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Abstract: The prevalence and severity of skin cancer, specifically malignant melanoma, among
Caucasians remains a significant concern. Natural compounds from plants have long been explored
as potential anticancer agents. Betulinic acid (BI) has shown promise in its therapeutic properties,
including its anticancer effects. However, its limited bioavailability has hindered its medicinal
applications. To address this issue, two recently synthesized semisynthetic derivatives, N-(2,3-indolo-
betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2), were compared
with previously reported compounds N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic
acid (BA4), and BI. These compounds were evaluated for their effects on murine melanoma cells
(B164A5) using various in vitro assays. The introduction of an indole framework at the C2 position of
BI resulted in an increased cytotoxicity. Furthermore, the cytotoxicity of compound BA4 was enhanced
by conjugating its carboxylic group with an amino acid residue. BA2 and BA3, with glycine and
glycylglycine residues at C28, exhibited approximately 2.20-fold higher inhibitory activity compared
to BA4. The safety assessment of the compounds on human keratinocytes (HaCaT) has revealed that
concentrations up to 10 µM slightly reduced cell viability, while concentrations of 75 µM resulted
in lower cell viability rates. LDH leakage assays confirmed cell membrane damage in B164A5 cells
when exposed to the tested compounds. BA2 and BA3 exhibited the highest LDH release, indicating
their strong cytotoxicity. The NR assay revealed dose-dependent lysosome disruption for BI and
2,3-indolo-betulinic acid derivatives, with BA1, BA2, and BA3 showing the most cytotoxic effects.
Scratch assays demonstrated concentration-dependent inhibition of cell migration, with BA2 and
BA3 being the most effective. Hoechst 3342 staining revealed that BA2 induced apoptosis, while BA3
induced necrosis at lower concentrations, confirming their anti-melanoma properties. In conclusion,
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the semisynthetic derivatives of BI, particularly BA2 and BA3, show promise as potential candidates
for further research in developing effective anti-cancer therapies.

Keywords: 2,3-indolo-betulinic acid; glycine conjugates; melanoma; B164A5 murine melanoma cells

1. Introduction

Since ancient times, humans have recognized and utilized natural substances as the
primary source of therapeutic medications [1]. The late 19th and early 20th centuries
were characterized by breakthroughs in organic chemistry and chemical analysis, thus
paving the way for the isolation, purification, and characterization of several bioactive
substances produced by plants [2,3]. Consequently, numerous natural chemicals obtained
from plants have been used as the primary raw resources for a variety of medications.
Innovative medicinal properties of plant secondary metabolites have been recognized by
contemporary phytotherapy. According to a large number of studies published to date,
phytochemicals, including alkaloids, flavonoid terpenoids, and carotenoids, etc., exhibit
antidiuretic, anti-inflammatory, anti-analgesic, anticancer, anti-viral, antimalarial, anti-
bacterial, and anti-fungal effects and have a significant impact in controlling a variety of
illnesses [4–7]. Currently, over 40% of the medications that have received approval from the
FDA in the United States are derived from plants [8]. It has been witnessed that plant-based
pharmaceutical and cosmetic products are becoming increasingly popular daily.

Terpenes are one of the most extensively researched classes of secondary metabolites.
Terpenes, and triterpenes in particular, hold a massive role in this chemical realm, and
their research has risen substantially within the previous decade [9]. Notably, their promise
for cancer treatment has been acknowledged [10–13]. Pentacyclic triterpenoid carboxylic
acids are of special relevance within the class of triterpenoids. In recent years, various
research groups successfully characterized a large number of derivatives, focusing mostly
on derivatives of betulinic, betulonic, ursolic, oleanolic, glycyrrhetinic, maslinic, and asiatic
acids. Chemical modifications are recognized as milestones in achieving strong cytotoxic
activity while maintaining high selectivity [14–18].

Betulin, betulinic acid, and betulonic acid are pentacyclic triterpenoids found in over
200 plant species [19,20]. Betulinic acid, betulonic acid, and their derivatives possess a wide
range of pharmacological effects, including anti-HIV, anti-parasitic, anti-inflammatory,
and anti-tumor effects [20–26]. Since betulinic acid is poorly soluble in aqueous solu-
tions, it is frequently derivatized to promote solubility and improve the pharmacological
activity [27–29]. Bevirimat, one of the most well-known analogs of betulinic acid, has been
shown to suppress HIV via a unique method of action known as viral maturation inhibition.
This anti-HIV agent completed Phase IIb clinical trials [25]. Although betulin is readily
accessible and can be separated from the bark of birch trees, betulinic acid has a higher
bioactivity. Betulinic acid is commonly derived from betulin by simple oxidation-reduction
methods because it is acquired in small amounts from natural sources. In 1995, it was
discovered that betulinic acid induces apoptosis in human melanoma cells, resulting in
a significant suppression of these cells [30]. In addition to inducing apoptosis in A375
human melanoma cells, betulinic acid administration at a sub-toxic dosage (10 µM) might
cause mitochondrial malfunction by reversing the loss in mitochondrial potential and
altering mitochondrial shape [31]. In addition, it is capable of inhibiting the activity of
the stress transcription factor NF-κB [32]. One other method of inhibiting tumor develop-
ment is the total or partial suppression of angiogenesis [33]. Subsequent investigations
have shown that the antiangiogenic impact is accomplished by mitochondrial regula-
tion [34]. Moreover, the betulinic acid structure permits structural modifications to the
functional groups at the C-3, C-28, C-20, C-30, and C-17 sites, leading to the generation of
derivatives with enhanced antitumor and pharmacokinetic features [35–38]. For instance,
considerable antitumor potency was discovered in betulinic acid derivatives with indolyl
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substitutions at sites C-2 and C-3. The inclusion of a chlorine molecule at the C-5 site
of the indole ring was reported to improve activity against MIAPaCa, PA-1, and SW620
cells (IC50 = 2.44–2.50 µg/mL) [39]. A recent study has assessed the cytotoxic potential of
novel betulinic acid−1,2,4−triazole derivatives against human malignant melanoma cells
RPMI−7951. The results have shown increased cytotoxicity of the derivatives compared
to betulinic acid (IC50 = 18.8 µM–20.7 µM). Moreover, betulinic acid derivatives triggered
apoptosis-related nuclear alterations and mitochondrial dysfunction [36]. Yang et al. syn-
thesized a series comprising betulinic acid ester derivatives and showed their strong
antiproliferative potential with a proapoptotic effects against MGC-803 (human gastric
cancer cell line), PC3 (human prostate carcinoma cell line), Bcap-37 (human breast carci-
noma cell line), A375 (human malignant melanoma cell line), and MCF-7 (human breast
carcinoma cell line) [40].

Being one of the top causes of mortality and a key impediment to improving life
expectancy, cancer has a significant influence on populations across the globe. In 2020, a
predicted 19.3 million novel diagnoses of cancer and about 10 million deaths were attributed
to cancer [41]. Despite the tremendous development of new medicines, the resilience of
cancer cells and the severe side effects of the medications employed continue to pose the
greatest obstacles to medical progress [42]. With an annual recurrence rise of 0.6% malignant
melanoma is considered to be the most severe subtype [43]. Melanoma is a malignant tumor
that emerges from neuroectodermal melanocytic cells. As melanocytes are located in several
locations throughout the body, melanoma may arise in numerous sites. The most frequent
location is the skin, although it may also be located in the digestive system, urogenital
tract, mucous membranes, meninges, and eyes. UVB light exposure is the primary factor
responsible for melanoma onset [44]. Surgical removal of early-stage melanoma is very
beneficial, but when the cancer has progressed to the point where distant metastases
are present, the 5-year survival rate plummets to 1–2%, and the median survival period
is just 6–9 months [45]. In conjunction with surgical treatments, chemotherapeutic and
immunotherapeutic procedures are now used to treat patients. Although novel melanoma
therapies have been developed in recent years, researchers are currently searching for other
therapy approaches to enhance therapeutic results and prolong patient lives [46]. Hence,
there is an ongoing requirement for the development of novel anti-cancer medications.
Natural compounds originating from plants have been the principal source of oncological
drugs and continue to offer novel anticancer agents [47].

In view of these encouraging findings, this study was designed in order to determine
how a combination of fused heterocyclic moiety C2/3 and a peptide chain at C28 positions
affects the cytotoxicity, cell viability, anti-migratory, and nuclear alterations of betulinic
acid scaffold against the murine melanoma cell line B164A5.

2. Results
2.1. Compounds Used in the Study

Betulinic acid derivatives recently reported by us-N-(2,3-indolo-betulinoyl)diglyc-
ylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2) [48]-were compared with
betulinic acid (BI) as natural product standard and N-(2,3-indolo-betulinoyl)glycine (BA3),
and 2,3-indolo-betulinic acid (BA4) that were previously reported by Kumar and Jaggi in
2008 (Figure 1) [39]. Synthesis and characterization of all compounds used in this study
can be found in our earlier research paper [48].

2.2. Cell Viability Assay
2.2.1. B164A5

The cytotoxicity of compounds BI, BA1, BA2, BA3, and BA4 on the B164A5 cell line
was assessed by conducting the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assessment after a 72-h treatment period at varied concentrations (1, 10, 25, 50, and
75 µM) of the screened compounds. The use of this approach facilitated the determination
of IC50 values, as shown in Table 1. The observed cell viability in the examined cell line
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is illustrated in Figure 2. All five compounds demonstrated a significant reduction in
cell viability compared to the control group, with statistical significance (p < 0.0001). The
cellular viability was seen to be substantially diminished even at lower doses of BA1
and BA2 (1 µM), resulting in reductions of 27% and 15%, respectively, as compared to BI
(32%). The derivatives of 2,3-indolo-betulinic acid exhibited reduced IC50 values against the
B164A5 cell line in comparison to their precursor compound (Table 1). The compounds BA3
and BA2 demonstrated the highest cytotoxicity, with IC50 values of 8.11 µM and 9.15 µM,
respectively.

Table 1. IC50 (µM) values of BA1-BA4 and BI on B164A5 murine melanoma cells by MTT assay.

Compound IC50 (µM)

BI 21.14 ± 0.08
BA1 10.34 ± 0.06
BA2 9.15 ± 0.05
BA3 8.11 ± 0.13
BA4 17.62 ± 0.11
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2.2.2. HaCaT

The effect of testing substances (BI and BA1-BA4) on the survival of human ker-
atinocytes cell line HaCat was also assessed. The development of melanoma is highly
associated with these specific cell types [49]. As illustrated in Figure 3, the viability of nor-
mal HaCaT cell lines was reduced by nearly 22% when exposed to betulinic acid derivatives
at concentrations of up to 10 µM compared to the control group. In addition, increasing
dosages (25, 50, and 75 µM) caused a gradual reduction in cell viability, resulting in a
decline of up to 32% for both BA1, BA2, and BA3. Significantly, BA4 and BI exhibited
reduced cell toxicity at greater doses, with a decrease of around 21%.
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Figure 2. The cytotoxicity of compounds BI, BA1, BA2, BA3, and BA4 on the B164A5 cell line was
assessed by conducting the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assessment after a 72-h treatment period. at varied concentrations (1, 10, 25, 50, and 75 µM) of the
screened compounds. The groups were subjected to a one-way analysis of variance (ANOVA) and
then analyzed using Dunnett’s post-test for multiple comparisons. A p-value below 0.05 was deemed
to be statistically significant (**** p ≤ 0.0001 compared to the control group).
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Figure 3. The cytotoxicity of compounds BI, BA1, BA2, BA3, and BA4 on the HaCaT cell line was
evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after
a 72 h treatment period. The compounds were tested at different concentrations (1, 10, 25, 50, and
75 µM). The groups underwent a one-way analysis of variance (ANOVA) and were then examined
using Dunnett’s post-test for multiple comparisons. A p-value less than 0.05 was considered to
have statistical significance (*** p ≤ 0.001; **** p ≤ 0.0001; ns (non-significant) compared to the
control group).
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2.3. Evaluation of the Cytotoxic Potential by Lactate Dehydrogenase (LDH) Assay

Figure 4 illustrates the proportion of LDH leakage, which indicates the loss of cell
membrane integrity, in murine melanoma cells (B164A5) after 72 h exposure to BA1, BA2,
BA3, BA4, and BI. The amount of extracellular LDH and the analyzed chemicals had a
concentration-dependent interaction, as shown in Figure 4. Among the derivatives, BA2
and BA3 demonstrated the highest degree of LDH release (62.14% and 80.68%, respectively)
at a concentration of 75 µM, in comparison to BI (52.7%). The findings obtained using the
LDH release technique are consistent with the data obtained from the MTT assay (Figure 2
and Table 1), indicating a similar cytotoxic pattern for the tested substances.
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*** p ≤ 0.001; **** p ≤ 0.0001; ns (non-significant) against control cells).

2.4. Cytotoxic Effects by Means of the Neutral Red (NR) Assay

The assessment of sample-induced cytotoxicity, namely the disruption of lysosomes,
was conducted using the NR assay. The cells exhibited elevated cytotoxicity, which was
shown to be dose-dependent on the administration of BI and 2,3-indolo-betulinic acid
derivatives (Figure 5). Particularly noteworthy is the fact that BA1 exhibited a substantial
cytotoxic effect at a concentration of 75 µM, resulting in a cytotoxicity level of 77.5%. When
75 µM concentrations of BA2 and BA3 samples were applied for a period of 72 h, the
cytotoxic reactions exhibited comparable increases in percentages, with recorded values of
69.9% and 64.2%, respectively. Additionally, it appears that the enhanced cytotoxic effect of
BA2 and BA3, as assessed using the NR and LDH assessments, had a significant correlation
with the decreased cell viability rate of B164A5 at equivalent dosages.
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significant variations were determined using one-way ANOVA analysis, subsequently followed by
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control cells).

2.5. Anti-Migratory Activity Evaluation Employing the Scratch Assay Method

The investigation of the putative anti-migratory effect of BI and 2,3-indolo-betulinic
acid derivatives has been conducted using a wound healing test, considering the significant
metastatic behavior shown by malignant melanoma cells. For this evaluation, the maximum
concentrations (75 µM) that caused substantial cytotoxicity in the B164A5 cell line (Figure 2)
were disregarded due to the fact that it might have induced a very important cell viability
decrease and no migratory activity would have been quantified. The effects exerted
by the investigated compounds on B164A5 cells were highly concentration-dependent
(Figure 6). The highest observed inhibition of migratory activity was seen in the group
treated with BA2 at a concentration of 50 µM, resulting in a wound healing rate of 10.0%.
This was closely followed by the group treated with BA3 at a concentration of 50 µM,
which exhibited a wound healing rate of 21.3%. In contrast, at the same concentration,
the parent compound BI inhibited the migratory capacity of melanoma cells by achieving
34.9% wound healing rates. Furthermore, the visual evidence provided in Supplementary
Figures S1–S3 demonstrates that after 24 h of exposure to the tested compounds, cells
exhibited apoptotic characteristics, such as changes in shape and morphology, as well as
cell disintegration (refer to Supplementary Figures S1–S3). The aforementioned findings
suggest that the 2,3-indolo-betulinic acid derivatives had lethal effects on B165A5 cells.
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Figure 6. The provided images illustrate the migratory capacity of B164A5 cells after a 24 h treatment
with BA1–BA4 and BI. The presented bar graphs illustrate the proportional representation of wound
closure in relation to the initial surface area after a 24 h period. The findings are presented as the
average values ± SD of three distinct experiments conducted in triplicate. The study used the
one-way ANOVA followed by Dunnett’s multiple comparisons post-test to assess the presence of
significant differences between the control group and the treatment groups. Statistical significance
was denoted by *** (p ≤ 0.001), and **** (p ≤ 0.0001) when compared to the control group.

2.6. Nuclear Staining Using Hoechst 33342

The evaluation of the cell nuclei morphology was realized by means of Hoechst
3342 staining in order to provide a more complex insight on the mechanism of action
of the test samples (BA1, BA2, BA3, BA4 and BI). Also, the solvent-DMSO was tested
in order to exclude any possible cytotoxic influence related to the solvent. Based on the
results obtained for the cell viability and cytotoxicity tests, for this evaluation, only the
highest concentrations were selected (25, 50, 75 µM), where an important cell functionality
impairment was recorded. Thus, as depicted in Figure 7, DMSO-treated cells presented
no signs of apoptosis or necrosis; the BA1 sample induced apoptosis features only at a
concentration of 75 µM, while the cells treated with BA2 exhibited specific signs of apoptosis
(chromatin condensation) at both concentrations of 50 and 75 µM. Nevertheless, the BA3
sample induced the most important nuclear changes, the necrosis process being observed
from concentration of 25 µM, while the cells exposed to BA4 and BI manifested necrosis
only from a concentration of 50 µM.
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Figure 7. Staining of cell nuclei of murine melanoma B164A5 cells using Hoechst 33342 reagent after
72 h exposure to three different concentrations (25, 50, 75 µM) of BA1-BA4 and BI. Staurosporine
at concentration of 5 µM was used as positive control for apoptosis features and Triton X 100 at
concentration of 0.5% was employed to observe the necrosis process. The apoptosis-related changes
are marked by yellow arrows, whereas necrosis is highlighted by a red circle. The scale bar represents
50 µm.

3. Discussion

Betulinic acid (BI) is a bioactive molecule derived from plants, with significant ther-
apeutic promise in the treatment of several disorders [50]. Its many actions, such as
antibacterial, antiviral, anti-inflammatory, and anticancer properties, demonstrate the mul-
tifunctional nature of this compound. BI has shown significant cytotoxic activity against
several forms of cancer both in vitro and in vivo, indicating its potential as an effective
treatment for cancer [51]. However, when considering medicinal applications, the use of
BI as a possible therapeutic agent is hampered by its restricted solubility and diminished
bioavailability in vivo [52]. Therefore, BI has been used as a scaffold for several semisyn-
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thetic derivatives that exhibit promise as enhanced pharmaceutical agents [36,53–60]. The
indole scaffold has significant importance within the domains of medical chemistry and or-
ganic chemistry [61–64]. According to reports, indole derivatives have been shown to have
allosteric characteristics in relation to a range of G protein-coupled receptors (GPCRs). This
suggests that these chemicals have the ability to interact with GPCRs and elicit alterations
in their structure or conformational transitions, thereby impacting their signal transduction
and overall functionality [65,66]. The aforementioned findings have significant implications
for the advancement of GPCR modulators and their potential therapeutic applications in
the management of many ailments, including neurological diseases and cancer [61].

In the context of our prior research, we have recently reported synthesis of compounds
BA1/BA2 and biological activity studies thereof [48]. The latter included the determina-
tion of antiproliferative, cytotoxic, and anti-migratory effects towards the A375 human
melanoma cell line. The obtained data were evaluated in comparison with the previously
known compounds BA4 and BA3 [39].

The objective of this research paper was to evaluate the antiproliferative, cytotoxic,
anti-migratory, and pro-apoptotic properties of the four BI derivatives and BI on murine
melanoma cells (B164A5). The intention is to subsequently investigate their potential as
anti-melanoma agents in vivo using a murine melanoma animal model. The study found
that the cell viability of A375 human melanoma cells decreased in a dose-dependent manner
after 72 h of incubation with 2,3-indolo-betulinic acid derivatives substituted with glycine
moieties. Three out of four derivatives of 2,3-indolo-betulinic acid exhibited enhanced
antiproliferative activity against A375 cells, with the highest potential being BA1, which
showed an IC50 value of 5.7 µM. The most substantial decline in the percentage of viable
cells was reported at the highest doses examined (25, 50, and 75 µM). The tested derivatives
exhibited an important decline in the percentage of viable cancer cells at a lower dosage
of 10 µM, with BA1 showing a drop of 19.6%, BA2 18.7%, BA3 13.6%, and BA4 32.3%.
When administered at a consistent concentration of 10 µM, BI exhibited a reduction in cell
viability of just 25.0%. At increased doses of 50 and 75 µM, BA2, BA3, and BA4 showed cell
viability within the range of −0.4% and 5.8% [49].

In the current study, the MTT assay was employed to evaluate the cytotoxic effects
of the aforementioned derivatives, as well as the known compounds BA3, BA4, and the
parent compound BI. The objective was to quantitatively measure the variations in cell
viability resulting from the chemical modifications against B164A5 melanoma cells. The
experimental analysis revealed that all of the examined concentrations, namely 1, 10, 25, 50,
and 75 µM, exhibited a substantial reduction in cell viability in a way that was dependent
on the dosage, as compared to the control group. Compound BA3 exhibited the most
pronounced cytotoxic effects on the B164A5 cell line, resulting in a reduction in growth
ranging from −1.5% to 8.1%. At the lowest concentration of 1µM, the cell viability dropped
to 8.1% and 15.9% for BA3 and BA2 compared to 31.3% for BI. The maximum inhibitory
effect on cell viability was observed at the highest concentration examined (75 µM) when
the growth percentages reached the values of 5.7% for BA1, −0.4% for BA2, −1.5% for BA3,
15% for BA4, and 9.6% for BI.

The results of this experiment demonstrated that the introduction of an indole skeleton
at the C2 position of BI led to a significant increase in cytotoxic activity. BA4 was 1.2 times
more active than the parent triterpenoid with IC50 of 17.62 µM. Moreover, the augmentation
of cytotoxicity was seen upon the conjugation of the carboxylic group of compound BA4
with an amino acid residue. BA3 and BA2 containing glycine and glycylglycine residues at
C28 position exhibited a nearly 2.20-fold higher inhibitory activity (IC50 = 8.11 µM, IC50
= 9.15 µM) compared to BA4 (IC50 = 17.62 µM). At elevated doses, namely at 50 µM and
75 µM, the aforementioned compounds have shown negative cell viability. This observation
may be attributed to the phenomenon whereby deceased cells lose their capacity to convert
tetrazolium salts into colorful formazan products. Therefore, it has been shown that higher
concentrations of BA3 and BA2 result in the induction of apoptosis, as validated via nuclear
staining with Hoechst 33342. In relation to the inhibitory effects of betulinic acid on the
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B164A5 cell line, our findings exhibit a level of similarity to the outcomes reported by
previous authors. Farcas et al. observed a reduction in cell viability of murine melanoma
cells B164A5 by 40% following 48 h of exposure to BI (25 µM) [67]. In contrast, the
current investigation observed that BI, when administered at an equivalent dose, resulted
in a reduction in cell viability by 71% over a 72 h exposure period. Soica et al. carried
out research on the cytotoxic effects of BI on B164A5 cells. After 72 h of exposure, BI
exhibited cytotoxic action, resulting in 50% cell viability at a concentration of 10 mM [68].
Khusnutdinova et al. examined the possible cytotoxic effects of 2,3-indolo-betulinic acid
at a concentration of 100 µM on several melanoma cell lines, including MDA-MB-435,
MALME-3M, LOX IMVI, MALME-M14, SK-MEL-2, SK-MEL-28, SK-MEL-5, UACC-257,
and UACC-62. The Lox IMVI melanoma cells had the greatest degree of reactivity to
the derivative under investigation during a 48 h period of stimulation, resulting in a
viability percentage of 44%. Following closely after were the SK-MEL-2 cells, which
exhibited a viability rate of 57% [69]. Jeong et al. successfully synthesized conjugates
of C-28 amino acids, resulting in enhanced targeted toxicity against human melanoma
(MEL-2) and improved water solubility of BI. The enhancement of cytotoxicity towards
MEL-2 (IC50 = from 10.2 to 4.2 µg/mL) was observed upon conversion of methyl ester of
glycine conjugates to their corresponding free acid conjugates. The researchers came to
the conclusion that the glycine-free acid exhibited remarkable solubility in water while
maintaining the particular cytotoxicity of the original compound, betulinic acid [70]. The
safety characteristics of the test compounds were evaluated by conducting a cell viability
assessment on a healthy cell line: human keratinocytes-HaCat. Our research revealed
that when HaCat cells were exposed to a 72 h period, there was a decline in cell viability
that was dependent on the dosage administered (Figure 3). Our results suggest that
betulinic acid derivatives at concentrations up to 10 µM were linked to a slight reduction
in the percentage of viable HaCat cells, with viability rates ranging from 79% to 98%. The
maximum concentration of BA1, BA2, and BA3, which was 75 M, resulted in a relatively
low percentage of viable cells for HaCat, approximately 70%. Out of the four derivatives of
betulinic acid, BA4 demonstrated the most secure characteristics on HaCaT, exhibiting a
cell viability rate of 80.3% at a concentration of 75 µM. The cell viability data validate that
BA1–BA4 demonstrate selective cytotoxicity towards human melanoma cells (A375) [49]
and murine melanoma cells (B164A5), while their toxicity towards normal cells can be
defined as low to moderate. With respect to the influence of BI on HaCaT cells, our
findings suggest that cell viability was diminished by approximately 20% at concentrations
exceeding 10 µM. The findings are consistent with the data that have been published by
other researchers. Coricovac et al. have shown that concentrations over 10 µM of BI resulted
in a 20% decrease in cell viability and caused significant changes in the morphology of
HaCaT cells, as well as modifications in their nuclei [31]. The group of Wróblewska-Łuczka
noticed a notable decrease in the viability of HaCaT cells after 72 h of exposure to BI at
doses ranging from 16 to 40 µM. The cell viability rates ranged from 60% to 90% [71].

The LDH assessment is used to quantify the release of lactate dehydrogenase, a stable
cytosolic enzyme, into the surrounding culture media. This measurement serves as a
signal of irreversible damage to the cell membrane and subsequent cell death [72]. The
present findings support the results previously published by our research team, which
demonstrated that the compounds BA2, BA3, and BA4 exhibited the highest cytotoxic
activity against human melanoma A375 cells at a concentration of 25 µM. Specifically,
BA2, BA3, and BA4 induced a cytotoxic effect of 39.13%, 30.4%, and 43.36%, respectively,
while BI resulted in a cytotoxic effect of 21.2%. At higher dosages (75 µM), there was
a small reduction in the cytotoxic rate seen for BA2 (23.69%), BA3 (20.54%), and BA4
(32.8%). The aforementioned inclination was previously documented in studies involving
the A375 human melanoma cell line, whereby chemicals capable of inducing cell cycle arrest
were examined. Considering the observation that cells have lost their ability to undergo
proliferation, it can be inferred that the production of LDH from these cells would be
relatively limited. Consequently, this decrease in LDH production will result in a reduction
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in the cytotoxic effect exerted by the sample [48]. In the present investigation, it was
observed that during a 72 h incubation period, the application of all examined substances
at a concentration of 25 µM or above resulted in a significant release of LDH in murine
melanoma cells (B164A5) (Figure 4). At a dose of 75 µM, the two novel compounds (BA1
and BA2) demonstrated significant cytotoxic activity—44.3% and 62.14%, respectively.
Among the compounds that were analyzed, it was observed that BA3 (at a concentration
of 75 µM) had the highest cytotoxic impact against B164A5 cells, resulting in a cytotoxic
rate of 80.68%. This value was compared to the cytotoxic effect of the reference chemical
BI, which showed a cell cytotoxic rate of 52.7%. The observed cytotoxicity of the analyzed
compounds aligns with the metabolic activity of B164A5 as determined by the MTT assay.
The compounds BA2 and BA3 demonstrated a significant reduction in cell viability, with
IC50 values of 9.15 µM and 8.11 µM, respectively. Additionally, the LDH assay provided
further evidence of the cytotoxic effects of these compounds.

The Neutral Red Uptake (NR) assay is a colorimetric technique used to evaluate
cytotoxicity in an in vitro setting. The technique relies on the capacity of living B164A5
cells to incorporate neutral red dye into their lysosomes. The experimental procedure is
dependent on the capacity of viable cells to assimilate and attach neutral red, a mildly
cationic dye, within their lysosomes. Therefore, the expression of cytotoxicity is observed as
a reduction in the uptake of neutral red, which is dependent on the concentration, following
exposure to the xenobiotic being studied [73]. The results demonstrate that there is a dose–
response relationship identified for all chemicals (Figure 5). It is worth mentioning that
BA1 had a considerable cytotoxic effect at a concentration of 75 µM, resulting in a cytotoxic
rate of 77.5%. Similarly, BA2 and BA3 demonstrated cytotoxicity rates of 69.9% and 64.2%,
respectively, when compared to the original chemical BI, which exhibited a cytotoxicity
rate of 63.0%. The results obtained from the NR assessment support the data obtained from
the MTT assay, where the application of BA1, BA2, and BA3 at a concentration of 75 µM
significantly reduced cell viability (Figure 2).

The impact of 2,3-indolo-betulinic acid derivatives and BI on cellular proliferation
and migration was evaluated by the use of the scratch assessment, a technique akin to
wound healing. In our prior study using the human melanoma cell line A375, all the
assessed chemicals decreased the melanoma cells’ capacity to migrate in a dose-dependent
fashion when compared to the control cells. The tested substances severely impeded the
migration of cells at higher concentrations (25 µM and 50 µM), resulting in a decrease of
73.2% to 2.1%. The application of a 25 µM concentration of BI to cells demonstrated a
considerable inhibition of cell migration, leading to scratch closure rates of 17.5%. The
two novel substances, BA1 and BA2, have shown significant inhibitory effects on cell
migration, as evidenced by wound healing rates of 35% and 30%, respectively, when
administered at a concentration of 50 µM. The compound BA4 exhibited the least significant
enhancement in cell migration, which was strongly correlated with its unfavorable cytotoxic
characteristics [48]. On the other hand, in the current investigation, the B164A5 control
cells demonstrated migratory behavior by completely covering the wound area within 24 h.
In contrast, cells treated with the compounds under investigation showed a reduction in
the migratory process of the cells (Figure 6). The findings of the scratch assessment align
with the antiproliferative outcomes obtained from the MTT assay. The anti-migratory effect
of BA2 and BA3 appeared to be the most pronounced when tested at a concentration of
50 µm, resulting in scratch closure rates of 10.0% and 21.3%, respectively. These results
demonstrate that the rate of cell migration was closely related to the cytotoxic profile of
the compounds.

One further morphological characteristic that reflects the cytotoxicity of a substance is
the observation of nuclear alterations, which serve as indicators of the existence of apoptotic
or necrotic cells. In order to determine the specific mechanism of cell death triggered by
BI, BA1, BA2, BA3, and BA4 in B164A5 cells, the nuclei were subjected to staining with
Hoechst 33342 dye for validation purposes. Concentrations of 25, 50, and 75 µM were
used, since these values were chosen based on the outcomes of cell viability assessments.
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Therefore, as illustrated in Figure 7, it can be observed that the cells treated with DMSO
did not exhibit any indications of apoptosis or necrosis. On the other hand, the BA1 sample
induced apoptotic characteristics only at a concentration of 75 µM, while the cells treated
with BA2 displayed distinct signs of apoptosis, such as chromatin condensation, at both
concentrations of 50 and 75 µM. However, it is worth noting that the BA3 sample resulted in
the most significant nuclear alterations, with the necrotic process being apparent at a dosage
of 25 µM. On the other hand, necrosis was evident in cells exposed to BA4 and BI only at a
concentration of 50 µM. The observed results demonstrate a clear association with the MTT
test, as BA2 concentrations of 50 and 75 µM showed a decrease in cell viability rates (0.41%
and −0.43%), indicating a potential link to apoptotic processes. In a comparable fashion,
the compound BA3, which has shown high cytotoxicity, displayed a decline in cell viability
at concentrations as low as 25 µM. This decline in viability was found to be associated with
the observed necrotic process, as evidenced by the use of nuclear staining assay.

4. Materials and Methods
4.1. Cell Culture

The B164A5 cell line was obtained from Sigma Aldrich (ECACC) and HaCaT cell
line was obtained from ATCC (LGC Standards GmbH, Wesel, Germany). The cells in
question were cultivated in a comprehensive growth medium, which consists of DMEM
(Dulbecco’s Modified Eagle’s Medium) enriched with 10% FCS (Foetal Calf Serum), 1%
Penicillin/Streptomycin combination (Pen/Strep, 10,000 IU/mL), and 2% HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid). The cells were cultivated by incubation
at a temperature of 37 ◦C in an environment containing 5% CO2. At a confluence level
ranging from 70% to 80% occurring every two or three days, the cells were subjected to
passaging using a solution consisting of 0.25% Trypsin and 1 mM EDTA. This was followed
by centrifugation at 1200 rpm for 5 min, and afterward, the cells were replated in T75 culture
flasks. The subcultivation rate of 1:10 was selected to promote maximum cell proliferation.

4.2. Cellular Viability

The MTT assay was used to determine the effect of 2,3-indolo-betulinic acid derivatives
and betulinic acid on the viability of HaCaT human keratinocyte cell line and B164A5
murine melanoma cells. The methodology was executed in accordance with the previously
outlined procedure [48,74]. Briefly, 1 × 104 cells per well were seeded onto 96-well culture
plates and incubated until 70–80% confluence was achieved. Subsequently, the cells were
subjected to stimulation for a duration of 72 h using five distinct concentrations (1, 10, 25,
50, and 75 µM) of the test samples. Following a 72 h incubation period, a 10 µL amount of
a 5 mg/mL MTT solution obtained from the MTT kit (Sigma-Aldrich, St. Louis, MO, USA)
was introduced into each well and subjected to an additional 3 h incubation. The formazan
crystals that had been yielded were dissolved by the addition of 100µL per well of the lysis
solution that was included in the MTT kit. B164A5 cells and HaCaT cells were used as a
control, and they were only treated with culture medium for 72 h. The spectrophotometric
analysis of absorbance was performed at a wavelength of 570 nm using a microplate reader
(BioRad, Hercules, CA, USA, xMark Microplate Spectrophotometer).

4.3. Evaluation of the Cytotoxic Potential by Lactate Dehydrogenase (LDH) Assay

The LDH technique is used to evaluate the extracellular release of internal lactate
dehydrogenase subsequent to the disruption of the cellular membrane. Consequently, this
approach offers insights into occurrences resembling necrosis [75].

The present investigation used the LDH test to assess the cytotoxicity and necrosis-
related events that transpired after the exposure of B164A5 murine melanoma cells to the
test samples for a duration of 72 h.

The experimental procedure was conducted in accordance with the instructions out-
lined in the pierce LDH cytotoxicity assay kit, which was supplied by the manufacturer
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(Thermo Fisher Scientific, Boston, MA, USA). A comprehensive description of this protocol
can be found in our previous publications [76,77].

4.4. Neutral Red (NR) Assay

In addition to undertaking the MTT proliferation assessment, the NR technique was
used to measure the cytotoxicity rate of the substances being studied. The underlying
premise of this methodology depends upon the measurement of live cells using the NR
chromophore, which effectively stains the lysosome of living cells. The incorporation
of the dye is achieved by active transport, hence rendering non-living cells incapable of
assimilating the NR reagent. Consequently, live cells have the capability to secrete the
NR dye when subjected to acidic conditions. Moreover, the intensity of the dye may be
directly associated with the quantity of living cells, thereby enabling the assessment of
drug-induced cytotoxicity.

In summary, the experimental procedure included subjecting the cells to five different
doses (1, 10, 25, 50, and 75 µM) of test samples for a duration of 72 h. Subsequently, a
volume of 10 µL of a 0.33% NR solution was introduced into each well, followed by an
incubation period of at least 3 h. Following the completion of the incubation time, the
medium was extracted, and the cells were promptly rinsed with a 50 µL solution of NR
assay fixative. Subsequently, a solubilization step was carried out using a 100 µL solution
of NR assay solubilization solution per well.

4.5. Anti-Migratory Potential—Scratch Assay Method

To evaluate the invasion capability of B164A5 cells after stimulation with the tested
compounds (1, 10, 25, and 50 µM), a scratch-based experiment was conducted. In summary,
a quantity of 2 × 105 cells/well were evenly distributed onto 12-well culture plates until
a complete and cohesive layer of cells was achieved. Subsequently, a sterile pipette tip
was used to create a void in the center of each well. The cells and cellular debris that were
detached subsequent to the process were carefully rinsed using phosphate buffer saline
(PBS). Additionally, the cells were subjected to stimulation with the tested compounds.
Photographs of the scratched region were captured at two time points: 0 h and 24 h. The
images were obtained using an inverted microscope (Olympus IX73, Olympus, Tokyo,
Japan) with a DP74 camera (Olympus, Tokyo, Japan) at a magnification of 10×. The
cellSense Dimension program was used for the purpose of analyzing cell growth.

The scratch closure rate was calculated using the formula [78]:

Scratch closure rate = [(At0 − At)/At] × 100,

where At0 represents the initial scratch area at time 0 h, and At represents the scratch area
after 24 h.

4.6. Hoechst Staining

To assess the nuclear-level effects of 2,3-indolo-betulinic acid derivatives and betulinic
acid (at concentrations of 1, 10, 25, 50, and 75 µM) on tumor (B164A5) cells after a 24 h
treatment, the Hoechst 33342 staining test was conducted. The procedure was implemented
in accordance with the manufacturer’s recommendations. The experimental procedure
involved the following steps: (i) the seeding of cells at a density of 1 × 105 cells/1.5 mL
medium per well in a 12-well plate; (ii) the treatment of cells with varying concentrations of
tested compounds in DMSO (1, 10, 25, 50, and 75 µM) for a duration of 24 h; (iii) the removal
of the previous media, which contained the test compound, after the treatment period,
followed by the addition of 0.5 mL of the staining solution (diluted at a ratio of 1:2000 in
PBS) to each well; (iv) the incubation of the cells for 10 min at room temperature, while
ensuring protection from light; (v) the removal of the staining solution and subsequent
washing of the cells three times with PBS; and (vi) the capturing of images under UV
irradiation by employing the Olympus IX73 (Olympus, Tokyo, Japan) inverted microscope
with an integrated DP74 digital camera (Olympus, Tokyo, Japan). A positive control was



Plants 2024, 13, 36 15 of 19

used to induce apoptosis, using a concentration of 5 µM staurosporine for a duration of 3 h
at a temperature of 37 ◦C. Similarly, for necrosis induction, a concentration of 0.5% Triton
X-100 was utilized, with an incubation period of 30 min at 37 ◦C.

4.7. Statistical Analysis

The process of collecting data and conducting statistical analysis was carried out using
GraphPad Prism 9.3.1, a software developed by GraphPad Software in San Diego, CA,
USA. The data are presented as the average of three distinct experiments, together with
the standard deviation (SD). To evaluate the statistical differences, a one-way ANOVA
and Dunnett’s multiple comparisons post-test were employed (* p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; **** p ≤ 0.0001).

5. Conclusions

We have successfully demonstrated that our recently designed semi-synthetic be-
tulinic acid derivatives N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-
betulinoyl)glycylglycine (BA2) possess a significant biological activity profile on B164A5
cell line. The obtained data were validated against previously known N-(2,3-indolo-
betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and betulinic acid (BI) as nat-
ural product standard. The cytotoxicity assessment on the B164A5 cells showed that all
compounds significantly reduced cell viability, with BA3 and BA2 showing the highest
cytotoxicity, reflected in low IC50 values. The evaluation of the safety profile on human
keratinocytes (HaCaT cells) revealed that doses of the derivatives up to 10 µM exhibited a
modest decrease in cell viability; however, a concentration of 75 µM led to a lowered propor-
tion of viable cells. LDH leakage, indicating cell membrane disruption, was concentration-
dependent and pronounced in BA2 and BA3. Similar cytotoxic patterns were observed in
NR assay. Wound healing assay demonstrated concentration-dependent inhibitory effects
on migratory activity, with BA2 and BA3 exhibiting substantial inhibition. Additionally, the
compounds induced apoptotic characteristics and altered cell nuclei morphology, further
supporting their cytotoxic effects. Overall, the results suggest that the 2,3-indolo-betulinic
acid derivatives, particularly BA2 and BA3, have promising potential as cytotoxic agents
against B164A5 cells and deserve further investigation as potential anticancer therapeutics.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/plants13010036/s1: Figure S1: Anti-migratory activity of BA1 and BA2;
Figure S2: Anti-migratory activity of BA3 and BA4; Figure S3: Anti-migratory activity of BI.
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