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Abstract: The negative impacts of climate change on native forest ecosystems have created challenging
conditions for the sustainability of natural forest regeneration. These challenges arise primarily from
abiotic stresses that affect the early stages of forest tree development. While there is extensive evidence
on the diversity of juvenile microbial symbioses in agricultural and fruit crops, there is a notable
lack of reports on native forest plants. This review aims to summarize the critical studies conducted
on the diversity of juvenile plant–microbe interactions in forest plants and to highlight the main
benefits of beneficial microorganisms in overcoming environmental stresses such as drought, high
and low temperatures, metal(loid) toxicity, nutrient deficiency, and salinity. The reviewed studies
have consistently demonstrated the positive effects of juvenile plant–microbiota interactions and
have highlighted the potential beneficial attributes to improve plantlet development. In addition,
this review discusses the beneficial attributes of managing juvenile plant–microbiota symbiosis in
the context of native forest restoration, including its impact on plant responses to phytopathogens,
promotion of nutrient uptake, facilitation of seedling adaptation, resource exchange through shared
hyphal networks, stimulation of native soil microbial communities, and modulation of gene and
protein expression to enhance adaptation to adverse environmental conditions.

Keywords: bacteria; endophytes; fungi; reforestation; rhizosphere; seed germination; symbiosis

1. Introduction

Recently, manifestations of climate change have increased in frequency and inten-
sity [1]. These changes have promoted forest fires, water deficits, prolonged droughts,
and extreme weather events, which are now common manifestations of environmental
degradation [2]. Global warming also threatens the conservation of native forests and
their associated biodiversity as they have to cope with harsh environmental conditions [3].
In addition, productive activities such as agriculture and forestry negatively affect the

Plants 2024, 13, 175. https://doi.org/10.3390/plants13020175 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants13020175
https://doi.org/10.3390/plants13020175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-8552-2657
https://orcid.org/0000-0002-5760-816X
https://orcid.org/0009-0005-5758-1365
https://orcid.org/0000-0001-9811-4855
https://orcid.org/0000-0001-7925-4721
https://orcid.org/0000-0003-2320-0067
https://orcid.org/0000-0002-9592-135X
https://orcid.org/0000-0003-4481-982X
https://orcid.org/0000-0002-2862-4726
https://doi.org/10.3390/plants13020175
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants13020175?type=check_update&version=1


Plants 2024, 13, 175 2 of 21

conservation of native forests, mainly through intensive chemical management of soils [4].
As a result, metal(loid)s, xenobiotics, and fertilizers are increasingly reaching native forest
soils [5]. As a direct result of environmental and anthropogenic pressures, the extinction
rate of plant species and their associated biota is currently increasing [6].

Abiotic stress damages native forest regeneration [7]. In forests, multiple abiotic
stresses significantly affect ecosystem services, as these factors also alter soil and forest-
associated microbial diversity. In the field of plant–microbe interactions, symbiosis has
often been used to describe mutualistic beneficial associations. Root nodule symbiosis
and arbuscular mycorrhizal symbiosis are the two most extensively studied symbiotic
relationships [8,9]. These interactions are intimate, with at least one partner being obli-
gately dependent on the association as part of its life history [10]. However, we will use
the term “symbiosis“ in its literal sense of “living together,” regardless of whether the
outcome is beneficial, neutral, or detrimental between the two or more biological species
involved [11]. The plant microbiota includes all microorganisms living in and on the plant
(bacteria, archaea, fungi, protozoa, and algae) [12]. Part of this microbiota includes plant
growth-promoting microorganisms, which have a beneficial effect on plant growth and
development. These microorganisms employ direct and indirect mechanisms of plant
growth promotion that act simultaneously [13].

The seed is a fundamental structure of plants that contains the genetic information
to sustain growth and reproduction, ensuring the continuity of plant species and the de-
velopment of new generations. Microorganisms can reside on and within the seed and
play a critical role in supporting plant health during the early stages of growth. The seed
microbiota benefits the seedling in essential processes such as nutrient acquisition, redox
homeostasis, modulation of plant secondary metabolism, protection against pathogens,
growth promotion, antioxidant activity, and hormone production and modulation [13,14].
The seed microbiota is critical for early plant growth and development. However, it is
highly susceptible to changes in forest abiotic conditions, highlighting the importance of
vital beneficial symbioses that are critical to the life cycle of forest plants [15]. These mi-
croorganisms can positively influence plant responses to environmental stress, suggesting
that microbiota can maintain plant adaptation under stress.

Although there are numerous studies that explore beneficial microorganisms at early
plant developmental stages, the vast majority associate with annual crops and less than
5% study native forest species. We conducted a systematic review to collect all available
scientific information on the juvenile association of forest plants at early stages of devel-
opment (seed or seedling) in the Scopus database using the keywords “microorganism,”
“crop,” and “seed” or “seedling,” and 2530 articles were found. However, if we use the
keywords “microorganism,” “native,” “tree,” and “seed” or “seedling,” 91 articles were
found, which is 3.6% of the total articles in fruit or crop. After a critical review of the
results, 13 articles from 2015 were related to specific genera of beneficial microorganisms.
In this review, we summarize the most important studies on plant–microbiota interactions
in juvenile native forest trees. We highlight the role of beneficial symbiotic microorganisms
in promoting abiotic stress tolerance under climate change, especially at the seedling stage
where resistance to challenging field conditions is critical for successful establishment.

2. Juvenile Plant–Microbe Interactions

The symbiotic relationship between plants and microorganisms persists throughout
the plant life cycle. However, the initial beneficial interactions play a critical role in
promoting or hindering ecosystem adaptation rates [16]. Most of our knowledge about
beneficial microorganisms during the early stages of plant development comes from
studies conducted on crops [17]. However, in recent years, there has been an increasing
focus on studying juvenile interactions between forest plants and microorganisms,
driven by a growing awareness of the importance of preserving pristine forests [18].
Identifying and managing juvenile plant–microbe interactions is particularly important
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for sustainable forestry practices, as it provides an alternative for improving plant
growth and adaptation rates.

2.1. Seed-Associated Microorganisms

Seed-associated microorganisms are part of the diverse pool of beneficial microor-
ganisms that interact directly with the vital organs of plants. This symbiotic relationship
includes beneficial microorganisms that are intimately associated with seed structures.
Typically, these microorganisms are transferred directly from the parent plant to its progeny
through vertical transmission [19]. Other microorganisms are acquired from the surround-
ing ecosystem through horizontal transmission [20]. Both processes enrich seeds with
microorganisms, some of which provide beneficial functions for plant growth. These are
called seed endophytes or seed-associated microorganisms [21].

The vertical transmission of some fungal endophytes of grasses, such as Epichloë, via
seeds has been extensively studied [22]. In many vertically transmitted symbioses, the
symbiont is obligate and spends its entire life cycle inside the host, unable to survive in the
environment [23]. The leaf-nodulating nitrogen (N) -fixing Burkholderia symbionts appear
to be obligate endophytic bacteria that have been vertically transferred to the genera Ardisia,
Pavetta, Psychotria, and Sericanthe [24]. However, there is no evidence for co-speciation
between hosts and Burkholderia, as the source of the bacteria could be the environment,
the parent plant, or both [25]. The presence of bacteria in seeds does not necessarily mean
that they originated from the parent, and not all seed-inhabiting bacteria will necessarily
colonize seedlings [26].

While the classification of seed endophytes has traditionally been based on the isola-
tion of strains after superficial seed disinfection, we prefer to define seed-associated microor-
ganisms, including surface and endophytic microorganisms. Microbial species transferred
to plants can also adopt an endophytic lifestyle and colonize areas outside plant organs,
such as the rhizosphere or phyllosphere [27]. Most knowledge about seed-associated
microorganisms comes from studies of bacteria interacting with annual herbaceous and
agricultural plants [28]. Seed endophytic microbiota are genotype specific [29]. Pseudomon-
adota, Bacillota, Actinomycetota, and Bacteroidota are phyla that represent some of the
most common seed-associated bacteria. Genera such as Bacillus, Acinetobacter, Pantoea, En-
terobacter, Paenibacillus, and Pseudomonas are commonly found in seeds [14]. Some of them
are beneficial bacteria that promote plant growth directly (biofertilizing and phytostimulat-
ing activities) and indirectly (antagonistic activities) [19]. The direct mechanisms allow for
an increase in the availability and uptake of nutrients by the plant (biofertilizer activity)
and the production and release of secondary metabolites (phytostimulant activity) [30]. An
indirect mechanism is biocontrol, where the beneficial microorganisms have antagonistic
activity against some plant pathogens [31].

There are two main routes by which endophytic bacteria enter seeds: through the
flowers or through the internal pathway (xylem vessels or meristems) [13]. These bacteria
have been found in different seed compartments, such as the seed coat, embryo, and
endosperm [32]. Endophytic seed-associated bacteria isolated from Sophora davidii were
vertically transmitted to the next generation of plants [33]. The plant growth promotion
induced by seed-associated bacteria is particularly active under adverse growth conditions,
primarily by improving tolerance to abiotic stresses such as metal(loid)s or water deficit,
and by enhancing the production of hydrolytic enzymes [34].

Fungi and yeasts are also commonly reported as seed-associated microorganisms. The
genera Alternaria, Aureobasidium, Cladosporium, Epicoccum, Phaeosphaeria, Phoma, Pyrenophora,
Stagonospora, Chaetomium, Fusarium, Microdochium, Stemphylium, and Xylaria have been
described as major taxa in seeds [35]. A study by Yang, et al. [36] demonstrated differences
in the composition of leaf, root, and soil mycorrhizae in 13 different tree species, suggesting
that fungal mycorrhizae do not systematically infect the species tested. Similarly, Carya
illinoinensis may benefit from interactions with fungal endophytes such as Beauveria bassiana,
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which play a positive role in the management of the insect pests Melanocallis caryaefoliae
and Monellia caryella [37].

The global diversity of seed-associated microorganisms in woody plants remains to
be studied. Improving nutrient uptake, biotic or abiotic stress tolerance, phytohormone
production, and protection against common phytopathogens is of vital importance for
woody plants, especially during the early developmental stages when seedlings need to
adapt to specific ecosystem characteristics [38]. Studies carried out on Citrus limon have
shown that the bacterial genera Cutibacterium and Acinetobacter and the fungal genera
Cladosporium and Debaryomyces were among the most abundant taxa in seeds and shoots,
with some bacterial taxa being vertically transferred from the endophytic microbiota to
seeds [39]. Studies on the tree Anadenanthera colubrina showed that Methylobacterium and
Staphylococcus spp. were the main beneficial strains associated with the seeds. At the same
time, Friedmaniella, Bifidobacterium, Delftia, Anaerococcus, and Actinomyces were reported
as novel seed-associated taxa [40]. Management of seed-associated microorganisms is a
strategy that can be implemented to enhance forest plant growth and establishment rates.
However, critical issues such as pathogenicity and compatibility need to be addressed in
laboratory trials before the widespread management of seed-associated microorganisms
can be implemented for forest restoration.

2.2. Beneficial Microorganisms at the Plantlet Stage

Under wild conditions, plants stimulate the growth of specific microorganisms, al-
lowing for the transmission of soil-borne microorganisms [41]. Beneficial microorganisms
such as mycorrhizal fungi, endophytic fungi and bacteria, and rhizosphere-inhabiting
taxa can influence plant performance and contribute positively to natural forest regener-
ation. Soils affected by environmental stress often suffer severe changes in the diversity
of active soil microorganisms, altering the microbial diversity potentially associated with
plant roots [42]. In this context, plants harboring endophytic microorganisms or those that
establish non-specific interactions with microorganisms inhabiting the soil substrate have
a higher probability of successful establishment [43,44]. Therefore, microbial symbioses
play an essential role in the establishment of native plants in the ecosystem by providing
nutritional and metabolic benefits to the plants [45].

Plant nurseries play a critical role in ecosystem restoration by promoting the reforesta-
tion of degraded areas with native plants, producing numerous individuals that can be
directly transplanted into the ecosystem [46]. However, these plants are typically grown
under optimal nutritional, hydrological, and climatic conditions. These conditions differ
from the harsh environments of degraded ecosystems where plants face challenges such
as water deficit, nutrient-poor soils, and biotic stresses [47]. The inoculation of seedlings
with beneficial microorganisms, either as single strains or consortia, has been shown to
have a positive effect on the performance of forest trees under both nursery and field
conditions [48]. Pre-transplant inoculation with plant growth-promoting rhizobacteria
can enhance seedling growth primarily through their ability to produce phytohormones,
biocontrol phytopathogens, fix N, exhibit 1-amino-cyclopropane carboxylic acid (ACC)
deaminase activity, and induce systemic resistance [49]. However, inoculation with root-
associated fungi, including mycorrhizae and other beneficial endophytic taxa, can increase
the water and nutrient uptake surface by exploring soil colloids and dissolving insoluble
phosphate compounds, thereby extending water availability beyond the root/rhizosphere
interface [50]. These resources are exchanged with the plant in exchange for carbon (C)
and other plant-derived metabolites [51]. Even in invasive plant species, studies have
demonstrated the direct interaction of juvenile organs with beneficial microorganisms
that can influence growth and development through interactions with beneficial genera
such as Rhizophagus and Bacillus, which are directly involved in nutrient solubilization and
biocontrol of phytopathogens, respectively [52]. In addition, the induction of metabolic
and genomic changes in symbiotic plants is one of the primary mechanisms activated by
microorganisms to cope with environmental stress [53].
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3. Metabolic Responses of Plants and Their Associated Microorganisms to Abiotic Stress

Plants can regulate seed endophytes in response to environmental stressors and trans-
fer them to the next generations. They use these microorganisms during their establishment
phase and throughout their entire lifecycle. Several climatic variables trigger this response
and serve to recruit microorganisms from the environment that help to adapt to stress-
ful conditions [54]. In addition, the genes responsible for hormone production in plant
growth-promoting rhizobacteria are influenced by several stress factors affecting the soil
and rhizosphere. These factors include acidic pH and osmotic stress, and root exudates that
also influence their regulation [55]. Vertically or horizontally transferred microorganisms
can enhance plant adaptation to adverse environmental conditions.

Beneficial microorganisms are crucial to mitigate the current impacts of climate change
on the regeneration of native forests. Among them, the beneficial effects of symbiotic
interactions during the juvenile stage of plants are essential for promoting growth under
the severe environmental conditions resulting from climate change. However, analyzing
the responses of forest plants to individual abiotic stresses is often challenging since the
negative consequences under current climate change conditions are the accumulation
of multiple abiotic stresses. This is where microbial associations play a critical role in
supporting plant growth and establishment. For example, endophytic Bacillus spp. have
been identified as potent multi-stress-tolerant taxa with beneficial plant growth-promoting
traits [56]. In addition, they exhibit positive effects against phytopathogens through
secondary metabolite synthesis, biofilm formation, and quorum sensing to modulate plant
metabolism [57]. Many other examples highlight the role of fungal associations, such as
mycorrhizal fungi, in adapting to multiple stresses, primarily by enhancing growth and
inducing gene expression that activates stress-responsive genes [58].

3.1. Water Deficit

Drought can have a significant negative impact on plant growth, primarily through
the inhibition of gas exchange. The main plant response to water shortage is stom-
atal closure, which reduces water loss through transpiration. This process inevitably
leads to a decrease in C assimilation and, subsequently, a decrease in overall biomass
production [59]. This immediate response also contributes to a decrease in the mass
flux of water-soluble nutrients from the soil, resulting in reduced nutrient uptake and
utilization, exacerbating the negative effects of drought [60]. In contrast, when plants ex-
perience prolonged water stress, stomatal closure is typically accompanied by metabolic
constraints that result in a downregulation of photosynthetic rates due to the limitation
of ribulose-1,5-bisphosphate synthesis [61]. Recently, the modes of action by which soil
microorganisms enhance plant water conservation and recovery mechanisms have been
succinctly summarized, highlighting soil microorganisms as potential resources for the
development of biological strategies to support plant growth [62,63]. Consequently,
microorganisms directly influence the response of plants to water deficits, whether such
deficits are of short or prolonged duration.

Root-associated microorganisms can enhance plant performance under water deficit
by synthesizing osmoprotectants and other compatible solutes. These compounds play a
critical role in maintaining intracellular water balance and protecting against dehydration
by stabilizing proteins and cellular structures [64,65]. Endophytic bacteria can also increase
abscisic acid (ABA) levels, influencing plant metabolism to better adapt to the stressful
conditions caused by a water deficit [66]. Furthermore, the establishment of microbial
symbioses under water limitation enhances the expression of stress-related genes that typi-
cally improve plant performance [67]. Similarly, changes in the production of antioxidant
enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase help to
scavenge reactive species [68]. Beneficial root-associated fungi can also increase plant water
availability by expanding the root absorption surface [69]. Similarly, microorganisms can
optimize water use directly or indirectly by regulating stomatal opening and closing [70].
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3.2. Salinity

Although salt and water stress may appear to be related in some ways, it is beneficial
to study them separately to gain a full understanding of how they affect forest species
and how they can be effectively managed in different contexts. This will provide better
knowledge for the management of forest species under different environmental conditions.
Salt stress is one of the most complex types of stress because it involves an effect on
water and therefore the osmotic state of the plant, oxidative stress, and ionic toxicity
accompanied by nutrient imbalance. It is a harmful condition that affects seed germination
and seedling growth, mainly through a continuous decrease in water uptake and disruption
of essential enzymatic activities. It causes an imbalance in hormone crosstalk, antioxidant
activities, ionic homeostasis, and reactive oxygen species (ROS) that disrupt essential
biomolecules such as DNA and proteins [71]. Plant growth is usually reduced by high
concentrations of salts, which can induce stomatal closure and, thus, a reduction in carbon
dioxide assimilation, which reduces plant metabolism [72]. In the soil, salinity also leads to
severe changes in microbial diversity, affecting the diversity of beneficial microorganisms
with potential roles in promoting plant growth [73].

Soil microorganisms are affected by high concentrations of salts in the soil solution. In
microorganisms sensible to salinity, some essential genes involved in central metabolism
are repressed, and proteins related to elongation factors, chaperone, and cell multiplication
are negatively affected in the presence of high concentrations of salts [74]. Salinity reduces
the rhizobial colonization of the rhizosphere by inhibiting the synthesis of bacterial surface
molecules such as glucans, lipopolysaccharides, and exopolysaccharides, which are essen-
tial for their interaction with the plant [75]. However, this stress condition stimulates the
development of halotolerant strains with a potential role in promoting plant growth [76].

Symbiotic microorganisms, such as arbuscular mycorrhizal fungi, selectively enhance
nutrient uptake, including potassium (K) uptake, while reducing sodium uptake [77]. In
addition, these microorganisms enhance plant resistance to salinity through mechanisms
such as protein expression, increased water and nutrient uptake, and defense against phy-
topathogens. Recent evidence also suggests that mycorrhizal fungi are effective candidates
for mitigating salt stress in plants [78]. Mechanisms that reduce ROS accumulation are
among the mechanisms by which beneficial microorganisms help to scavenge ROS and
protect plant tissues from salinity. Seed-associated microorganisms can also improve soil
health, as plants carrying halophytic strains can improve soil structure, nutrient cycling,
and organic matter decomposition, ultimately improving the water-holding capacity and
overall soil nutrient status. Similarly, an inoculation of Zelkova serrata with F. mosseae in-
creases the photosynthetic rate and leaf P, K, and magnesium (Mg) content under salinity
stress conditions [79].

3.3. Heat Stress

High temperature and direct ultraviolet radiation directly affect plant performance
under heat stress, affecting seed germination and plantlet establishment. Among abiotic
stresses, extreme and rapid temperature variation is one of the most detrimental factors
affecting forest plant growth [80]. Temperature is critical for promoting seed germination
and affects water movement in plants under heat stress. Similarly, soil water content
and water availability to plants in soils exposed to high temperatures constantly decrease
due to heat-induced water evapotranspiration [81]. Plants have evolved anatomical and
physiological modifications to survive under heat stress, mainly by producing compatible
solutes that induce molecular changes, leading to an osmotic adjustment and restoration of
redox homeostasis [82,83].

Beneficial microorganisms, such as Pseudomonas and Trichoderma, can enhance the
expression of heat shock proteins (HSPs), which help maintain protein integrity [84,85].
Microorganisms that produce HSPs can interact directly with plant organs, from seeds and
seedlings to mature plants. An improved nutrient availability and water balance, resulting
from an increased root growth or improved absorption surface, are among the beneficial
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effects of microorganisms that indirectly affect plant performance by enhancing growth and
overall metabolic activity in response to heat stress [86]. However, the microbially induced
modulation of plant hormones such as ABA and jasmonate can trigger metabolic responses
that alter the physiological state of the plant to enhance stress tolerance [87]. The micro-
bial priming of plant growth-promoting microorganisms, which refers to the enhanced
response of an organism to a second stress event after a previous temporally limited minor
stress, can prepare beneficial microorganisms for the detrimental effects of prolonged heat
periods [88]. Heat-tolerant strains of Bacillus safensis mitigate the deleterious effects of heat
stress in inoculated plants through increased levels of ACC deaminase, indole-3-acetic acid
(IAA), gibberellic acid, and the production of kinetin and exopolysaccharides [89]. Soil
fungi such as Trichoderma koningii increase plant tolerance primarily through an enhanced
production of antioxidants [90]. Arbuscular mycorrhizal fungi also improve heat stress
tolerance in inoculated plants by increasing the expression of genes involved in heat stress
tolerance [91]. Endophytic fungi, such as Paecilomyces formosus and Penicillium funiculosum,
can also improve the physiological responses of plants under high temperature and drought
stress [92].

3.4. Cold Stress

Low temperatures severely affect plant metabolism, compromising plant growth and
survival. In the early stages of plant development, low temperatures severely reduce seed
germination and plantlet establishment [93]. Reduced leaf expansion and chlorosis are
often reported in plants growing under cold stress, indirectly affecting photosynthesis and
altering the activity of essential enzymes [94]. The adverse effects on plant organs can
ultimately induce necrosis, threatening the functionality of essential plant organs [95]. The
stability of membranes is also affected, which is a significant adverse effect [96]. However,
cold stress-adapted plants can induce the expression of specific fatty acids that alleviate
cold stress at the cellular level [97].

Psychrophilic microorganisms enhance plant tolerance to cold stress by producing an-
tifreeze proteins, cryoprotectants, and osmoprotectants to prevent cellular damage caused
by low temperatures [98]. Microorganisms can also synthesize phytohormones that en-
hance the physiological responses of plants under cold stress [99]. Metabolic pathways
involved in low-temperature resistance are also stimulated by the action of microorgan-
isms [100]. Psychrophilic microorganisms associated with plants can also maintain vital
plant functions, including nutrient solubilization, phytohormone production, and biocon-
trol at low temperatures [101]. Bacillus spp. isolated from the rhizosphere of plants growing
on the Qinghai–Tibetan Plateau demonstrated the ability to be cold-adapted and promote
the growth of T. aestivum seedlings under cold conditions [102]. Similarly, psychrotolerant
Pseudomonas sp. and Curtobacterium sp. can promote growth under cold stress when ap-
plied as a consortium [103]. A bacterial consortium consisting of Bacillus cereus, B. subtilis,
and Serratia sp. attenuates cold stress-induced injury by activating specific transcription
factors [104]. Psychrophilic Bacillus spp. alleviate cold stress mainly through the expression
of genes involved in phytohormone metabolism [105]. Mycorrhizal fungi also improve
plant growth under cold stress, mainly by activating antioxidant defense mechanisms,
accumulating protective molecules, improving growth, photosynthesis, osmotic potential,
and reducing membrane damage [106]. Similarly, fungal endophytes such as Penicillium
rubens and Penicillium bialowienzense can modify gene expression in inoculated Vaccinium
corymbosum, resulting in higher photochemical efficiency and less oxidative stress compared
to uninoculated plants [107].

3.5. Mineral Deficiency

In forest ecosystems, nutrient deficiency is the major limiting factor for sustaining
plant growth. In plants, the gene expression of membrane transporters involved in nu-
trient uptake is often upregulated under nutrient limitation [108]. Similarly, an increased
exudation of metabolites such as carboxylates, protons, sugars, amino acids, and proteins
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is characteristic of plants that must overcome mineral deficiencies. Such exudation can
directly affect nutrient availability in the soil solution or stimulate microbial symbioses
with soil-borne microorganisms.

Microorganisms can produce organic acids that contribute to mineral solubilization.
Stimulating microbial communities that can support growth in the early stages of plant
development is essential under nutrient deficiencies. Symbiotic microorganisms such as
arbuscular mycorrhizae and N-fixing bacteria are helpful in nutrient mobilization. Extrarad-
ical hyphae of root-associated fungi can explore the bulk soil for nutrient resources [109].
Soil microorganisms indirectly enhance nutrient uptake by improving root growth and
nutrient uptake surfaces [110]. One of these mechanisms is related to the synthesis of auxins
and cytokinins by root-associated microorganisms [111]. Seed-associated microorganisms
such as Bacillus sp., Citrobacter sp., Flavobacterium sp., and Pantoea sp. can enhance nutrient
solubilization [112]. Ribeiro et al. [113] determined the ability of endophytic Bacillus spp.
to improve the N, phosphorus (P), and K content of inoculated plants. Endophytic strains
of Aspergillus terreus, Lecanicillium sp. Pseudomonas bijieensis, and Priestia megaterium have
also been shown to induce improved Zinc concentration and NPK content in inoculated
plants [114]. Fungal endophyte inoculation also helps to improve the growth and grain
yield of plants growing under nutrient starvation conditions [115].

3.6. Metal(loid)s

Although metal(loid)s are typical components of soil and plants, and these elements
are necessary cofactors for many enzymes, metal(loid)s in excess negatively affect plant
metabolism. Specifically, one of the most important negative effects of metal(loid)s is their
effect on protein synthesis, structure, and the corresponding function of proteins [116].
In addition, metal(loid)s can replace cofactors in many metabolic reactions, leading to
inefficient metabolic processes such as photosynthesis, membrane damage, electrolyte
imbalance, reduced growth, and reduced root hairs. These effects ultimately lead to
reduced water uptake, nutrient imbalance, and increased DNA damage [117].

Symbiotic fungi and bacteria have evolved adaptive mechanisms to avoid harmful
damage to their internal metabolism, including the production of siderophores, organic
acids, and exopolysaccharides [118]. Symbiotic fungi can produce metabolites that can
sequester metalloids in soil solution, thus preventing uptake by plants [119]. Similarly,
they can sequester the metal(loid)s directly within fungal structures [120]. Bacteria also
employ mechanisms to prevent plant uptake, such as colonization and biofilm formation
on root surface [121]. A core microbiome is transmitted to the next generations of Noccaea
caerulescens seeds produced in metal-rich soils [122]. This core microbiome prepares plants
to better cope with the harsh conditions of polluted soils by inducing metabolic and
physiological changes that favor metal accumulation in plants without compromising
essential metabolism. Arbuscular mycorrhizal fungi have also demonstrated a role in
promoting tolerance by alleviating metal(loid)s toxicity in roots [123]. Hachani et al. [124]
demonstrated that ectomycorrhizal fungi enhanced the establishment of Pinus halepensis
seedlings in soil contaminated with multiple heavy metals (Pb, Zn, and Cadmiun).

4. Role of Juvenile Plant–Microbe Symbiosis in Native Forest Regeneration

Considering the beneficial effect of fungi and bacteria on plant growth promotion, the
identification of beneficial symbiotic relationships between microorganisms and seedlings
is essential to promote plant adaptation after successful seed germination. However, in
forest plants, most microbial symbioses (except mycorrhizae and rhizobia) during the
juvenile stage are largely unknown (Table 1). Therefore, understanding the interactions
between different forest plants and soil microorganisms is crucial for the comprehensive
management of microbial symbioses to improve the quality of plants produced in nurseries
for reforestation. In this context, it is essential to know the diversity of beneficial bacteria
and fungi that interact with forest plant seedlings. These microorganisms can be integrated
into the production process of native plant nurseries. This integration ensures that seeds
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and plantlets receive beneficial microorganisms, ultimately improving the performance of
these plants in the field (Figure 1).
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Figure 1. Schematic representation of the integration of beneficial plant-growth promoting microor-
ganisms at the juvenile plant stage of native tree species, whether at the seed or plantlet stage.

The incorporation of beneficial microorganisms is crucial for generating robust
plantlets for reforestation programs. This approach aims to counteract negative con-
sequences such as environmental stresses, phytopathogen-related diseases, herbivore
pressures, and limited nutrient availability. By inoculating these microorganisms, it
is expected that multiple benefits will be realized, including increased seed germina-
tion, diminished metal accumulation, improved carbon storage, enhanced nutrient
availability, and overall improvements in photosynthesis and phytostimulation. This
comprehensive strategy supports the health and vitality of native tree species, thus
contributing significantly to the success of reforestation efforts.

4.1. Promoting the Adaptation of New Plantlets

Seed germination and seedling establishment are critical processes in the life cycle
of forest plants. Many forest understory plants face a challenging environment character-
ized by competition, low light availability, predation, and the adverse effects of climate
change. In this context, beneficial symbioses enhance plant growth and overall metabolism.
Juvenile plant–microbe interactions can be a powerful tool to enhance seedling robustness
during field establishment. Therefore, the inoculation of seedlings with beneficial plant
growth-promoting microorganisms represents an alternative to chemical fertilization and
phytopathogen control. However, it is important to consider the compatibility between
specific soil microorganisms and plant species.

Previous studies investigated the potential of Bacillus sp. to improve the growth of
Populus euramericana by increasing aerial biomass and photosynthetic rate [125]. In addi-
tion, Bacillus sp. and Paenibacillus sp. strains were used to improve the growth of Abies
nordmanniana. Specifically, Bacillus sp. improved seed germination, storage carbohydrate
levels and induced systemic resistance by enhancing the activities of glutathione reductase
and glutathione S-transferase during the juvenile developmental stage. On the other hand,
Paenibacillus sp. increased root growth, shoot soluble carbohydrate content, starch content,
and chlorophyll content. Therefore, the co-inoculation of both strains was suggested to
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improve growth under greenhouse and field conditions [126]. Similarly, the inoculation
of Pseudomonas sp. increases the germination of Santalum album as well as the growth of
Pongamia pinnata and Araucaria angustifolia through the production of ammonium, IAA,
siderophores, and phosphate solubilization [127–129]. Similarly, inoculation of the seed en-
dophytes Methylobacterium sp. and Kineococcus endophyticus on Populus deltoides improved
plant growth in seedlings and reduced metal accumulation [130].

The mycorrhizal fungus Funneliformis mosseae induces resistance to metal stress, such
as cadmium and lead, in Cupressus arizonica, and Robinia pseudoacacia by reducing electrolyte
leakage and increasing translocation capacity in roots and stems [131,132]. Under water
stress, inoculation with Rhizophagus sp. reduces oxidative damage in C. arizonica and Cupres-
sus atlantica by increasing enzymatic antioxidants with CAT and SOD [133,134]. Similarly,
the inoculation of Quercus brantti with Microbacterium sp. and Streptomyces sp. under water
stress increased the phosphate solubilization [135]. Azizi et al. [136] demonstrated that
inoculation of Myrtus communis with fungi and bacteria induced drought resistance by re-
ducing electrolyte leakage, malondialdehyde and proline content, and mitigating oxidative
pigment loss under drought conditions through positive regulation of antioxidant defenses.
Similarly, Hashem et al. [137] showed that fungal and bacterial inoculation induced ac-
quired systemic resistance in Acacia gerrardii under salt stress conditions by increasing the
content of total lipids, phenolics, and fiber, as well as the content of osmoprotectants such
as glycine, betaine, and proline.

4.2. Protecting the Forest Trees against New Phytopathogens

Climate change also alters the symbiotic lifestyle of some endophytes, which, de-
pending on the physiological state of the plant, may become opportunistic pathogens
and cause diseases that affect plant health. For example, several pathogens have recently
been described in the ancient Andean monkey tree Araucaria araucana, including Diplodia
mutila and Pewenomyces kutranfy [138,139]. However, symbiotic interactions of plants play
a critical role in promoting the resistance to phytopathogens. Symbiotic fungi and bacteria,
such as Bacillus, Paenibacillus, and Pantoea have been isolated from wild plants and have
demonstrated biocontrol potential against pathogenic organisms [140]. Similarly, the yeast
Aureobasidium pullulans has been classified as an effective antagonist against major foliar
pathogens [141]. This yeast has been isolated from wild environments, such as deserts and
tree leaves [142,143]. The ability of this yeast to grow in cold conditions can effectively
manage seed storage in native forest seed banks, as some psychrophilic opportunistic
pathogens can also affect seed viability [144]. Similarly, the genus Bacillus sp. has demon-
strated great biocontrol capacity against pathogens of Camellia oleifera and Juglans regia
through the production of enzymes such as chitinase, in addition to promoting growth
through phytohormones such as auxins and phosphate solubilization [145,146]. Similarly,
inoculation of Anacardium othonianum with Acinetobacter lwoffi and Pantoea agglomerans
increase the growth promotion and biocontrol against Fusarium oxyspotum [147].

Table 1. Principal studies analyzing the growth promotion of beneficial bacteria and fungi in native
forest tree plantlets.

Microorganisms Plant Species Mechanisms References

Bacillus subtilis Populus euramericana
Populus deltoides × Populus nigra

Enhanced seedling height by 62% and total
biomass by 37% after 120 days. The
photosynthetic rate increased by 54%.

[125]

Rhizophagus manihotis
Rhizophagus Agregatus
Rhizophagus fasciculatus
Acaulospora sp.

Cupressus atlantica

Increased the relative water content and
water potential under water deficit stress.
Increase contents of proline and of soluble
sugars. Increase Superoxide dismutase (SOD)
and catalase (CAT) activities.

[133]
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Table 1. Cont.

Microorganisms Plant Species Mechanisms References

Funneliformis mosseae
Diversispora tortuosa Gleditsia sinensis

Increase seedling height, basal diameter, dry
biomass. Increase chlorophyll concentrations
and photosynthetic rates. Increased
phosphorus (P) and potassium (K) content in
leaf, stem, and root, and increased nitrogen
(N) content in the leaf and stem.

[148]

Bacillus subtilis
Claroideoglomus etunicatum
Rhizophagus intraradices
Funneliformis mosseae

Acacia gerrardii

Induce acquired systemic resistance against
adverse impact of salt stress. Improvement
in the nutritional value in terms of increase
in total lipids, phenols, and fiber content.
Increased content of osmoprotectants such as
glycine, betaine, and proline.

[137]

Rhizophagus intraradices
Funneliformis mosseae
Pseudomonas fluorescens

Cupressus arizonica

Induce resistance under Cadmium (Cd)
stress condition. Increase P, K and iron
concentrations, height, shoot dry weight,
proline content and reduced electrolyte
leakage percentage.

[131]

Bacillus licheniformis Camellia oleifera

Production lytic enzymes chitinase and
β-1,3-glucanase that can inhibit foliar
pathogens by 37.4% (Botrytis cinerea) to 50.5%
(Pestalotiopsis karstenii). Increased the total N
and P contents in the soils. Increased root dry
weight and production the phytohormone
auxin.

[145]

Bacillus velezensis Juglans regia

Production lytic enzymes chitinase, protease,
and β-l,3-glucanase activity and degraded
the cell wall of Colletotrichum gloeosporioides.
Production indole-3-acetic acid (IAA) and
exhibited the potential for ammonium
production and phosphate solubilization.

[146]

Pseudomonas fluorescens Santalum album Biopriming at 100% for 8 days recorded the
highest germination percentage (88%). [127]

Pseudomonas aeruginosa Pongamia pinnata

Ammonia production, IAA production,
siderophore production and was observed to
promote solubilization of phosphate, silicate
and zinc in the plate assay.

[128]

Funneliformis mosseae
Rhizophagus irregularis
Pseudomonas putida
Pseudomonas fluorescens

Myrtus communis

Drought resistance, improved leaf
physiology, reduced electrolyte leakage,
malondialdehyde, and proline
concentrations and mitigated oxidative
pigment losses under drought through
upregulation of the antioxidant defense as
evidenced by non-enzymatic antioxidant
accumulation.

[136]

Funneliformis mosseae
Diversispora tortuosa Zelkova serrata

Induce resistance salt stress.
Increasing the leaf photosynthetic ability and
biomass accumulation by reducing sodium
content, increasing P, K+, and magnesium
content, as well as by enhancing
photosynthetic pigments content and the
stomatal conductance of leaves.

[79]

Pseudomonas sp.
Bacillus subtilis
Bacillus amyloliquefaciens

Araucaria angustifolia IAA, Siderophores production, inorganic
phosphate solubilization. [129]
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Table 1. Cont.

Microorganisms Plant Species Mechanisms References

Rhizophagusirregularis
Funneliformis mosseae
Pseudomonas fluorescens

Cupressus arizonica

Reduction oxidative damage in water stress
(reduce hydrogen peroxide and MDA) and
increase the enzymatic antioxidants (CAT,
SOD, glutathione peroxidase, ascorbate
peroxidase).

[134]

Funneliformismosseae Robinia pseudoacacia

Induce resistance lead (Pb) stress. Increased
the root activity and root tolerance index.
Inoculated plants had greater accumulation
and translocation capacities for Pb in the
roots and stems.

[132]

Bacillus spp.
Paenibacillus spp. Abies nordmanniana

Improved seed germination and produced
IAA. Increased plant root growth, especially
by inducing secondary root formation, under
in greenhouse conditions.

[126]

Methylobacterium sp.
Kineococcus endophyticus

Populus deltoides x (Populus
trichocarpa x Populus maximowiczii)

IAA production, phosphorus solubilization.
reduced the bioaccumulation of Zn and Cd. [130]

Pseudomonas frederiksbergensis Populus euramericana

Phosphate-solubilizing activity, growth rate
and organic acid secretion (high
concentrations of gluconic, 2-ketogluconic,
pyruvic, maleic and malic acids).

[149]

Trichoderma harzianum
Trichoderma asperiana

Cabralea canjerana
Cedrela fissilis
Cordia trichotoma
Erythrina cristagall
Luehea divaricata

Increase the supervival rates and height and
diameter of plants. [150]

Caballeronia sordidicola Picea glauca x engelmannii
Help in biological nitrogen fixation in limit
soil nitrogen and enhanced seedling length
and biomass by nearly

[151]

Claroideoglomus etunicatum
Acaulospora sp.
Rhizobium sp.
Burkholderia sp.

Schizolobium parahyba
The application of microorganisms increased
wood yield by about 20% compared to the
application of fertilizer alone.

[152]

Microbacterium sp.
Streptomyces sp. Quercus brantii

The inoculation of the bacteria increased the
rate of phosphate solubilization, improving
root growth and seedling weight under
water stress conditions.

[135]

Acinetobacter lwoffii
Pantoea agglomerans Anacardium othonianum

Auxin production, phosphate solubilization,
production of phosphatases, siderophores,
and biocontrol against Fusarium oxysporum.

[147]

Caballeronia sordidicola Pinus contorta

Inoculation of diazotrophic bacteria
increased the fixation of 49-50% of the host
atmospheric nitrogen, and increased seedling
length and biomass up to 1.5 and 4 times,
respectively.

[153]

Rhizophagus clarus
Gigaspora margarita Chizolobium parahyba

In the absence of P, growth variables (height,
dry matter area, root dry matter, leaf area,
stem diameter) increased in relation to
control plants. N, P, Ca and Mg contents
were also influenced by fungal inoculation.

[154]
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4.3. Promoting Nutrient Mineralization

Plant growth-promoting microorganisms, which are active in the early stages of the
life cycle of forest plants, are critical in promoting plant growth by providing the essential
nutrients needed for germination. Nutrients such as C, N, and P can be directly supplied by
root-associated microorganisms that possess the enzymes necessary to dissolve these nutri-
ents from the environment. The production of organic acids is one of the mechanisms by
which symbiotic microorganisms enhance P solubilization, thereby improving the growth
of P. euramericana [149]. However, the continuous exudation of organic acids has multiple ef-
fects on the soil by activating rhizosphere-inhabiting microorganisms that enhance nutrient
mineralization and abiotic stress tolerance [155]. Wang et al. [148] showed that inoculation
of F. mosseae in Gleditsia sinensis increased leaf N, P, and K contents, chlorophyll concentra-
tions, and photosynthetic rates. Brito et al. [154] showed that the inoculation Chizolobium
parahyba with Rhizophagus clarus and Gigaspora margarita in absence of P, increase N, P, Ca,
and Mg. Similarly, the diazotropic bacteria Caballeronia sordidicola increase the N fixation in
Picea glauca x engelmannii and Pinus contorta in limit soil nitrogen [151,153]. The inoculation
of forest seeds or seedlings with microorganisms directly involved in essential nutrient
mineralization and with multi-stress resistance is an alternative approach that can improve
the establishment rates of forest plants in the ecosystem.

4.4. Moving Nutrients and Signals through Shared Hyphal Networks

The microbial symbiosis between seedlings and root-associated fungi begins in the
early stages of plant development. If fungi are not initially part of the seed-associated
microbiome, they can be stimulated from the rhizosphere where seeds begin to produce
plant metabolites that stimulate spore germination and the growth of beneficial fungi, such
as arbuscular mycorrhizal fungi. As a result, a complex hyphal network is formed in the
soil that connects plant roots through common fungal hyphae. These hyphal networks have
effectively transported resources or chemical signals between neighboring plants [156].
The establishment of hyphal networks involving both mycorrhizal fungi and rhizospheric
soil fungi improves soil health by exploring the bulk soil and contributing to specific
deposition of organic C stocks, nutrient solubilization, improved stability, and water
storage in forest soils [157]. Therefore, the provision of compatible root-associated taxa is
essential to improve the establishment success of forest tree seedlings in the field. Griebeler
et al. [150] and Cely et al. [152] demonstrated the inoculation with beneficial microorganism
in seedling increase the survival rates and growth promotion in exclusive applications and
in combination with fertilizer.

4.5. Stimulating Native Soil Microbial Communities

A plant growing in soil can stimulate dormant microorganisms that react in response
to the metabolic influence of root exudates [158]. The production of low-molecular weight
organic acids, pH changes, sugars, and amino acids excreted into extraradical media are
detected by bacteria, some of which increase their metabolism and change the relative
abundance of specific taxa in the rhizosphere. This stimulation is strongly dependent
on the fingerprint of root exudates, which varies according to plant species or even the
specific metabolic state of the individual plant [159]. These root-associated microbial
communities are sometimes necessary for the life cycle of forest plants, influencing critical
life stages such as seed germination and plantlet growth, and establishing specific microbial
interactions that are essential for the maintenance of soil ecosystem services associated
with microorganisms [160].

4.6. Change in the Expression of Genes and Proteins Involved in Plant Adaptation

The adaptation of forest plants in pristine ecosystems is a complex process where,
in addition to the adverse effects of climate change, seeds must find the optimal temper-
ature and water availability for successful germination. In addition, phytopathogens,
insects, nematodes, and herbivores are the major constraints to plant growth in nature.



Plants 2024, 13, 175 14 of 21

Mycorrhizal fungi and microbial endophytes have been shown to positively regulate the
expression of specific genes that modulate the response of symbiotic plants to abiotic
and biotic stresses that can affect plant growth at early stages of development. Such
changes in gene and protein expression often result in improved plant growth and
establishment rates in challenging ecosystems [161]. Due to the limited knowledge of
microbial endophytes in native forest trees, the specific effects of beneficial microorgan-
isms need to be addressed to determine the mechanisms promoted by inoculation and
their potential use in forest restoration.

5. Concluding Remarks

Global knowledge about microbial interactions of forest trees is mainly focused on the
advanced stages of plant development. In contrast, the diversity of active microorganisms
at the seed–seedling stage remains largely unexplored. Improving the establishment of
forest plants in the field is a global priority, as many pristine forests worldwide are facing
environmental pressures triggered by rapid climate change, minimizing the vital roles
that forests play in C storage. Particularly important are plants experiencing a continuous
decline in their population numbers and generating nonviable seeds, posing a severe threat
to the successful establishment of the next generation. Providing plantlets with beneficial
microorganisms from the seed or plantlet stage is necessary to improve the performance of
plants used in reforestation programs or cultivated in nurseries for native forest reforesta-
tion. This review highlights the knowledge gap regarding juvenile microbial interactions of
forest plants and summarizes examples of forestry species-beneficial microorganism interac-
tions, which are essential to support plant establishment under the severe scenarios driven
by climate change. Further research on juvenile plant–microbe interactions in forest plants
must be explored to contribute to maintaining biodiversity and the ecosystem services
associated with pristine forests. The compatibility between beneficial microorganisms and
specific forest trees should be considered when designing specific reforestation programs.
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