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Abstract: The plant Centaurea cineraria L. subsp. cineraria has been investigated as a potential source
of inhibitors of broomrape radicle growth. The latter are weeds that pose a threat to agriculture and
for which there are few methods available for the control of infestations. Four sesquiterpene lactones
have been isolated from C. cineraria L. subsp. cineraria aerial parts and identified as isocnicin, cnicin,
salonitenolide, and 11β,13-dihydrosalonitenolide using spectroscopic, spectrometric, and optical
methods. Salonitenolide and 11β,13-dihydrosalonitenolide have been isolated for the first time
from this plant. Tested at 1.0–0.1 mM against the broomrape species Phelipanche ramosa, Orobanche
minor, Orobanche crenata, and Orobanche cumana, isocnicin, cnicin, and salonitenolide demonstrated
remarkable inhibitory activity (over 80% in most of the cases) at the highest concentrations. Structure-
activity relationship conclusions indicated the significance of the α,β-unsaturated lactone ring. In
addition, the synthetic acetylated derivative of salonitenolide showed the strongest activity among
all compounds tested, with inhibitions close to 100% at different concentrations, which has been
related to a different lipophilicity and the absence of H-bond donor atoms in its structure. Neither the
extracts nor the compounds exhibited the stimulating activity of broomrape germination (induction
of suicidal germination). These findings highlight the potential of C. cineraria to produce bioactive
compounds for managing parasitic weeds and prompt further studies on its sesquiterpene lactones
as tools in developing natural product-based herbicides.

Keywords: parasitic weeds; Orobanche; Phelipanche; allelochemicals; cnicin; sesquiterpene lactones;
sustainable crop protection

1. Introduction

Plants are able to produce a wide range of secondary metabolites in response to
both biotic and non-biotic stresses, as well as for allelopathic interactions. The biolog-
ical phenomenon of allelopathy is the direct or indirect effect of chemicals released by
one organism on the physiological processes of other neighboring organisms [1]. These
allelochemicals can be directly used or serve as nature-inspired models for the develop-
ment of new herbicides as alternatives to synthetic pesticides [2]. The ongoing search
for new potential herbicide models is imperative due to the continuous adaptability of
weeds, leading to their evolution and acquisition of resistance to traditional herbicides
or efficacy to resistant crop biotypes [3]. Parasitic weeds pose a particular threat, with
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their impact manifesting after years of seed dormancy in fields. Upon germination, they
rapidly establish connections with host vasculature for water and nutrient supplies through
the development of haustoria [4]. Broomrape weeds (Orobanchaceae), comprising var-
ious Orobanche and Phelipanche species, represent a great risk to important agricultural
crops. Noteworthy examples include Fabaceae (affected by Orobanche crenata, Orobanche
foetida, Orobanche minor, Phelipanche ramosa, or Phelipanche aegyptiaca), Apiaceae (affected by
O. crenata, O. minor, or P. ramosa), Solanaceae (affected by O. minor or P. ramosa), and
sunflower (Helianthus annuus) crops, the latter with a specific affection from Orobanche
cumana [5,6]. The lack of efficient methods for broomrape control can lead to significant
crop losses, and there is a prediction of an increasing impact of Orobanchaceae world-
wide [5,7–9].

In the pursuit of sustainable methods to control broomrapes, great attention is directed
towards studying plants whose extracts or specialized metabolites exhibit phytotoxic-
ity or germination-inducing activity (suicidal germination) [10–12]. Recent studies have
demonstrated positive outcomes with plants and their secondary metabolites by studying
safflower (Carthamus tinctorius), maize (Zea mays L.) or the invasive plant Conyza bonar-
iensis [11,13,14] from this perspective. However, only a limited number of local species
have been explored as sources of allelochemicals against parasitic weeds, underscoring the
potential for significant discoveries to address parasitic infestations from the perspective
of allelopathy. Among these plants, those belonging to the Centaurea cineraria species are
still unexplored for their potential in parasitic plant research. The genus Centaurea com-
prises flowering plants in the Asteraceae family, some of which are considered invasive
weeds [15,16]. In particular, C. cineraria is characterized by tomentose leaves and flower
heads with purplish flowers, whose preferred habitat is carbonate cliffs near the sea [17].
C. cineraria belongs to a species complex not yet fully understood from an evolutionary
point of view that has differentiated around the Tyrrhenian Sea over the last 250,000 years,
representing an extremely interesting group of plants due to their rapid evolution [17].
To the group of taxa afferent to C. cineraria also belong some subspecies endemic to Italy,
including C. cineraria L. subsp. sirenum (Lacaita) Pignatti & Iamonico ex Iamonico & Del
Guacchio, endemic to the Li Galli archipelago off the Amalfi Peninsula in Campania, and
C. cineraria L. subsp. circae (Sommier) Cela Renz. & Viegi, endemic to the Circeo area in
Latium [18,19]. The nominal subspecies is present in Italy in the regions bordering the
Tyrrhenian Sea from Campania to Calabria (excluding Sicily), but there are also popula-
tions in Tunisia [17]. The extracts obtained from different parts of various Centaurea spp.
showed a wide range of bioactivity, including seed growth inhibition [20–22]. Further-
more, diverse bioactive sesquiterpene lactones, natural products that possess documented
activities against parasitic weeds, have been reported from Centaurea spp. [23–25]. Thus,
C. cineraria L. subsp. cineraria (Asteraceae) has been selected and evaluated in this study
for its potential to produce allelochemicals that can be used for the development of novel
bioherbicides to manage parasitic weeds. This manuscript focuses on the isolation of
secondary metabolites from this plant and on their chemical and biological characterization.
Furthermore, structure-activity relationship (SAR) observations have been defined to iden-
tify the most suitable structural features for generating the target activity and for designing
derivatives to optimize their efficacy [26,27]. The overall aim of this study is to provide
natural compounds that can be used as model compounds in new bioherbicide formula-
tions for parasitic weed management strategies. These preparations could be proposed as
alternatives to chemical pesticides to increase efficacy and selectivity against broomrapes,
as well as to overcome environmental problems and ensure food safety.

2. Results
2.1. Plant Extraction

Dried C. cineraria L. subsp. cineraria aerial parts (Figure 1) were minced and macerated
with an hydroalcoholic solution (H2O/methanol 1/1, v/v) for 24 h. After filtration, the
obtained solution was extracted employing solvents with varying degrees of increasing
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polarity. Thus, 170.2 mg were obtained using n-hexane, 984.2 mg using dichloromethane
(CH2Cl2), and 634.1 mg using ethyl acetate (EtOAc).
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Figure 1. Dried Centaurea cineraria L. subsp. cineraria aerial parts employed in this study.

2.2. Bio-Activity-Guided Purification of Secondary Metabolites

Preliminary thin layer chromatography (TLC) analyses indicated the presence of a
main metabolite in the CH2Cl2 extract, which was similarly detected in a lower amount
in the EtOAc extract. The capacity of the extracts obtained from C. cineraria aerial parts
to induce suicidal seed germination or to inhibit radicle growth was analysed using inde-
pendent bioassays on four broomrape species seeds (P. ramosa, O. minor, O. cumana, and
O. crenata). The tested concentrations were 100 and 10 µg/mL of dry extract in distilled
water. For the radicle inhibition bioassay, the CH2Cl2 extract applied at 100 µg/mL showed
marked activity in all the broomrape species (Figure 2).
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Figure 2. (A) Extracts effects on radicle growth of broomrape (P. ramosa, O. minor, O. cumana, and
O. crenata) obtained by extraction with n-hexane, CH2Cl2, and ethyl acetate of C. cineraria aerial parts.
Different letters show a significant difference between compounds by Tukey’s multiple comparison
test (p < 0.05). Error bars represent the standard error of each mean (n = 3). (B–E) Illustrative pictures
of O. cumana (B,D) and O. minor (C,E) treated with control (B,C) and CH2Cl2 extract (D,E).

Specifically, higher activity levels were observed for O. crenata, O. cumana, and O. minor
(65.4 ± 3.6%, 57.9 ± 5.9%, and 61.5 ± 6.7% of inhibition, respectively), and 41.8 ± 1.6% in
the case of P. ramosa, in comparison with negative controls. On the other hand, the n-hexane
and EtOAc extracts produced lower growth inhibitions (ranging from 12.3 ± 5.1% to
26.3 ± 2.4%, Figure 2) in comparison with the negative control radicles. For the germi-
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nation induction bioassay, no activity was observed against any of the four broomrape
species studied.

To isolate the metabolites exhibiting phytotoxicity on radicle growth, the most active
extract (CH2Cl2) was purified by chromatography, resulting in the obtaining of four pure
compounds identified as isocnicin, cnicin, salonitenolide, and 11β,13-dihydrosalonitenolide
(1–4, Figure 3). Their optical and spectroscopic data are in accordance with those previously
reported [28–30]. The isolated compounds were sesquiterpene lactones described for the
Centaurea genus [28,31,32], while this is the first report on the identification and isolation of
salonitenolide (3) and 11β,13-dihydrosalonitenolide (4) from C. cineraria.
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and the synthetic derivative 8,15-O,O′-diacetylsalonitenolide (5).

2.3. Bioassays against Broomrapes

A first screening with isocnicin (1) and cnicin (2) at a concentration range of 1.0–0.1 mM
showed that they are active against O. crenata, O. cumana, O. minor, and P. ramosa (Figure 4). No-
tably, they displayed remarkable activity at the highest tested concentrations (1 and 0.5 mM),
but there was a significant loss of activity observed at 0.1 mM. Specifically, at 1 mM, isocnicin
(1) achieved nearly complete inhibition of the radicle growth of O. crenata (99.0 ± 0.2%),
O. cumana (99.3 ± 0.5%), and O. minor (99.5 ± 0.5%). Substantial inhibition levels were also
observed at 0.5 mM (90.6 ± 1.1%, 95.8 ± 0.3%, and 87.4 ± 0.8%, respectively). Figure 5E–H
shows how, besides the inhibition of radicle growth, isocnicin (1) induced darkening of the
broomrape radicles when applied at 1 and 0.5 mM. In the case of cnicin (2), similar trends
were observed against O. cumana and O. minor, but there was a decrease in activity from
0.5 mM against O. crenata and P. ramosa (Figure 4). The darkening effect on broomrape radicles
induced by isocnicin (1) was not observed following cnicin treatments (Figure 5I–L), nor in the
control radicles (Figure 5A–D). Consequently, inhibitory activity was found for both types of
structures (elemanolide and germacranolide). As reported in the literature, the biological activ-
ity of sesquiterpene lactones is strongly related to the lactone ring [33]. However, the improved
activity observed for isocnicin (1), especially against O. crenata (Figure 4), should be attributed
to a structural advantage of the elemanolide scaffold when compared to germacranolides.
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Figure 4. Growth inhibition induced by isocnicin (1, A–D) and cnicin (2, E–H) in the radicles of
O. crenata (A and E), O. cumana (B and F), O. minor (C and G), and P. ramosa (D and H). Bars with
different letters are significantly different according to the Tukey test (p < 0.05). Error bars represent
the standard error of the mean.
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Figure 5. Control treatments (A–D), isocnicin (1, (E–H)), and cnicin (2, (I–L)) applied at 0.5 mM on
radicles of O. crenata (A,E,I), O. cumana (B,F,J), O. minor (C,G,K), and P. ramosa (D,H,L).

Salonitenolide (3) and 11β,13-dihydrosalonitenolide (4) activities in the same type of
bioassay were evaluated, adapting the range of concentrations to 1.0–0.3 mM in accordance
with the aforementioned results. The activity profiles obtained were notably contrasting,
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showing compound 3 high inhibition levels in most of the cases (Figure 6A–D), unlike com-
pound 4, which showed poor activity, always below 15.4 ± 4.6% (Figures 6E–H and 7A–L).
Specifically, the inhibitions achieved by salonitenolide (3) against O. crenata were 83.4 ± 0.7%,
82.2± 0.7%, and 57.1 ± 2.4%, against O. cumana by 89.4 ± 0.4%, 87.3 ± 1.9%, and 64.2 ± 4.3%,
against O. minor by 84.6 ± 1.4%, 84.5 ± 0.4%, and 76.8 ± 3.5%, and against P. ramosa by
58.5 ± 10.1%, 46.2 ± 3.2%, and 12.7 ± 4.6% (at 1 mM, 0.6 mM, and 0.3 mM, respectively)
(Figure 6A–D). Aiming at providing insights into the bioactivity of salonitenolide (3), its
acetylated derivative 8,15-O,O’-diacetylsalonitenolide (5) was synthetically obtained and
tested in bioassay. As a result, compound 5 showed the strongest activity among all the iso-
lated compounds from C. cineraria, completely inhibiting the growth of radicles of O. crenata
and O. minor at all concentrations tested, inhibiting the O. cumana radicles by 100 ± 0.0%,
100 ± 0.0%, and 92.5 ± 0.6%, and the P. ramosa radicles by 100 ± 0.0%, 88.3 ± 2.2%, and
66.4 ± 1.3%, at respective concentrations of 1, 0.6, and 0.3 mM (Figures 6I–L and 7M–P).
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Figure 6. Growth inhibition induced by salonitenolide (3, A–D), 11β,13-dihydrosalonitenolide
(4, E–H), and 8,15-O,O-diacetylsalonitenolide (5, I–L) in radicles of O. crenata, O. cumana, O. minor,
and P. ramosa. Bars with different letters are significantly different according to the Tukey test
(p < 0.05). Error bars represent the standard error of the mean.
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Figure 7. Treatments with control (A–D), salonitenolide (3, (E–H)), 11β,13-dihydrosalonitenolide
(4, (I–L)), applied at 1 mM, and 8,15-O,O-diacetylsalonitenolide (5, (M–P)) on radicles of O. crenata
(A,E,I,M), O. cumana (B,F,J,N), O. minor (C,G,K,O), and P. ramosa (D,H,L,P).

3. Discussion

From a structural perspective, two distinct types of sesquiterpene lactones were
isolated. Isocnicin (1) features an elemanolide structure, while compounds 2–4 are germa-
cranolides. A few specific lactones produced by Centaurea spp. have been identified as
phytochemicals, with cnicin (2) being widely studied in different fields, including reports
on its phytotoxicity [34,35]. Consequently, the inhibitory activity of the isolated compounds
against broomrape radicle growth was evaluated in bioassays. The results obtained al-
lowed us to discuss some structure-activity relationships. The key one is the importance
of the double bond in the α,β-unsaturated lactone ring of the sesquiterpene lactones in
the inhibition of broomrape, given the poor activity of 11β,13-dihydrosalonitenolide (4) in
comparison with the results of the other compounds tested. It could be highlighted how
a previous study showed that an 11,13-dihydro sesquiterpene lactone could be active in
bioassays with broomrapes [36]. When comparing parameters like lipophilicity and the to-
tal rotable bonds, H-bond donors, and H-bond acceptors, the similar values for compounds
3 and 4 (Table 1) may indicate that these are not directly correlated with the loss of activity
by compound 4.
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Table 1. Clog p values and number of rotable bonds, H-bond donors, and H-bond acceptors of
compounds 1–5.

Isocnicin (1) Cnicin (2) Salonitenolide (3)
11β,13-

Dihydrosalonitenolide
(4)

8,15-O,O′-
Diacetylsalonitenolide

(5)

Clog P 0.37 0.63 0.61 0.64 2.45

Rotable bonds 8 6 1 1 5

H-bond acceptors 7 7 4 4 6

H-bond donors 3 3 2 2 0

The second SAR conclusion is related to the acetylation of the hydroxyl groups, which
represents a relevant improvement in the inhibitory activity as observed for compound 5
in comparison with salonitenolide (3), leading to a significant increment of the inhibition,
especially at the lowest concentrations (Figure 6). This improvement could be explained by
a better solubility of the compound within hydrophobic environments like the lipid bilayers
of membranes, as justified by the lipophilicity expressed by the partition coefficient values
calculated by the clog P algorithm for compounds 1–5 (Table 1). Even though compounds
1–5 accomplish the Lipinskii rule for the optimal clog P value for herbicides (≤3.5) [37],
compound 5 has a notably different value (2.45) in comparison to those of compounds
1–4 (0.37–0.64), which could therefore justify the different level of activity. Moreover, the
improved activity of compound 5 could be related to the absence of H-bond donor atoms
in its structure, unlike the structures of compounds 1–4 (Table 1). Regarding the activity for
induction of broomrape germination, even though the C. cineraria organic extracts were
inactive as inductors of broomrape germination, a bioassay with compounds 1–5 was
carried out on the seeds of P. ramosa, O. minor, O. cumana, and O. crenata to test their suicidal
germination induction activity in the range of concentrations described above for radicle
inhibition. Null activity was obtained in all the cases, proving that the null activity of the
extracts was not due to other potential minor metabolites in the extract interfering with
the bioactivity, as well as that the acetylation of compound 3 is not a modification able to
change the behavior of this compound for suicidal germination activity.

The results herein presented fit into the context of the biology and management of
parasitic weeds. The germination of broomrape seeds is commonly stimulated by spe-
cific compounds exuded by potential host plants in their surroundings. The family of
phytohormones named strigolactones represents the most studied structures, though di-
verse sesquiterpene lactones produced by plants have been discovered as potent elicitors
of germination of some broomrape species, being inactive on the germination of other
broomrape species, with the case of costunolide and dehydrocostus lactone produced by
sunflower being one of the most representative [10,23]. Thus, the study of sesquiterpene
lactones also focused on the interest of parasitic weed research, covering topics like mecha-
nisms, biosynthesis, and the use of materials for the development of bioactive derivatives
against parasitic weeds [38,39]. Regarding the inhibition of parasitic weeds, few refer-
ences are available in the literature, mainly the discovery of inuloxins as inhibitors of the
germination of O. crenata and Cuscuta campestris [40]. Thus, this study provides different
sesquiterpene lactones of interest for the development of tools based on natural products
for the management of broomrape weeds. This includes the elemanolide isocnicin (1),
two natural germacranolides (cnicin 2, and salonitenolide 3), and the highly active syn-
thetic derivative 8,15-O,O′-diacetylsalonitenolide (5). It may be noted that germacranolides
are a subgroup of sesquiterpene lactones with diverse biological activities of agronomical
and pharmacological interest, and from which it is worth highlighting the capacity of some
of them to stimulate the germination of specific broomrape species [23,41,42]. Furthermore,
taking into account that the active compounds contain an α,β-unsaturated lactone ring,
they could be used as starting material for the synthesis of new strigolactone analogues
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following already reported strategies [43]. Previous reports on the synthesis of derivatives
of cnicin would also encourage the study of additional derivatives with improved activities
in bioassays with parasitic plants [44,45].

4. Materials and Methods
4.1. General Experimental Procedures

A Bruker 400 Anova Advance (Karlsruhe, Germany) spectrometer was used to record
the proton nuclear magnetic resonance (1H NMR) at 400 MHz. CDCl3 was used as a solvent
and internal standard. A digital polarimeter, the JASCO P-1010 (Tokyo, Japan), was used
to measure the optical rotations. Liquid Chromatography/Mass Spectrometry-Time of
Flight (LC/MS TOF) system AGILENT 6230B (Agilent Technologies, Milan, Italy) and
High-performance liquid chromatography (HPLC) 1260 Infinity were used to perform Elec-
trospray ionisation mass spectra (ESIMS). Column chromatography (CC) was performed
using silica gel (Kieselgel 60, 0.063–0.200 mm, Merck, Darmstadt, Germany). Analytical
and preparative silica gel plates (Kieselgel 60, F254, 0.25 and 0.5 mm, respectively, Merck,
Darmstadt, Germany) and thin-layer chromatography (TLC) were performed. Spots Visu-
alization was carried out by exposure to UV light (254 nm) and/or iodine vapors and/or
by spraying first with 10% H2SO4 in MeOH and then with 5% phosphomolybdic acid in
EtOH, followed by heating at 110 ◦C for 10 min. Sigma-Aldrich Co. (St. Louis, MO, USA)
supplied all the reagents and the solvents.

4.2. Plant Material

C. cineraria L. subsp. cineraria was collected in February 2022 in the municipality of
Massa Lubrense (Metropolitan City of Naples, Italy). The collection was carried out in
a period far from flowering and fruiting, collecting the terminal part of leafy twigs from
about 30 individuals, spaced 5–10 m apart to reduce the risk of sampling clonal individuals.
In order to remove dust particles, distilled water was used to rinse plant material, which
was then dried for a few days in the air at room temperature and ground in a blender.
The identification of the plant material was conducted according to the flora of Italy [46]
and confronted with reference material collected in the same area from the collection of
Michele Guadagno kept at the herbarium of Pisa (PI-GUAD 012823, https://erbario.unipi.
it/it/erbario/view?id=1615282 (accessed on 5 December 2023)). Broomrape (Orobanche
and Phelipanche) seeds from four species of root parasitic weeds were used. Seeds of O.
crenata were collected in 2019 from mature Orobanche plants infecting pea in Spain, and
seeds of O. cumana were collected in 2017 from mature Orobanche plants infecting sunflower
in Spain. O. minor seeds were collected in 2015 from Orobanche plants infecting red clover
in France, and seeds of P. ramosa were collected in 2015 from Phelipanche plants infecting
tobacco in France.

4.3. Purification and Identification Compounds 1–4

50 g of dried and minced C. cineraria L. subsp. cineraria were extracted by H2O/MeOH
(1/1, v/v) under stirred conditions at room temperature for 24 h. The hydroalcoholic
suspensions were centrifuged at 7000 rpm and extracted with n-hexane (2 × 200 mL),
CH2Cl2 (2 × 200 mL), and, after removing methanol under reduced pressure, with EtOAc
(2 × 200 mL). The residues of both extractions performed with the three solvents were
combined, obtaining 85.2 mg (n-hexane), 492.1 mg (CH2Cl2), and 317.1 mg (EtOAc) of
organic extracts.

The residue of the CH2Cl2 organic extract was purified by column chromatogra-
phy using the eluent CHCl3/i-propanol (9/1, v/v), and eight homogeneous fractions
(F1-8) were obtained. The residue of fraction F3 (34.7 mg) was further purified by TLC
in the direct (eluted with CHCl3/i-propanol (95/5, v/v)) and reverse phases (eluted with
acetonitrile/H2O (4/6, v/v)) phases, yielding a pure compound identified as salonitenolide
(3, 18.1 mg). The residue of fraction F4 (8.6 mg) was further purified by reverse phase TLC
using eluent ethanol/H2O (6/4, v/v), giving a pure compound identified as isocnicin (1,

https://erbario.unipi.it/it/erbario/view?id=1615282
https://erbario.unipi.it/it/erbario/view?id=1615282
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6.6 mg). The residue (27.4 mg) of F5 was further purified using CH2Cl2/MeOH (9/1, v/v)
as eluent, yielding a pure compound that was identified as 11β,13-dihydrosalonitenolide (4).
The residue of F6 (277.8 mg) corresponded with a pure compound identified as cnicin (2).

Isocnicin (1): The 1H NMR spectrum (Figure S1) agreed with previously reported
data [28]. ESIMS (+) m/z: 401 [M + Na]+ (Figure S2).

Cnicin (2): The 1H NMR spectrum (Figure S3) agreed with previously reported
data [30]. ESIMS (+) m/z: 379 [M + H]+ (Figure S4). [α]D +160.4 (c 0.10, MeOH), [α]D
+169.6 lit. [30].

Salonitenolide (3): 1H NMR spectrum (Figure S5) agreed with previously reported
data [30]. ESIMS (+) m/z: 287 [M + Na]+ (Figure S6). [α]D +195.9 (c 0.38, MeOH), [α]D
+199.4 lit. [30].

11β,13-Dihydrosalonitenolide (4): 1H NMR spectrum (Figure S7) agreed with pre-
viously reported data [29]. ESIMS (+) m/z: 267 [M + H]+ (Figure S8). [α]D +101.2 (c 5.0,
CHCl3), [α]D +98 lit. [29].

4.4. Synthesis of 8,15-O,O′-Diacetylsalonitenolide (5)

3.0 mg of salonitenolide (3, 0.011 mmol) were dissolved in pyridine (20 µL), and acetic
anhydride (20 µL) was added. The reaction was performed at room temperature overnight.
MeOH was added to stop the reaction, and the azeotrope formed by benzene addition was
evaporated under a N2 stream. The residue (3.2 mg) was purified by analytical TLC using
CHCl3/i-propanol (97/3, v/v) as eluent, affording 8,15-O,O’-diacetylsalonitenolide (5) in
73% yield (2.8 mg, 0.008 mmol).

The obtaining of compound 5 as a diacetylated product of compound 3 was confirmed
by comparison of their NMR and ESIMS spectroscopic data (Figures S5, S6, S9, and S10).
Mainly, two new signals at δ 2.11 and 2.10 ppm with singlet multiplicity in the 1H NMR
spectrum of compound 5 denoted the acetylation of two hydroxyl groups, which was also
confirmed by the m/z value of 371 obtained in the ESIMS analysis of compound 5, corre-
sponding to a sodium adduct [M + Na]+ of a compound with a molecular weight of 348.

4.5. Growth Inhibition Assays on Broomrape Species

The phytotoxic activity of C. cineraria extracts and compounds was studied using
growth inhibition bioassays on broomrape species, in which the candidate phytotoxin
is applied to broomrape seeds induced to germinate by a two-step process required by
broomrape to germinate, which consists of a first treatment of warm stratification called
broomrape seed conditioning, followed by chemical stimulation with the synthetic ger-
mination stimulant GR24 [47]. Approximately 100 seeds of each parasitic species were
individually placed on glass fiber filter paper (GFFP) discs (Whatman International Ltd.,
Maidstone, UK) of 9 mm-diameter and placed in Petri dishes. The filter paper was previ-
ously moistened with 50 µL of sterile distilled water. Petri dishes were sealed with parafilm
and placed at 23 ◦C in the dark for 10 days to promote broomrape conditioning. Then, GFFP
discs containing conditioned seeds were placed on a sterile sheet of filter paper to remove
the water used to promote the conditioning and transferred to new 9 cm Petri dishes. C.
cineraria compounds were first dissolved in dimethyl sulfoxide and then mixed with GR24
at the tested concentrations (1.0–0.1 mM). GFFP discs containing conditioned seeds of each
broomrape species were applied to triplicate aliquots of each sample. Treatments containing
GR24 and dimethyl sulfoxide were used as a control. The final concentration of dimethyl
sulfoxide in all treatments was 1%. Treated seeds were incubated in the dark at 23 ◦C for
7 days, and then the radicle length was measured in each of the ten randomly chosen
seedlings for each of the three replicate GFFP discs per treatment using a stereoscopic
microscope (Leica S9i, Leica Microsystems GmbH, Wetzlar, Germany). The inhibition of
radicle growth induced by each treatment was calculated relative to the average radicle
growth of the control treatment.
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4.6. Statistical Analysis and Calculations

Growth inhibition assays on broomrape species were performed using a completely
randomized design. Percentage data were transformed using angular transformation to
normalize data and stabilize variances. Analysis of variance (ANOVA) was conducted
using SPSS software 27 (SPSS Inc., Chicago, IL, USA). The significance of mean differences
among treatments was evaluated by Tukey’s multiple comparison test (p < 0.05).

Calculation of clog P values was performed using ChemOffice v20.1 (PerkinElmer,
Waltham, MA, USA) using the appropriate tool in ChemDraw Professional, while the
number of rotable bonds, H-bond acceptors, and H-bond donors was calculated using the
SwissADME software [48–50].

5. Conclusions

This study describes for the first time a Centaurea species, namely C. cineraria L.
subsp. cineraria, as a source of extracts and secondary metabolites as inhibitors of the
radicle growth of broomrape weeds. Four sesquiterpene lactones were purified from the
aerial parts of this plant and identified as isocnicin, cnicin, salonitenolide, and 11β,13-
dihydrosalonitenolide. Isocnicin, cnicin, and salonitenolide, as well as the synthetic
derivative 8,15-O,O′-diacetylsalonitenolide, exhibited significant inhibitory activity against
diverse broomrape species, demonstrating inhibitions over 80% in most cases. Structure-
activity relationship analyses emphasized the importance of the α,β-unsaturated lactone
ring in their efficacy, and the greater efficacy of the synthetic acetylated derivative was
attributed to enhanced lipophilicity and the absence of H-bond donor atoms in its struc-
ture. On the other hand, the C. cineraria organic extracts and the pure compounds did not
induce suicidal germination of broomrape seeds. These findings highlight the potential
of C. cineraria sesquiterpene lactones for developing natural product-based herbicides to
combat parasitic weed infestations in sustainable crop protection strategies, and provides
insights into the mechanisms involved in the germination of broomrapes. The significance
of structural modifications in designing effective herbicides has been also remarked. In
particular, 8,15-O,O′-diacetylsalonitenolide seems to be a promising compound to carry out
other studies on its efficiency, degradation, and ecotoxicological profile. However, for its
practical application in novel bioherbicide formulations, suitable amount of this compound
will be required trough the development of its total stereoselective synthesis or its hemisyn-
thesis, which can also be afforded starting from natural sesquiterpene lactones produced
in relatively large amount. Furthermore, further research may cover the improvement
of the biological activity of compounds at lower concentrations to minimize the required
doses, by strategies like the obtaining of bioactive derivatives, encapsulation, or the study
of mixtures, among others.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants13020178/s1. Figure S1. 1H NMR spectrum of isocnicin (1) recorded in
CDCl3 at 400 MHz; Figure S2. ESI MS spectrum of isocnicin (1) recorded in positive mode; Figure S3. 1H
NMR spectrum of cnicin (2) recorded in CDCl3 at 400 MHz; Figure S4. ESI MS spectrum of cnicin
(2) recorded in positive mode; Figure S5. 1H NMR spectrum of salonitenolide (3) recorded in
MeOD at 400 MHz; Figure S6. ESI MS spectrum of salonitenolide (3) recorded in positive mode;
Figure S7. 1H NMR spectrum of 11β,13-dihydrosalonitenolide (4) recorded in CDCl3 at 400 MHz;
Figure S8. ESI MS spectrum of 11β,13-dihydrosalonitenolide (4) recorded in positive mode;
Figure S9. 1H NMR spectrum of 8,15-O,O′-diacetylsalonitenolide (5) recorded in CDCl3 at 400 MHz;
Figure S10. ESI MS spectrum of 8,15-O,O′-diacetylsalonitenolide (5) recorded in positive mode.

Author Contributions: Conceptualization, M.I., M.M., M.F.-A. and A.C.; data acquisition, J.G.Z.,
A.C.P., G.S., M.T.R. and M.F.-A.; data curation, J.G.Z. and M.F.-A.; writing—original draft prepara-
tion, J.G.Z., M.I., M.M. and M.F.-A.; writing—review and editing, J.G.Z., A.C.P., M.M. and M.F.-A.;
supervision, M.M., M.F.-A. and A.C.; funding acquisition, M.F.-A. and A.C. All authors have read
and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/plants13020178/s1
https://www.mdpi.com/article/10.3390/plants13020178/s1


Plants 2024, 13, 178 12 of 14

Funding: This research was funded by the Agencia Estatal de Investigación/Ministerio de Ciencia
Innovación (projects PID2020-114668RB-I00 and RYC-2015-18961). This research was carried out
within the Agritech National Research Center and received funding from the European Union
Next-Generation EU (Piano Nazionale di Ripresa e Resilienza (PNRR)—Missione 4 Componente 2,
Investimento 1.4—D.D. 1032 17/06/2022, CN00000022). Authors wish to express gratitude for the
Ph.D. grant to Gabriele Soriano funded by INPS (Istituto Nazionale Previdenza Sociale).

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: We thank the “Consejería de Transformación Económica, Industria, Conocimiento
y Universidades de la Junta de Andalucía, project ID: QUAL21 023 IAS”. J.G.Z. thanks the Univer-
sity of Cadiz for the postdoctoral support with the Margarita Salas fellowship (2021-067/PN/MS-
RECUAL/CD), funded by the Next Generation EU programme of the European Union, and expresses
his sincere gratitude for the financial support from the “Plan Propio—UCA 2023–2024”, call “INVES-
TIGADORES NOVELES, Proyectos para impulsar su Carrera Científica” (Project PR2023-026). A.C.P.
thanks the financial support from the “Plan Propio—UCA 2022–2023”, call “INVESTIGADORES
NOVELES, Proyectos para impulsar su Carrera Científica” (Project PR2022-043); the “Consejería de
Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía”; and the “Programa
Operativo Fondo Social Europeo de Andalucía 2014–2020”.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kostina-Bednarz, M.; Płonka, J.; Barchanska, H. Allelopathy as a source of bioherbicides: Challenges and prospects for sustainable

agriculture. Rev. Environ. Sci. Biotechnol. 2023, 22, 471–504. [CrossRef]
2. Gerwick, B.C.; Sparks, T.C. Natural products for pest control: An analysis of their role, value and future. Pest. Manag. Sci. 2014,

70, 1169–1185. [CrossRef] [PubMed]
3. Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance.

J. Biol. Chem. 2020, 295, 10307–10330. [CrossRef] [PubMed]
4. Fernández-Aparicio, M.; Delavault, P.; Timko, M.P. Management of infection by parasitic weeds: A review. Plants 2020, 9, 1184.

[CrossRef]
5. Parker, C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 2009, 65, 453–459.

[CrossRef]
6. Parker, C. The parasitic weeds of the Orobanchaceae. In Parasitic Orobanchaceae; Joel, D.M., Gressel, J., Musselman, L.J., Eds.;

Springer: Berlin/Heidelberg, Germany, 2013; pp. 313–344.
7. Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The effect of Orobanche crenata infection severity in faba bean, field pea and grass

pea productivity. Front. Plant Sci. 2016, 7, 1049. [CrossRef]
8. Eizenberg, H.; Goldwasser, Y. Control of Egyptian broomrape in processing tomato: A summary of 20 years of research and

successful implementation. Plant Dis. 2018, 102, 1477–1488. [CrossRef] [PubMed]
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