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Abstract: Typha latifolia leaves act as sensitive barometers for trace heavy metal pollution, as revealed
by their pronounced anatomical responses in a constructed wetland. Monthly water samples and
Typha latifolia leaf tissue were collected over three consecutive months in 2018 from the Burgas
Lake wetlands (Taoura), northeast Algeria. While physical and chemical parameters improved after
treatment, atomic absorption spectrometry (Perkin Elmer A Analyst 800 AAS) detected persistent
trace levels of cadmium, chromium, and lead in both the treated water and leaf tissue, highlighting
the need for continued phytoremediation efforts. Microscopic examination of leaf tissue exposed
to these metals revealed distinct anatomical adaptations, including shrunken vascular bundles,
altered cell shapes, and stomatal closure. These findings underscore Typha latifolia’s effectiveness in
accumulating heavy metals and its potential as a highly sensitive biomonitor for persistent pollution
in lake ecosystems.

Keywords: Lake Burgas; constructed wetland; trace metals; phytoremediation; microscopic analysis

1. Introduction

The escalation of demographic growth alongside rapid industrial development has led
to severe environmental hazards. Human activities, such as industrial processes, mining,
gas emissions, pesticide application, and waste production, have resulted in substantial
pollution of soil, water, and atmospheric ecosystems [1,2]. Currently, aquatic environments
harbor a wide array of xenobiotic and anthropogenic chemicals [3,4], which, either singly
or in mixtures, pose threats to aquatic organisms due to their detrimental effects [5,6].

Heavy metals pollution presents a critical environmental challenge due to its non-
biodegradability and hazardous nature [7]. Heavy metals have a tendency to accumulate
and migrate within soil environments, potentially being absorbed by plants through their
root systems. This accumulation can compromise ecosystem safety, posing threats to
animals, plants, and human health. Elevated metal concentrations in plants can hinder
chlorophyll production, heighten oxidative stress, and weaken stomatal resistance [8].

Noteworthy heavy metals such as cadmium, copper, lead, chromium, and mercury
are significant environmental pollutants, especially in areas characterized by a strong
anthropogenic impact. Trace amounts of these metals in the atmosphere, soil, or water can
pose serious threats to all organisms. Bioaccumulation of heavy metals, particularly in the
food chain, can be highly detrimental to human health. Human exposure to heavy metals
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occurs primarily through inhalation and ingestion, with ingestion being the predominant
route (leading to endocrine system damage, immune impact, neurological disorders, and
cancer) [9].

At the cellular level, toxic metal ions induce oxidative stress by generating reactive
oxygen species (ROS), thereby causing DNA alterations, perturbing protein functionality,
disrupting nutrient homeostasis, and impacting membrane and protein functions [10,11].

In Algeria, as in numerous African and global regions, various studies have eval-
uated the efficacy of constructed wetlands in wastewater treatment [12,13]. Monitoring
and safeguarding the physicochemical and biological quality of water in aquatic ecosys-
tems necessitate efforts to prevent and control metal pollution to mitigate its impact on
water resources, biodiversity, food webs, and human health [14,15]. The integration of
artificial wetlands (CW) within natural aquatic ecosystems presents a promising strategy
for eco-remediation.

Recent advances have explored phytoremediation in artificial filter marshes as a
technology to remove metallic pollutants, employing a combination of physical, chemical,
and biological processes like sedimentation, precipitation, adsorption to soil particles,
uptake by plant tissues, and transformation by microorganisms [16].

While several studies have noted the tolerance of naturally growing cattails to varying
concentrations of heavy metals, such as Typha latifolia [13–17], Typha domingensis, and
Typha angustifolia [18,19], the focus on examining treatment efficiency often revolves around
physicochemical parameters [13–20]. Few studies have delved into assessing environmental
stressors’ impact at the morphological and anatomical levels.

Helophytes, due to their ability to accumulate pollutants, serve as valuable ecological
indicators of metal contamination in aquatic ecosystems. These biological tools naturally
signal environmental pollution and the bioavailability of toxic substances [21].

The macrophyte Typha latifolia stands out as a prime model organism for studying pol-
lutant toxicity in raw wastewater. Its well-documented capacity to accumulate significant
concentrations of pollutants like cadmium, chromium, and lead in both subterranean and
aerial tissues makes it a highly relevant choice [14].

This work aims to evaluate the effects, induced by pollutants present in raw wastewa-
ter, on the anatomical markers of the leaves of T. latifolia, a purifying macrophyte species
in Lake Burgas (Taoura), northeastern Algeria. These macrophytes, serving as ecotoxi-
cology models and biosurveillance tools in freshwater resources, can effectively function
as biological indicators amidst environmental pressures. Additionally, this study deter-
mines the physicochemical parameters of this artificial wetland to evaluate wastewater
treatment efficacy.

2. Results and Discussion
2.1. Physico-Chemical Characterization of Burgas Lake Waters

Table 1 shows the average values of measured parameters of Burgas Lake waters
during the study period.

2.1.1. Evolution of Temperature: T ◦C

Wetland water temperature ranged from 15.3 ◦C to 22.6 ◦C (Table 1), falling below the
30 ◦C limit for direct environmental discharge and wastewater irrigation [22,23]. Though
technically acceptable for discharge, these fluctuations may nonetheless influence pollutant
uptake by T. latifolia due to altered microbial activity and nutrient dynamics. Higher
temperatures can favor organic pollutant degradation while also stressing the plants. pH
within the recorded range (7.33–7.97) may further impact the bioavailability of metals and
inorganic compounds for plant uptake.
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Table 1. General statistics of the measured physico-chemical parameters.

Variable Physico-Chemical Number
of Samples

Minimum
Values

Maximum
Values

Mean Values
± Standard
Deviation

Parameters
analyzed in

the laboratory
Hg (ppm) 12 0.001 0.060 0.015 ± 0.01

Cd (ppm) 12 0.004 0.07 0.02 ± 0.02

Cr (ppm) 12 0.02 0.06 0.04 ± 0.01

Pb (ppm) 12 0.001 0.005 0.003 ± 0.056

Parameters
measured in situ

Turbidity
(NTU) 12 90.2 188 73.81 ± 12.2

Oxygen
dissolved (O2)

(mg/L)
12 1.67 3.37 2.45 ± 0.87

pH 12 7.33 7.97 7.69 ± 1.18

T ◦C 12 15.3 22.56 13.43 ± 1.54

EC (µs/cm) 12 1236.56 1563.23 1385.11 ± 152.87
Cd: Cadmium; Cr: Chromium; Pb: Lead; pH: hydrogen potential; T: Temperature; EC: Electrical conductivity.

2.1.2. Evolution of Hydrogen Potential: pH

The hydrogen potential, an indicator of pollution, fluctuates due to the nature of
effluents: basic (cooking, washing) or acidic (acetic acids, chlorine derivatives) [15].

The recorded pH range in Lake Burgas (7.33–7.97) falls within acceptable environmen-
tal limits; even slight fluctuations within this range can influence the ability of T. latifolia to
assimilate pollutants. Studies have shown that pH variations can alter the speciation and
bioavailability of metals and inorganic compounds, affecting their uptake by plants [24,25].
For instance, a shift towards a more acidic pH can increase the solubility and mobility of
certain heavy metals, potentially making them more accessible to T. latifolia for phytore-
mediation [26,27]. Conversely, a higher pH might favor the formation of insoluble metal
complexes, limiting their plant uptake [28]. Therefore, understanding the complex interplay
between pH fluctuations and metal speciation is crucial for optimizing the efficiency of T.
latifolia in pollutant removal within constructed wetlands.

2.1.3. Evolution of Electrical Conductivity (EC)

Despite falling within the FAO’s permissible range (0–3000 µs/cm) [29], the measured
electrical conductivity (EC) in Lake Burgas (1236.56–1563.23 µs/cm) exceeds the Algerian
standard for irrigation water (<2000 µs/cm) [22]. This elevated EC, likely due to the organic
load [30], could pose challenges for conventional irrigation. However, T. latifolia is a robust
aquatic plant that thrives in such environments, showcasing remarkable capabilities in both
pollutant removal and salinity tolerance [31].

2.1.4. Evolution of Turbidity

Water clarity, measured as turbidity, plays a crucial role in the health and functionality
of aquatic ecosystems. In Lake Burgas, it fluctuated considerably throughout the study
period, ranging from 1.19 to 8.5 NTU (Table 1). This variability likely stems from the
influx of finely divided suspended matter, including clay, silt, organic matter, and nitrogen
compounds, through discharged effluents [15–32]. Fortunately, aquatic plants like T. latifolia
can act as natural filters, effectively reducing turbidity. Their dense root systems and fibrous
tissues capture suspended particles, allowing for gradual sedimentation and improved
water clarity. This filtration capacity plays a vital role in maintaining a healthy ecosystem
by promoting light penetration, oxygen availability, and overall water quality, highlighting
the significant contribution of aquatic plants in managing turbidity fluctuations.
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2.1.5. Evolution of the Inorganic Load

Analysis of heavy metals in the wetland waters of Lake Burgas revealed the presence
of Cr, Co, and Cd in low concentrations at the outlet [33] (Table 1). However, due to the
short residence time, which limits the ability of phytoextraction to effectively remove and
concentrate these pollutants in the root and aerial parts, phytoextraction is considered
a minor factor in inorganic pollutant reduction [14–34]. The contamination of aquatic
ecosystems with heavy metals from urban and industrial effluents poses a serious threat
to human health, as these metals can be absorbed by vegetables and enter the food chain,
causing bio-concentration at each higher trophic level [35,36].

2.2. The Effect of Environmental Pollution on the Anatomical Responses of T. latifolia

Examination of cross-sections from control and T. latifolia leaves exposed to raw
sewage initially focused on identifying the control histological organization (Figure 1). This
revealed that the leaf tissue of T. latifolia is composed of two cuticles: one on the upper
surface and another on the lower surface. Each cuticle acts as a thin protective film covering
the entire leaf epidermis. Subsequent microscopic observation of the epidermis, a single
layer of generally elongated cells covering the leaf, further confirmed its dorsoventral
anatomy: the upper (adaxial) and lower (abaxial) surfaces. The closely knit epidermal cells
form a boundary between the plant and the external environment (Figure 1A,B).
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The abaxial face specifically exhibits unique epidermal structures: the epistomatic stom-
ata. These structures comprise a single stomatal type, the anomocytic variety, which features
two bean-shaped guard cells that are thicker on the internal side and frame an opening called
the ostiole. These guard cells are often accompanied by companion cells, lacking chloroplasts,
with which they share intimate contact via their external faces (Figures 1A and 2).
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Figure 2. Stomatal characteristics of T. latifolia leavs (Witness). GC: Guard Cell; S: Stomata; O: Ostiole.

Moving inward from the epidermal layers, the mesophyll, constituting the bulk of the
leaf interior, comes into view (Figure 1A). This non-homogeneous tissue is further divided
into two parts:

The chlorophyllous palisade parenchyma, located directly beneath the upper epider-
mis, consists of a single layer of elongated and tightly packed cells (Figure 1C).

In contrast, the lacunar (spongy) chlorophyll parenchyma toward the lower epidermis
features relatively rounded cells with fewer chloroplasts and is interspersed with large
air spaces.

Monocot leaf inner tissues are characterized by parallel veins reinforced with bundles
of elongated sclerenchyma fibers, providing high tensile strength. These veins comprise
conducting bundles of xylem and phloem, with the xylem typically positioned on the upper
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side of the veins and the phloem on the lower side. A surrounding set of cells called the
fascicular sheath encloses the veins, which are then further surrounded by mesophyll cells.

Microscopic observation of T. latifolia leaves exposed to raw sewage toxicity revealed
pronounced anatomical alterations compared to the control leaves. Notably, the spongy
parenchyma tissue exhibited irregular cell shapes and structural modifications (Figure 3).
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2.3. Cytotoxic Effects of Heavy Metals and Bioremediation Potential

The presence of heavy metals (Cr, Cd, and Pb) in raw wastewater is evidenced by
their cytotoxic effects. These compounds induce oxidative damage through membrane
lipid destruction. Studies by Amir et al. [34] and Mamine et al. [14] have demonstrated
that hyperaccumulating and heavy metal-tolerant plants like T. latifolia hold promise for
bioremediation applications.
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Histological analysis revealed alterations in the conductive vessels of leaves exposed
to raw wastewater compared to control leaves. These changes included shrinkage of vessel
cell size and slight deformations in the xylem. This phenomenon is likely associated with
an initial biological response to the stress induced by heavy metals encountered during the
hydraulic operation of planted systems. Iqbal et al. [36] proposed that anatomical changes
in T. latifolia xylem vessel elements might be triggered by wall material deposition. This
could represent a potential strategy to restrict water flow, thereby limiting the mobility
and transport of absorbed metals and protecting cellular components from their toxic
effects. Furthermore, Kong et al. [37] observed increased Cd concentration at the xylem
level of hydroponically grown Salix matsudana Koidz in response to elevated production
of phytochelatins (e.g., proline). These chelating agents bind Cd, preventing its deleterious
morphological impacts caused by Cd-induced reactive oxygen species (ROS).

Heavy metals pose a significant threat to the health of aquatic ecosystems. Unlike
organic chemicals, they cannot be readily removed through natural processes of degrada-
tion into less toxic compounds [38]. This characteristic presents unique challenges for their
removal from contaminated water.

The utilization of cattail macrophytes (T. latifolia) in phytoremediation strategies for
aquatic ecosystems offers a unique tool for the remediation of Burgas Lake. These plants
can accumulate heavy metals from contaminated water via their roots [14], with subsequent
transfer to rhizomes and aerial parts (stems, leaves) [39,40]. Therefore, T. latifolia may play
a crucial role in mitigating metal toxicity within the aquatic environment.

2.4. The Paradermal Sections of the Leaves

Examination of peridermic sections from polluted site leaves revealed the presence of
epistomatic stomata solely on the abaxial surface. These stomata exhibited a single type,
the anomocytic variety, as visualized in Figures 1A and 2.

Notably, the observed homogeneity in stomatal features contrasted with the expected
variety. This finding can be attributed to the inherent characteristics of cattail aquatic
macrophyte stomata, reflecting adaptations for efficient carbon acquisition from the sur-
rounding environment.

Despite the anatomical uniformity, a notable alteration in stomatal behavior was ob-
served compared to control samples. Figure 3 demonstrates the closure of most stomata in
polluted site leaves, suggesting that T. latifolia tolerates heavy metal exposure by regulating
water loss, potentially through stomatal control mechanisms [41].

It is important to remember that stomata are specialized epidermal cells crucial for
CO2 absorption, while simultaneously releasing oxygen and water vapor. These vital
structures play a fundamental role in the process of photosynthesis [42].

Doheny-Adams et al. [43] established a link between structural changes in stomata and
both genetic and environmental factors. Additionally, Brodribb et al. [44] demonstrated that
plants exhibit a degree of homeostasis in leaf water content. This mechanism protects pho-
tosynthetic and xylem tissues from damage while maintaining efficient resource allocation.
The tight coordination between xylem-mediated water delivery and stomatal-regulated
water loss plays a key role in achieving this homeostasis.

3. Materials and Methods
3.1. Presentation and Description of the Study Area

The present study was conducted at Burgas Lake, a fragile wetland situated near
Taoura (ancient Thagora) in the city of Souk Ahras, northeastern Algeria. Threatened
by urban expansion, this lake constitutes a vital open water surface (FW-CW) featuring
submerged vegetation and stands of T. latifolia. Notably, T. latifolia exhibits roots thriving
in the waterlogged substrate while its reproductive and vegetative organs remain above
the water.

Burgas Lake, boasting the title of Souk Ahras’ largest natural lake, lies approximately
20 km southeast of the city. Its location near Taoura, revered as Thagora in ancient times,
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further enriches its cultural significance. This lake serves as a cherished stopover for diverse
bird species during their migratory journeys. The prevailing climate in the region can be
categorized as arid to semi-arid, with average temperatures fluctuating between a 2 ◦C
minimum and a 37 ◦C maximum (Figure 4).
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Figure 5 presents a schematic illustration of the treatment processes within a con-
structed wetland. As wastewater traverses the wetland, it undergoes a series of physical,
chemical, and biological transformations that effectively remove pollutants. Notably, sedi-
mentation, filtration, and microbiological degradation serve as the primary mechanisms
involved. These processes efficiently eliminate ammonia, suspended solids, and various
organisms. Additionally, nitrogen removal demonstrates high efficiency, while phospho-
rus removal exhibits less efficacy. Constructed wetlands are extensively employed in the
tertiary treatment of both municipal wastewater and stormwater runoff.
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3.2. Water Sampling and Analysis Methods

This work is based first on a survey of the functioning of the Burgas Lake wetlands
that was conducted in the months of April to June during the year 2018. During this
period, we performed weekly water sampling at the outlet of the Burgas Lake wetland.
The operation was performed manually using a small container that was then transferred
into bottles before taking the sample to perform the appropriate analyses. The samples
were filled into clean polyethylene bottles with Teflon caps, and rinsed at the time of
use with the water to be examined [46]. These samples were subject to measurements of
the parameters in situ, which included the hydrogen potential (pH), temperature (T ◦C),
electrical conductivity (EC), turbidity (Turb), and dissolved oxygen (O2) of the water. These
were determined using a multiparameter field brand Consort C 562; laboratory analysis
focused on metal composition via atomic absorption spectrometry (Perkin Elmer A Analyst
800 AAS, American Laboratory Trading, East Lyme, CT, USA) for Hg, Cd, Pb, and Cr.

3.3. Collection and Sampling of Plants

The investigation of plant communities within Burgas Lake necessitated the selection
of two distinct sampling locations:

Polluted Area: This site, readily identifiable in Figure 6B, exhibited a high abundance
of aquatic T. latifolia plants. This is indicative of the area’s polluted status.

Unpolluted Area (Control): This reference site, showcased in Figure 6A, represented
an unpolluted region of the lake and served as a crucial control for comparison. Monthly
sampling was conducted throughout April, May, and June at each location. During each
sampling event, eight young plants were carefully collected for further analysis.
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3.4. Study Species Description

The species T. latifolia is a perennial emergent macrophyte that often dominates the
upper littoral zone of eutrophic lakes and the edges of rivers in temperate and subtropical
areas [47]. This species produces up to 3 m high linear leaves and an extensive system of
horizontal rhizomes. Cattails can grow on organic, highly reduced sediments, as well as
on acidic sites with high concentrations of reduced metal ions in the interstitial water [48].
The basis for treatment with these rooted helophytes is particularly based on the following
facts:

- They are plants with horizontal and vertical rhizomes that provide support for the
growth of bacteria and the filtration of particulate substances [49].

- The rhizome also provides, together with the roots, high soil permeability and a large
soil–wastewater contact area [50].

- They can concentrate heavy metals, absorb more nutrients than they need, and neu-
tralize extreme pH [51,52].

- They can transmit oxygen from the leaves through the stems into the rhizosphere [16–53].

3.4.1. Selection and Preparation of Biological Material

This study focused on young leaves of the rooted helophyte T. latifolia. These samples
were carefully chosen to ensure consistent representation of the plant community. To
prevent desiccation during transport and storage, the collected leaves were promptly
immersed in distilled water.

3.4.2. Realization of Anatomical Sections and Staining

At the level of the leaf structure, sections were prepared using the freehand man-
ual technique. Subsequently, the subjects were stained according to the double staining
technique (carmine-green) as described in the following steps [54]:

- Sectioning: Using a razor blade, thin sections of the organs under study were carefully
cut. The thinnest and most suitable slices were then selected for further processing.

- Bleaching: The selected sections were placed in a watch glass containing bleach. This
step aimed to dissolve the cellular contents while preserving the cell walls made of
pectin and cellulose.

- Rinsing: To remove excess bleach, the sections were transferred to a second watch
glass filled with distilled water.
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- Mordanting: To eliminate any remaining bleach and prepare the tissues for staining,
the sections were immersed in a 1% acetic acid solution for two minutes. This step
acted as a cell mordant, enhancing the staining process.

- Staining: The sections were then stained in a fourth watch glass containing a mixture of
equal parts Congo red and carmine alum. Congo red stains dead, lignified tissues red,
while carmine alum stains living tissues and intensifies the red color with cellulose.

- Dehydration: After staining, the sections were placed in 70% alcohol. This step
replaced the water within the cells, helping to preserve the obtained sections.

3.4.3. Visualization and Photography

- Mounting: The prepared sections were carefully placed between a slide and a coverslip,
with a drop of glycerin added to enhance clarity.

- Microscopic Examination: The mounted sections were then positioned under the
optical microscope for visualization.

- Documentation: Simultaneously with the microscopic examination, photographs of
the histological sections were captured using an OPPO A53 camera (OPPO Electronics
Corp., Ltd., Dongguan, China). These images allow for further analysis and record-
keeping of the observed features.

3.5. Statistical Analysis

Data processing and analysis were conducted using the statistical software package
Statistica® 8.0 [55]. Results were expressed as the mean ± standard deviation for each
studied physico-chemical variable. Statistical procedures adhered to the recommendations
outlined by Dagnelie [55].

4. Conclusions

In conclusion, T. latifolia in the Burgas Lake wetlands demonstrated noticeable morpho-
logical and anatomical changes in response to heavy metal stress from municipal wastewa-
ter. These changes, including shrunken vascular bundles, irregular spongy parenchyma cell
shapes, and slight xylem deformations, offer valuable insights into the plant’s physiological
response to metal contamination. By quantifying and correlating these alterations with
known metal concentrations, T. latifolia can be utilized as a sensitive bioindicator for moni-
toring and assessing heavy metal pollution in aquatic environments. This approach offers
several advantages: it is non-destructive, cost-effective, and potentially provides real-time
information on metal pollution levels. Future research should focus on establishing robust
correlations between specific anatomical changes and metal concentrations, enabling the
development of standardized bioindicator indices for T. latifolia. Additionally, research on
metal bioavailability in other aquatic macrophytes could broaden the range of available
bioindicators for comprehensive environmental monitoring.
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