved motifs arranged in a specific
order. Nineteen pairs of duplicated genes were identified among the 70 CebZIP genes, with sixteen
pairs affected by purifying selection. Cis-acting elements analysis revealed a plethora of regulatory
elements associated with stress response, plant hormones, and plant growth and development. Tran-
scriptome and qRT-PCR results demonstrated that the expression of CebZIP genes was universally
up-regulated under low temperature conditions. However, the expression patterns varied among
different members. This study provides theoretical references for identifying key bZIP genes in
C. ensifolium that confer resistance to low-temperature stress, and lays the groundwork for further
research into their broader biological functions.

Keywords: bZIP; Cymbidium ensifolium; low-temperature stress; expression patterns

1. Introduction

The basic leucine zipper (bZIP) transcription factors (TFs) are ubiquitously found in
eukaryotes and are characterized by a highly conserved bZIP domain, which includes a
region rich in basic amino acids and a leucine zipper [1–3]. Specifically, the basic region
is located at the N-terminal end and exhibits a high degree of conservation, consisting of
16 amino acid residues that recognize and bind to specific sequences on the promoter
through the N-X7-R/K motifs [3]. On the other hand, the leucine zipper region is relatively
less conserved and is marked by a leucine or a repetitive region containing seven amino acid
residues, including isoleucine, methionine, and other hydrophobic amino acids [4]. The
leucine zipper can form an amphipathic α helix, mediating the formation of homodimers or
heterodimers of bZIP proteins with transcriptional activation or repression functions [5,6].
In plants, bZIP proteins preferentially recognize cis-acting elements on promoters with
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ACGT core sequences, such as the G-box (CACGTG) and C-box (GACGTC) [7,8]. Notably,
most of the promoter regions of bZIP genes induced by abscisic acid (ABA) contain these
cis-acting elements.

bZIP TFs have been found to play a widespread role in regulating various plant life
activities, including seed germination and maturation, flower development, root development,
plant senescence, photomorphogenesis, and light signaling [3,9–14]. The co-expression of
AtbZIP10/25 with ABI3 significantly enhances the activation of the At2S1 (2S storage protein)
promoter, indicating their involvement in the composition of the regulatory complex asso-
ciated with seed maturation-specific expression [15]. In addition, AtbZIP18 interacts with
AtbZIP34, while AtbZIP52 interacts with AtbZIP61 in yeast to co-regulate pollen develop-
ment [10]. Notably, the mutants AtbZIP18 and AtbZIP34 exhibit a failure in forming normal
pollen walls, leading to a reduced amount of viable pollen [10]. In Zea mays, ZmbZIP4 binds
to the promoters of root development-related genes, such as ZmLRP1 and ZmSCR, thereby
activating the transcription of root development-related genes, consequently promoting root
growth and development [12].

Furthermore, bZIP TFs are involved in abiotic stresses, including low-temperature
stress, drought stress, and salinity stress, as well as in biotic stresses such as disease and
pathogen defense, and they also contribute to the induction of various hormones [4,16–21].
For instance, the overexpression of TabZIP6 in Arabidopsis thaliana significantly reduced the
expression of genes like CBF and CORs in plants, leading to decreased freezing resistance in
transgenic A. thaliana seedlings [22]. In Camellia sinense, CsbZIP6 acts as a negative regulator
of the low-temperature stress responses, reducing the expression of low-temperature-
responsive genes and influencing ABA sensitivity [23]. Moreover, the overexpression of
BnbZIP2 in Arabidopsis significantly increases the sensitivity of transgenic plants to drought
and salinity stress [24]. Under drought stress, the down-regulation of ABA biosynthesis
and signal transduction-related genes in tomato occurred when SlbZIP1 was silenced,
indicating that SlbZIP1 plays a role in promoting drought resistance in tomato [25].

Cymbidium ensifolium thrives in warm and humid environments, displaying limited
cold tolerance. Safe overwintering requires temperatures above 5 ◦C, and the plant be-
comes susceptible to frost damage when temperatures drop below 0 ◦C. Despite bZIP TFs
having been identified in various species, including A. thaliana (78 genes) [7], Glycine max
(160 genes) [18], Ipomoea batatas (87 genes) [26], Sorghum bicolor (92 genes) [27], Juglans
regia (88 genes) [28], Populus trichocarpa (41 genes) [29], and Malus pumila (112 genes) [30],
their presence is mainly concentrated in cash crops. The bZIP gene family has been
rarely reported in C. ensifolium. This study is based on the genome-wide sequencing data
of C. ensifolium, aiming to identify and characterize the members of the bZIP family in
C. ensifolium (CebZIP). Bioinformatic methods were applied to comprehensively analyze
the protein properties, phylogenetic relationships, conserved motifs, gene structure, and
other information of the CebZIP family. The findings of this study can provide reference
for enhancing the cold tolerance of C. ensifolium, and provide a theoretical foundation for
the functional verification of CebZIP genes (CebZIPs) and the identification of key response
genes in future research.

2. Results
2.1. Identification and Characterization Analysis of CebZIPs in C. ensifolium

Using HMM from the Pfam database for alignment on the C. ensifolium genome
database, 78 matches were obtained as candidate CebZIP proteins [31]. By identifying
the complete bZIP domains in both the Pfam and SMART databases, a total of 70 CebZIP
protein sequences were finally selected [31–33]. These CebZIP proteins were designated
CebZIP1–CebZIP70 in accordance with their chromosomal arrangement (Table S1). An
analysis of the physicochemical properties revealed that the molecular weights (MW)
of the 70 CebZIP proteins ranged from 9.04 kDa (CebZIP31) to 75.16 kDa (CebZIP67).
The smallest CebZIP protein was CebZIP23 (77 aa and 234 bp), while the largest was
CebZIP67 (697 aa and 2094 bp). The isoelectric point (PI) ranged from 4.99 (CebZIP10) to
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11.55 (CebZIP45). The instability coefficients ranged from 29.74 (CebZIP3) to 86.21 (Ce-
bZIP45), and the aliphatic index coefficients ranged from 53.46 (CebZIP8) to 90.17 (Ce-
bZIP55). The grand average of hydropathicity (GRAVY) consistently remained below 0 for
all CebZIP proteins, indicating their hydrophilic nature.

2.2. Phylogenetic Analysis of CebZIPs

A. thaliana is one of the earliest plants studied for the bZIP TF family, holds significant
reference value, and is commonly employed as a model genetic plant for plant gene
research [3,7]. To gain a deeper understanding of the evolutionary properties of CebZIP
family members, a phylogenetic tree was constructed by combining 70 CebZIPs with
78 AtbZIPs (Figure 1) [7]. Following the classification method used for AtbZIP proteins in
previous studies [7], the CebZIPs were clustered into 11 subfamilies (A–I, K, and S), along
with four unclassified genes. In the AtbZIP family, the largest subfamily is subfamily S
(17 members), and the smallest subfamilies are subfamilies K and J (each with 1 member).
Similarly, in the CebZIP family, the number of members varies among the 11 subfamilies,
with the largest number in subfamily S (18 members) and the smallest in subfamily K
(1 member). The high amino acid sequence similarity observed among members of the
same subfamily demonstrates substantial homology between CebZIPs and AtbZIPs.
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Figure 1. Phylogenetic tree of bZIP proteins from C. ensifolium and A. thaliana. Different bZIP
subfamilies are marked by different colors. Pink and purple circles represent CebZIP proteins and
AtbZIP proteins, respectively. The size of the purple circle on the branch reflects the level of support.
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2.3. Analysis of Conserved Domains, Conserved Motifs, and the Gene Structure of the CebZIPs

To further study and characterize the homologous conserved domains in CebZIP
proteins, a multiple sequence alignment and a weblogo analysis of CebZIP proteins were
performed by analyzing the characteristic amino acid sequences of the leucine zipper and
basic domains within the bZIP gene family. Similar to other species, CebZIP proteins
contain basic domains and leucine zipper, namely, [-N-X7-R/K-] and [-L-X6-L-X6-L-]
(Figure 2).
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region. The * represent the conserved amino acids of bZIP domain.

Predictions of conserved motifs among the 70 CebZIP proteins revealed the presence of
10 motifs, strategically distributed at the N-terminal and C-terminal ends, and the middle
part of the proteins. Motif 1 displayed universal presence across all CebZIP proteins,
underscoring its high conservation within the CebZIP gene family. Moreover, certain
motifs have significant specificity. For instance, motifs 2, 5, 7, and 8 were exclusive to
subfamily D, while motif 4 was uniquely present in subfamily I. As expected, substantial
differences in motif composition were observed between subfamilies. In contrast, motifs
within the same subfamily demonstrated similarities, and the overall pattern of motif
distribution within each subfamily remained essentially similar.

To further verify the structural characteristics of all CebZIPs, we analyzed the number
and structure of intron/exon (Figure 3). The gene structure of CebZIPs displayed significant
variability and diversity in terms of the relative position and number of introns and exons.
The intron numbers among the 70 CebZIPs ranged from 0 and 18. Seventeen (24.3%) CebZIPs
showed no intron structure, with the majority concentrated in the S subfamily. CebZIP53,
belonging to the G subfamily, exhibited the highest number of introns (18), resembling
the gene structure of AtbZIPs. The exon numbers varied from two to seven in subfamilies
A, B, C, E, F, H, I, and K. Conversely, subfamilies D and G have the most complex gene
structures, with exon numbers ranging from nine to nineteen.

2.4. Chromosomal Distribution and Covariance Analysis of CebZIP Family Members

A chromosomal distribution map of CebZIP gene family was generated using Tbtools [34].
The C. ensifolium genome comprises 20 chromosomes, and the 70 CebZIPs are randomly
distributed across 18 of these chromosomes, with chromosomes 11 and 18 lacking bZIP genes
(Figure 4). Chromosome 13 accommodates the highest number of CebZIP genes (eight), while
chromosomes 9, 12, 15, 16, 17, and 19 each contain two genes.

Gene duplication is a major driver in the evolution of genomes and genetic systems.
The analysis of the intraspecific collinearity in C. ensifolium revealed that the CebZIP family
consists of 19 duplicated gene pairs, including 9 pairs of segmental duplicates and 10 pairs
of tandem duplicates (Figure 5). Chromosomes 1 harbors the highest number of tandem
duplicated gene pairs (three), followed by chromosomes 13, 4, 6, 14, and 19 (two each),
while chromosomes 20 contained only one pair. To explore the evolutionary characteristics
of the bZIP family in orchids, collinearity relationships were established by comparing
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C. ensifolium with two other orchids, Cymbidium goeringii and Dendrobium chrysotoxum
(Figure 6). The number of homologous pairs between C. ensifolium and these two orchids
was similar, with 56 and 54 pairs, respectively.
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To investigate the environmental selection pressure experienced by these duplicated
CebZIP genes, we calculated the non-synonymous site (Ka) and synonymous site (Ks)
of each gene pair and analyzed their ratios (Ka/Ks) (Table S2). Three pairs of CebZIP
genes yielded NaN (Not a Number), which might be attributed to potential genome
sequencing errors. Among the remaining 16 duplicated gene pairs, 2 gene pairs displayed
only synonymous without non-synonymous. The remaining 14 Ka/Ks values were all less
than 1, with 75% of them being less than 0.5, suggesting that the majority of the CebZIPs
evolved under strong purifying selection.

2.5. Prediction of Cis-Acting Elements in CebZIP Promoters

To predict the biological function of the CebZIPs, a cis-acting element analysis of the
2000 bp promoter region upstream of the CebZIPs start codons was performed using the
PlantCARE database (Figure 7) [35]. Abundant cis-acting elements were identified, and
19 crucial elements, excluding general transcriptional regulatory and functionally unknown
elements, were selected for analysis. These included light-responsive element (e.g., G-Box,
GT1-motif, and Sp1), ABA-responsive element (ABRE), and low-temperature response
element (LTR), among others. These elements were categorized into three groups: plant
hormones, abiotic stress, and plant growth/development. Further analysis revealed that
the cis-acting element number in the abiotic stress group was the largest, followed by the
plant hormone group. Notably, 28 (40%) genes in the CebZIP gene family contained LTR.
The presence of various cis-acting elements suggests a wide range of functional roles for
CebZIP genes.

2.6. Analysis of Expression Patterns of CebZIP Genes from Transcriptome Data

Gene expression patterns can unveil various biological functions in plants. To validate
the role of CebZIPs in response to low-temperature stress, we used transcriptome data
to examine the expression levels of CebZIPs at 0 h, 4 h, 12 h, and 24 h post treatment
with low-temperature stress. Subsequently, we constructed a gene expression heat map
(Figure 8). Following low-temperature stress, the expression level of most CebZIP genes
changed significantly and exhibited diverse temporal expression patterns, suggesting their
distinct regulatory roles in response to low-temperature stress.

After low-temperature treatment, CebZIP2, CebZIP23, CebZIP48, CebZIP9, CebZIP66,
and CebZIP18 displayed lower expression than the control group (0 h). Seventeen genes
were up-regulated after 4 h of low-temperature stress, while twenty-seven genes showed
elevated expression after 12 h of low-temperature stress. Fourteen genes exhibited high
expression after 24 h of low-temperature stress. These findings underscore the functional
diversity of the CebZIP gene family in responding to adverse stress in C. ensifolium.
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2.7. Analysis of CebZIP Gene Expression Patterns under Cold Stress

Combining the results of CebZIP gene promoter and transcriptome data analysis, nine
genes were selected for qRT-PCR experiment. As shown in Figure 9, their expression levels
were generally consistent with the transcriptome analysis results. Under low-temperature
stress, the gene expression patterns changed significantly over time. CebZIP8 expression
began to rise at 12 h, reaching its peak at 24 h. CebZIP24 showed its highest expression at
12 h, followed by a sharp decrease. CebZIP26 exhibited high expression at 4 h, followed by
a decrease and then a slight increase at 24 h. The overall expression patterns of CebZIP28,
CebZIP38, and CebZIP70 followed an increase and a decrease, reaching a peak at 12 h,
followed by a sharp down-regulation. The highest expression of CebZIP37 and CebZIP56
occurred at 4 h. CebZIP43 demonstrated a slight increase at 4 h, reaching its peak at 24 h.
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Figure 9. qRT-PCR analysis of nine CebZIP genes in C. ensifolium under low-temperature treatment.
Error bars indicate the SD of three biological replicates. Letters delineate significant differences
among treatments (p < 0.05, Duncan).

3. Discussion

C. ensifolium is a shade-tolerant plant typically found in cool environments such
as thickets and forests, displaying low tolerance to both cold and heat. The bZIP gene
family plays an essential role in regulating growth and development throughout the
entire life cycle of plant, and it also contributes significantly to enhance resistance to
low temperatures [36,37]. Previous research has confirmed that bZIP TFs have a strong
response to various abiotic stresses, and their high expression has been shown to enhance
resistance in different species, including maize [38], cotton [39], rice [40], and other crops.
The genome-wide characterization of the bZIP gene family has been conducted in many
species. However, it has not yet been reported for C. ensifolium nor has the involvement of
bZIP genes in responding to low temperatures in C. ensifolium been studied.

Based on the whole genome data, we used bioinformatic methods to identify and
analyze the members of the bZIP gene family in C. ensifolium [41]. A total of 70 CebZIPs
were identified after removing redundancy and were found to be randomly distributed on
18 chromosomes. Using these CebZIP genes, we constructed an evolutionary tree together
with AtbZIP genes. The CebZIPs were clustered into 11 subfamilies (A–I, K, S), a pattern
observed in other species, such as sweet potato [26], tobacco [42], and pineapple [43],
suggesting that the bZIP gene family is conserved. No CebZIP family members were
categorized into subfamily M and subfamily J, which is similar to poplar [29]. In addition,
four CebZIP proteins were not clustered and may represent new members formed during
the evolutionary process, which requires further investigation of their biological functions.
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These findings indicated the absence or increase of bZIP members during the evolution of
C. ensifolium, potentially linked to the diverse functions of CebZIP proteins.

The multiple sequence alignment and weblogo analysis of CebZIP proteins revealed
that all CebZIP proteins contain the basic domain [-N-X7-R/K-] and leucine zipper region
[-L-(X6)-L-(X6)-L-], similar to A. thaliana, poplar, and other species [3,29]. These results
indicate that the bZIP family is highly conserved during the evolutionary process. The
motif composition of the CebZIP varied among subfamilies, but motifs were similar within
the same subfamily. Moreover, the motifs encoding the bZIP domains were relatively
conserved, suggesting inter-clade-specific functions of CebZIP proteins. There also appear
to be potential functional similarities among proteins within the same subfamily of CebZIPs.

Conservative gene structure changes are likely to represent key events in evolution,
and variations in exon-intron positions and numbers can lead to specific gene functions
and evolutionary directions [44]. The gene structure of CebZIPs is significantly diverse in
terms of the relative position and number of introns/exons. The intron numbers ranged
from 0 to 18, and there were notable differences in gene length. Seventeen (24.3%) CebZIP
genes had no intron structure, with most of them concentrated in subfamily S. The high
degree of similarity in the structural features of the genes may be attributed to gene
duplication events during the gene family expansion [37]. Differences in gene structure
arise from mutations in introns such as base substitutions, insertions, and deletions, which
alter the gene sequence and result in diversity in the number and arrangement of introns,
contributing to the functional development of CebZIP proteins [45].

Tandem duplication and segmental duplication are primary mechanisms responsible
for the expansion of gene families and the emergence of new functional genes during gene
evolution [46]. In the CebZIP gene family, a total of 19 pairs of duplicated genes were
identified, including 9 pairs of segmental duplicates and 10 pairs of tandem duplicates. This
suggest that gene duplication events play an essential role in the evolutionary dynamics of
bZIP. In comparison, poplar has 31 pairs of segmental duplicates [29], wheat has 14 pairs of
segmental duplicates [47], and tobacco has 16 pairs of segmental duplicates [42], none of
which involve tandem events. In tomato, 21 pairs of segmental duplicate genes and 8 pairs
of tandem duplicate genes were identified [48]. These findings underscore the ongoing
evolution of the bZIP gene family, generating genes with novel functions.

The analysis of the collinearity between C. ensifolium and two other orchids (D. chryso-
toxum and C. goeringii) revealed strong homology and highly conserved evolutionary
relationships among these three orchids. To assess selection pressure on protein-coding
genes [49], a selection pressure analysis was performed. The segregation and selection
processes were examined by calculating Ka/Ks values for 19 pairs of duplicate genes. The
Ka/Ks values of 16 pairs of duplicate genes were all < 1, with 75% of them < 0.5. These
findings suggest that these genes underwent strong selection for purification, and the
bZIP genes exhibited a slow and highly conserved evolutionary process in C. ensifolium,
demonstrating a certain level of stability in both structure and function.

The analysis of cis-acting elements situated in the CebZIP promoter region revealed the
presence of various phytohormone response elements, in addition to abiotic stress response
elements. This suggests that CebZIPs are involved in both phytohormone and abiotic
stress response pathways, which is consistent with the results observed in wheat [47]. The
data indicated that bZIP genes across different species contain response elements for low
temperature, hormones, hypoxia, and trauma, showcasing their adaptability to diverse
environment conditions.

The qRT-PCR results demonstrated substantial changes in gene expression upon low-
temperature induction, aligning with the findings from the transcriptome data analysis.
However, different expression patterns were observed among different members, with
varying maximum values and time points to reach those maxima. Specifically, CebZIP26,
CebZIP37, and CebZIP56 were highly expressed after 4 h of low-temperature stress, while
CebZIP24, CebZIP28, CebZIP38, and CebZIP70 peaked after 12 h. On the other hand, CebZIP8
and CebZIP43 were most strongly expressed at 24 h. The expression of CebZIP26, CebZIP37,
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and CebZIP56 remained high after 4 h of low-temperature stress. These findings suggest
that CebZIPs may play a significant role in the process of low-temperature resistance,
demonstrating diverse low-temperature stress response modes and distinct functions in
the physiological processes of C. ensifolium under low-temperature stress.

4. Materials and Methods
4.1. Plant Materials

The study utilized plants from the Forest Orchid Garden at Fujian Agriculture and
Forestry University, all of which were grown in the same conditions within the greenhouses.
Prior to the experiment, these plants underwent pre-cultivation in an artificial climate
chamber, followed by a seven-day period of cultivation under standard conditions. After
pre-cultivation, the plant materials were exposed to a 4 ◦C artificial climate incubator for
0 h, 4 h, 12 h, and 24 h. Subsequently, the leaves were aseptically cut using enzyme-free
scissors, with the midrib removed. Rapid freezing with liquid nitrogen and storage in a
−80 ◦C refrigerator ensured the preservation of the samples. All samples were subjected to
three biological replicates.

4.2. CebZIP Transcription Factor Identification and Sequence Retrieval

The whole genome data of C. ensifolium were acquired from the National Genomics
Data Center (https://ngdc.cncb.ac.cn/, accessed on 2 March 2023), and Arabidopsis bZIP TF
sequences were retrieved from the TAIR database (http://www.arabidopsis.org/, accessed
on 2 March 2023). The conserved domain of the bZIP transcription factor (ID: PF00170,
bZIP_1) was downloaded from the Pfam database (http://pfam.xfam.org/, accessed on
2 March 2023) [31]. This conserved domain was employed as a seed model for initial screening
(E-value ≤ 10−5) using the Simple HMM Search of the TBtools v1.120 [34]. The candidate
bZIP protein sequences of C. ensifolium underwent structural domain detection via the SMART
(http://smart.embl.de, accessed on 2 March 2023), pfam, and NCBI CDD (https://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on 2 March 2023) databases. The removal of
duplicate sequences yielded a final set of 70 putative genes [31–33]. The online website ExPASy
was utilized to predict the molecular weight (MW), amino acid number (aa), isoelectric point
(PI), aliphatic index, grand average of hydropathicity (GRAVY), and instability index of
CebZIP proteins [50].

4.3. Phylogenetic Analysis of CebZIP Transcription Factors

The bZIP protein sequences from C. ensifolium and A. thaliana were subjected to
ClustalW multiple alignment using MEGA11.0 software. The phylogenetic tree was con-
structed using the Neighbor-Joining (NJ) method [51]. The calibration parameter Bootstrap
repetitions was set to 1000. The evolutionary tree was refined and polished using ITOL
(https://itol.embl.de/itol.cgi, accessed on 11 March 2023) [52].

4.4. Analysis of Gene Conserved Structural Domains, Gene Structure, and Conserved Motifs

The 70 identified CebZIP family members were individually aligned using Clustal W,
and the online software WebLogo 3 (http://weblogo.berkeley.edu/logo.cgi/, accessed on
31 March 2023) was utilized to map the conserved structural domains LOGO [53]. The
gene structures (introns-exons) were analyzed and visualized using Tbtools v1.120 [34].
The online software MEME (http://meme-suite.org/tools/meme, accessed on 31 March
2023) was used to predict the conserved motifs of the CebZIP family [54]. The output value
was set to 10, and the analysis results were visualized using Tbtools v1.120 [34]. The Ka/Ks
ratio was calculated using Tbtools v1.120 to determine the evolutionary selection pressure
of genes. Generally, if Ka > Ks or Ka/Ks > 1, the gene undergoes positive selection; if
Ka = Ks or Ka/Ks = 1, the gene is subject to neutral evolution; and if Ka < Ks or Ka/Ks < 1,
the gene undergoes purifying selection [34,49].

https://ngdc.cncb.ac.cn/
http://www.arabidopsis.org/
http://pfam.xfam.org/
http://smart.embl.de
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://itol.embl.de/itol.cgi
http://weblogo.berkeley.edu/logo.cgi/
http://meme-suite.org/tools/meme
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4.5. Chromosome Localization and Collinear Analysis of CebZIP

The chromosomal details of the 70 CebZIP genes were obtained from genome anno-
tation files, and their chromosomal distribution was visualized using Tbtools v1.120 [34].
One Step MCScanX in TBtools v1.120 was used to analyze the intra-species collinear re-
lationship of C. ensifolium, generating a Circos plot to represent the gene interactions [34].
The duplication events of bZIP genes among three species (C. ensifolium and D. chrysotoxum,
and C. goeringii) were analyzed to obtain the collinear relationship among genes and plot
the interspecies collinear map.

4.6. Examination of Cis-Acting Elements within the Promoter Region of CebZIP

Tbtools v1.120 was used to obtain 2000 base pair (bp) upstream of the coding sequence
(CDS) of CebZIP genes from the genome sequence of C. ensifolium. The obtained sequence was
submitted to the online website PlantCARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/, accessed on 20 March 2023) for cis-acting element prediction [34,35]. General
transcriptional regulatory elements and elements of unknown function were filtered out. The
predictions were organized, classified, and visualized using EXCEL 2019.

4.7. Gene Expression Analysis under Low-Temperature Stress

The leaves, cultured for 0 h, 4 h, 12 h and 24 h in a 4 ◦C artificial climate chamber,
were used for RNA extraction using a total RNA extraction kit (OMEGA, Norcross, GA,
USA). Transcriptome data library construction was performed using Novozymes (Beijing,
China) on the Illumina Hiseq 2500 platform. Gene expression levels are indicated by FPKM
(Fragment Per Kilobase of exon model per Million mapped fragments) (Table S3). The
heatmap of CebZIP genes expression under different low-temperature stress treatments was
generated using the HeatMap tool in TBtools v1.120 [34]. The clustering method was set to
cluster rows, and the normalization mode was selected as row scale. The scale method was
set to zero to one, with other parameters using the default values.

cDNA was synthesized using a reverse transcription kit. Primers were designed
using Primer 5 with GAPDH gene as the house-keeping gene (Table S4). Fluorescence
quantification experiments were performed on an ABI 7500 real-time system (Applied
Biosystems, Foster City, CA, USA) using the Hieff® qPCR SYBR Green Master Mix (No
Rox) (Next Sense Bio, Shanghai, China) kit. Three biological replicates and three technical
replicates were performed. The 2−∆∆Ct formula was used for the calculation of relative
gene expression [55]. The details of the 2−∆∆Ct formula and qRT-PCR data are provided in
Supplemental Table S5.

5. Conclusions

In this study, 70 CebZIP genes were identified in the genome of C. ensifolium and their
physicochemical properties were analyzed. CebZIP members exhibit diverse structures and
have been classified into 11 subfamilies based on phylogenetic trees drawn from amino
acid sequences. The conserved motifs vary among the subfamilies of the CebZIP family,
while the motifs of bZIP domains encoded by the same subfamily are relatively conserved
and similar. A total of 19 pairs of duplicated genes were identified in the CebZIP gene
family, indicating that gene duplication events play a crucial role in driving bZIP evolution.
Moreover, the expression profiling and qRT-PCR experiment showed that CebZIPs were
subjected to low-temperature induction with varying degrees of changes in expression.
These findings provide a certain theoretical foundation for identifying potential genetic
resources for the molecular breeding of orchid stress resistance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants13020219/s1, Table S1. The characteristics of 70 CebZIP
in C. ensifolium; Table S2. Analysis of evolutionary pressure on the CebZIPs; Table S3. The FPKM
values of CebZIPs under different low-temperature stress treatment times; Table S4. Primer sequence
information; Table S5. Calculation of the 2−∆∆Ct formula and qRT-PCR data.

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://www.mdpi.com/article/10.3390/plants13020219/s1
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