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Abstract: Plant iron (Fe) nutrition and metabolism is a fascinating and challenging research topic;
understanding the role of Fe in the life cycle of plants requires knowledge of Fe chemistry and
biochemistry and their impact during development. Plant Fe nutritional status is dependent on
several factors, including the surrounding biotic and abiotic environments, and influences crop yield
and the nutritional quality of edible parts. The relevance of plant Fe research will further increase
globally, particularly for Africa, which is expected to reach 2.5 billion people by 2050. The aim of this
review is to provide an updated picture of plant Fe research conducted in African countries to favor
its dissemination within the scientific community. Three main research hotspots have emerged, and
all of them are related to the production of plants of superior quality, i.e., development of Fe-dense
crops, development of varieties resilient to Fe toxicity, and alleviation of Fe deficiency, by means of Fe
nanoparticles for sustainable agriculture. An intensification of research collaborations between the
African research groups and plant Fe groups worldwide would be beneficial for the progression of
the identified research topics.

Keywords: Africa; biofortification; crops; Fe deficiency; Fe toxicity; nanoparticles; nutrition; research
dissemination; rice; sustainable agriculture

1. Introduction

Plant iron (Fe) research deals with the multifaceted strategies adopted by plants
for Fe uptake from soils of various pHs [1,2], its transport, metabolism, signaling, and
distribution from roots to other districts, such as leaves and seeds [3,4], and the biochemistry
of Fe-requiring enzymes FeRE [5,6] and Fe complexes [7,8]. Fe homeostasis is influenced
by below- and above-ground environments, including detrimental or beneficial living
organisms [4,9]. A relevant branch of plant Fe research is devoted to amelioration of
bioavailable Fe content in edible parts of staple crops for improving human nutrition and
for combating Fe deficiency anemia [10–12]. These research goals require competency in
genetics, agronomy, biotechnology, and both human and plant physiology, and they could
benefit from the identification of novel hubs in plant nutrition [13]. The various micro-
and macronutrients reciprocally influence each other in terms of their homeostasis, as has
emerged, for example, between Fe and molybdenum [14] and between Fe and sulfur [15],
clearly indicating that “no plant nutrient is an island”.

Hence, research of all these aspects of plant Fe metabolism is of worldwide importance,
including the African continent. Indeed, African countries can count on incredible plant
biodiversity and a variety of environments, and they can contribute to expanding the num-
ber of species employed for Fe research. Moreover, several African populations experience
severe Fe deficiency anemia (IDA) [16] exacerbated by malaria, which is endemic in various
African countries. Fe-rich staples are therefore needed. However, Fe metabolism of some
of the species which are nutritionally relevant in Africa (e.g., millets) is not investigated as
intensively as other more globally relevant crops.
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Unfortunately, plant Fe research prominently conducted by scientists affiliated with
African research centers does not always enjoy full international visibility and dissemina-
tion. This can be ascribed to several factors, besides research funding, such as participation
in international congresses, publications in relevant journals in the field, availability of
scholarships, student mobility, rigor of research, etc.

The analysis of all these aspects is beyond the scope of the present work, which
instead aims to fill this gap of visibility and dissemination. For that, we focused on
research conducted by scientists affiliated with African universities/research institutions
and focusing on plant Fe nutrition and metabolism in recent years (2018–2023). Interestingly,
three major topics of interests emerged, which are discussed in the following paragraphs.

2. Plant Fe Research Prominently Conducted in Africa, from 2018 to 2023

Various databases of scholarly literature are available; the Scopus database (https://
www.scopus.com/home.uri, accessed on 14 September 2023) was used for the present work,
as it allows user-friendly searches with multiple exclusions and/or restrictions in various
fields. The query in Scopus was conducted by searching all research papers or reviews
published in English from 2018 onwards, in which the term “iron” appears in the title. Only
“Agricultural and Biological Sciences” and “Biochemistry, Genetics and Molecular Biology”
subject areas were considered; all the other subject areas were excluded. To restrict searches
to plant science, several keywords (Supplementary Figure S1) as well as various journals
(Supplementary Figure S2) were used as criteria for exclusion. The search was then limited to
authors affiliated with African countries. The final list of 92 publications was then manually
pruned to exclude publications whose main focus was not on plant science (e.g., publications
mainly on nutrition were excluded). At the end, 69 publications were retained, affiliated with
26 countries (Supplementary Figure S3). Although not retrieved by this procedure, one more
publication [17] was added to the list, as it represents the beginning of a work [18] included
among the 69 publications.

About 50% of these 70 publications are focused on rice (various Oryza species),
maize (Zea mays), common bean (Phaseolus vulgaris), soybean (Glycine max), pearl mil-
let (Pennisetum glaucum), finger millet (Eleusine coracana), and pea (Pisum sativum), which
are well-known staple crops in African countries; the remaining publications deal with a
further 24 plant species, and a few papers investigate more than one species. The list of all
the investigated plant species with the related references is reported in Table 1.

Table 1. List of investigated species in publications on plant Fe science and affiliated with African
countries, from 2018 to 2023, as retrieved by the Scopus search described in the text. Columns from
left: plant species, references of publications referring to the species, and publications with prominent
African affiliations. Species investigated in publications with prominent African affiliations are
in bold.

Plant Species Publications Publications with African
Prominent Authorship

rice
(various Oryza species) [17–26] [17,18,21–26]

maize
(Zea mays) [27–34] [29–34]

common bean
(Phaseolus vulgaris) [35–40] [37–40]

soybean
(Glycine max) [27,41–44] [44]

pearl millet
(Pennisetum glaucum) [45–48] [45–48]

finger millet
(Eleusine coracana) [33,49,50] [33,49,50]

https://www.scopus.com/home.uri
https://www.scopus.com/home.uri
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Table 1. Cont.

Plant Species Publications Publications with African
Prominent Authorship

pea
(Pisum sativum) [51,52] [51,52]

tomato
(Solanum lycopersicum) [53–55] [53–55]

sorghum
(Sorghum bicolor) [56–58] [57,58]

lentil
(Lens culinaris) [59,60]

wheat
(various species) [61,62] [61,62]

barrel medic
(Medicago truncatula) [63,64] [63,64]

cowpea
(Vigna unguiculata) [33,65] [33,65]

broad bean
(Vicia faba) [66,67] [66,67]

barley
(Hordeum vulgare) [68] [68]

flax
(Linum usitatissimum) [69]

date palm
(Phoenix dactylifera) [70]

grey mangrove
(Avicennia marina) [71]

African wormwood
(Artemisia afra) [72] [72]

spinach
(Spinacia oleracea) [72] [72]

carrot
(Dacus carota) [72] [72]

Chinese mandarine
(Citrus reticulata Blanco) [73]

fenugreek
(Trigonella foenum-graecum) [74] [74]

rose-scented geranium
(Pelargonium graveolens) [75] [75]

sesame
(Sesamum indicum) [76] [76]

durum wheat
(Triticum durum) [77] [77]

alfalfa
(Medicago sativa) [78]

Washington navel orange
(Citrus sinensis) [79]

roselle
(Hibiscus sabdariffa) [80] [80]

grape
(Vitis vinifera) [81]
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Table 1. Cont.

Plant Species Publications Publications with African
Prominent Authorship

Sulla carnosa
(Hedysarum carnosum) [82]

legumes [83] [83]

cereals [84] [84]

To further restrict our analysis to research prominently conducted in Africa, only
48 publications were retained for further analysis, i.e., those with first and/or corresponding
authors affiliated with an African country (Table 1, plant species and references in bold).
Hence, 22 papers were excluded, as they either did not report an African affiliation as a
prominent authorship [15,19,20,27,28,35,36,41,42,53,56,59,70,71,73,78,81,82,85], or the first
author did not have an African affiliation, and there was no clear African research leadership
due to the presence of at least three corresponding authors [43,60,69].

Egypt, Tunisia, Nigeria, Ghana, and South Africa are the most represented affiliated
countries in these 48 publications (11, 8, 7, 5, and 5 publications each, respectively). Notably,
the model plant Arabidopsis thaliana is not among the analyzed plants species (Table 1).

A variety of journals with a broad range of impact factors (IFs) and publishers are
represented in the 48-publication list, as detailed in Supplementary Table S1. Most im-
portant, three “research hotspots” emerged from content analysis of these 48 publications,
i.e., (1) Fe deficiency and crops biofortification, (2) sustainable agriculture and fertiliza-
tion with Fe nanoparticles, (3) Fe toxicity. These hotspots are described in detail in the
following paragraphs.

3. Research Hotspot: Fe Deficiency and Crops Biofortification

Fe availability is low in alkaline soils; plants in arid and semiarid regions incur a
shortage of Fe availability and hence, a Fe deficiency. Plants activate a complex array of
morphological and biochemical responses to counteract Fe deficiency stress [86–88]. The
isolation of plant genotypes from different crop species which are more tolerant to Fe
deficiency represents a current effort pursued by several plant scientists in Africa. Such
effort goes hand in hand with the search for and validation of Fe biofortification approaches.
Also, efforts to achieve Fe enrichment in seeds is often associated with efforts to achieve Zn
enrichment [29,84]. Surely, some hurdles have been identified in the various approaches, at
least for cereals. The variability of the measured Fe content in seeds, as observed in various
studies, could be due to the sensitivity of the adopted analytical method to improper
post-harvest seed handling and also to data restricted to a single year [84]. The results
obtained with rice, wheat, maize, barley, millet, and various legume species are detailed
below; it is worth recalling that wild species have higher Fe content but lower yields than
cultivated ones [3,84].

3.1. Rice

Oryza glaberrima is an African indigenous low-yielding rice species with various
resistance traits, cultivated in West Africa for thousands of years [89,90]. Scientists from
the West Africa Rice Development Association (WARDA) succeeded in producing fertile
progenies from crosses of this species with O. sativa and further backcrosses with O.
sativa, increasing stability and fertility for better performance in upland cultivation [89].
Later, hybrids from O. sativa × O. glaberrima crosses were produced for irrigated, lowland
cultivation [90]. Some of these hybrids were named NERICAs (New Rice for Africa).
Several concerns regarding the rigorous scientific assessments of the claims regarding
NERICA rice as the “silver bullet” for Africa’s green revolution were raised [91]. Physical
properties of NERICA varieties NERICA-1 and NERICA-4, Indica varieties IR-28 and IR-50,
and Japonica variety Yumepirika were then compared; NERICA and Indica rice seeds had
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similar results in these tests [92]. A total of 445 NERICA × O. sativa rice lines have been
field-tested in two different sites in Liberia during the wet season to identify QTLs for
higher tolerance to Fe-toxicity; for that, four traits were scored: days to flowering, plant
height, grain yield, and leaf bronzing score [21]. Also, 35 upland rice genotypes were
grown in the field, in Ibadan, Nigeria, under Fe sufficiency or deficiency; three varieties
tolerant to Fe deficiency were identified (FARO65, IRAT 109, NERICA3) [22].

3.2. Wheat

Foliar treatments with FeSO4 and/or ZnSO4 of winter wheat could alleviate drought
symptoms [61], although the molecular mechanisms of interaction between Fe supplemen-
tations and such abiotic stress were not investigated.

Various synthetic wheat lines were developed in the past by Japanese groups [93] by
crossing the tetraploid wheat cultivar “Langdon” with Aegilops tauschii accessions mainly
collected from Iran but also from other Asian countries; three lines with high Fe and Zn
content in grains were identified; such traits were stable across the seasons [62]. Durum
wheat genotypes tolerant to growth in calcareous soil were also selected [77].

3.3. Maize

Low nitrogen levels affect maize cultivation and yield in Sub-Saharan Africa (SSA), as
well as the Fe and Zn content of seeds [30]. Several maize hybrids were grown in various
experimental conditions (low or optimum N levels), and the most stable genotypes for
Fe and Zn content of grains and for yield were identified under low N conditions [31].
Also, hybrid lines grown under low or optimum N conditions or under controlled drought
stress were analyzed for genotype x environment interactions [32]. The authors reported a
high positive correlation between grain Fe and Zn concentration (r = 0.97) and a moderate
negative correlation between grain yield and Fe and Zn content (r = −0.43 and r = −0.44,
respectively). The authors concluded that the development of Fe- and Zn-dense maize
cultivars with high grain yield is feasible to combat Fe and Zn deficiency in SSA [32].
However, the effect of N treatments on total Fe grain content in maize is less clear, as
reported in another study [33].

Efforts for multiple enrichments of maize with Fe, Zn, and also provitamin A have
been conducted in Nigeria, with the identification of sets of hybrids which combined high
Fe and Zn content (24.45 mg kg−1 and 29.24 mg kg−1) and average provitamin A content
(7.48 mg kg−1); however, there was a weak but significant negative correlation between Zn
and provitamin A, so the hybrids with the highest provitamin A content were also lowest
in Zn content [34].

3.4. Barley

Barley (Hordeum vulgare) is another staple crop in North Africa and in Ethiopia, and
a genome-wide association study (GWAS) of a collection of 496 spring barley genotypes
(cultivars, improved lines, landraces) identified several single-nucleotide polymorphisms
(SNPs) associated with Fe and Zn content, although several candidate genes are still
annotated as “undescribed” [68].

3.5. Millet

Pearl millet is one of the six most important cereal crops for human nutrition in the
world, and its relevance is increasing with global climate changes due to its resilience to
high temperatures and drought [94]. Moreover, this so-called “nutricereal” has a very
high nutritional value with respect to other cereals, and various breeding approaches for
pearl millet are currently adopted [94]. Open-pollinated varieties (OPVs) of pearl millet
were tested in various locations in West Africa for their growth performance and Fe and
Zn grain content, with the identification of stable, high-Fe varieties [45–47]. Interestingly,
quantitative genetics were applied to six generations of pearl millet obtained from two sets
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of parental lines grown at ICRISAT, Sadore, Niger, to model the trait inheritance of Fe grain
content [48].

Finger millet also represents an important staple crop in various arid and marginal
lands in eastern Africa, where other crops cannot thrive, as in Ethiopia, where finger millet
represents one of the major staple foods [49]. Three different genotypes (Diga-01, Urji,
Meba) grown in two different regions of Ethiopia and in two different slope configurations
for each region were treated with Fe and Zn in a combination of the two micronutrients
with the NPKS fertilization [49]. It emerged that, besides genotypes and treatments, the
yield is dependent on location and slope, and all these variables should be considered for
programs of agronomic biofortification [49].

Fertilization with phosphorus is beneficial to finger millet, causing an increase in
calcium, Fe, and Zn content of grains from plants grown in three different locations in
Kenya [50]. Again, the optimal level of phosphorus fertilizer is dependent on tested loca-
tion [50]. This aspect should be considered to avoid the negative effects of unnecessary,
supra-optimal concentrations of phosphorus for plants and soils.

3.6. Legumes

Legumes show genetic variability in their tolerance to Fe deficiency; their inclusion
in crop rotation improves soil nutritional status, thanks to symbiosis with N-fixing bacte-
ria [83]. For these reasons, legumes are good candidates for sustainable agriculture [63,83].
As most Tunisian soils are calcareous, several Tunisian researchers studied Fe deficiency
responses in different legume species in order to identify tolerant lines. Twenty genotypes
of barrel medic (Medicago truncatula), a small annual legume used as forage but also as
a model plant, were screened for their physiological response to Fe deficiency during
growth. Fe deficiency-tolerant and -sensitive genotypes were identified; tolerance was
correlated with greater acidification capacity, modified root architecture, and an induction
of Superoxide Dismutase (SOD) activities [63,64]. Similar approaches were applied to
investigate genotypic differences in the response to Fe deficiency in pea [51,52] and in
common bean [37]. A set of 99 different cultivars and landraces of common bean were
tested in different locations in Tanzania for their adaptability and stability [38]. Moreover,
SNPs associated with grain Fe and Zn concentration were identified for such species [39].
In another study, Fe and Zn content of broad bean (Vicia faba) in Ethiopia was influenced by
environmental conditions, especially soil properties [66].

4. Research Hotspot: Sustainable Agriculture and Fe Nanoparticles

Soil fertilization with macro- and microelements is a common agricultural practice
which needs to be tailored to the specific crop to limit leakage and soil degradation. The
use of nanoparticles (NPs) is a practice explored in recent years; such research has been
prompted by the evidence that parts of fertilizers (whether in soil or directly applied to
plants) are not used by plants, and they are therefore wasted, with economical as well as
ecological consequences. The production of micronutrient NPs would offer a sustainable
alternative to traditional fertilizers due to their higher efficiency and reduced contamination.
All these aspects, as well as the ways in which they are internalized by plants’ leaves and
roots, the potential risks associated with their use (human health and food safety), and the
need of rigorous assessments, have been recently reviewed [95,96].

A study described the green production of Fe-NPs, starting from extract of African
wormwood (Artemisia afra) [72]. The authors characterized the physical and chemical
properties of the obtained NP, thus demonstrating that they are genuinely formed by Fe
oxides of 10–20 nm in diameter. These Fe-NPs influence the germination rate of both
spinach and carrot seeds in a concentration-dependent way, and they can therefore act as
nano-priming agents [72]. This, in turn, opens the question regarding the mechanisms by
which Fe-NPs can promote seed germination in a given concentration range [72]. Another
study compared the effects of conventional Fe treatment (ferric sulfate or Fe-EDDHA) with
Fe-NPs on the composition in essential oils (EOs) of rose-scented geranium (Pelargonium
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graveolens). This perennial plant is cultivated worldwide, for instance in Egypt, and it is
used for cosmetic and perfume production; its EO composition is dependent on nutritional
status, and treating plants with Fe-NPs and humic acid boosts EO production in a superior
way with respect to the other Fe treatments [75]. Also, the effects of treatment of orange
trees (Citrus sinensis) grown in Egypt with green Fe-NPs (produced from fresh leaves of
Psidium guiaiava, commonly known as guava) were evaluated in comparison with other
conventional Fe treatments (FeSO4, Fe-EDTA) [79]. The appearance of produced Fe-NPs
of needle-like shape at SEM seems different from the green Fe-NPs characterized in [72],
and their chemical composition was not investigated; nonetheless, the improvement in
most of the analyzed parameters in terms of physical and chemical features of fruits (yields,
shelf life, mineral contents of fruits, etc.) would encourage the use of such Fe-NPs with
respect to the other treatments for orange cultivation in arid regions [79]. Effects of foliar
application of Fe-NPs, FeSO4, and Fe-chelate were also evaluated in broad bean grown
in sandy soil, and Fe-NP gave superior results in terms of plant growth parameters and
harvest index [67]. The superiority of Fe-NP fertilization with respect to conventional Fe or
chelated Fe was also demonstrated in tomato for growth and yield [54].

Fe-NPs were also effective in ameliorating growth parameters in soybean [44]; com-
mercial Fe-NPs (n-Fe2O3) were also effective in ameliorating growth parameters in sorghum
seedlings, as well as their tolerance to salinity stress [57].

Sesame (Sesamum indicum) is produced in many African countries. An Egyptian
group [76] studied the effect of treating three different sesame genotypes with a mixture of
Fe, Mn, and Zn in nano form; however, the production of such Fe, Zn, and Mn fertilizers in
the nano form has not been clearly described by authors.

Although these studies are promising and in line with the worldwide interest in
precision agricultural practices, benefits observed from use of Fe-NPs have been not always
confirmed, and indeed, in some cases, treatment with classic Fe-EDTA was more beneficial
than with Fe-NPs, as described for sorghum plants [58].

Within the above cited results on this African research hotspot, we believe that dis-
cussion on health risks for exposed workers and on food safety for consumers due to
exposure to Fe-NP via inhalation or via ingestion is still missing. Such risks should not
be underestimated, as several studies reported endotheliar disfunction and inflammation,
with increased pulmonary, vascular, and cardiac diseases, due to exposure to Fe-NPs of
various diameters [97,98].

5. Research Hotspot: Fe Toxicity

Fe toxicity is less frequent than Fe deficiency due to Fe chemistry; indeed, although
Fe is abundant in the Earth’s crust, it is usually in highly insoluble Fe (III) oxidized form.
Still, occasionally, Fe solubility can massively increase due to Fe reduction to Fe (II) form.
This increase in Fe (II) availability can occur in anoxic conditions, such as in the so-called
“rainfed lowlands on Fe-rich soils”, i.e., in Fe-rich soils exposed to prolonged floods and
without satisfactory drainage ([23,99], or in acid sulfate soils, acid clay soils, and peat
soils [100]. In all these conditions, Fe can be taken up in excess by root cells and exert its
toxicity, with a consequent reduction in crop yields. The typical phenotypic hallmark of Fe
toxicity is a brownish-red color, known as “bronzing”.

Four plant defense mechanisms against Fe toxicity are adopted by plants [19,24]:
(1) Fe exclusion, achieved by oxidation of Fe (II) into Fe (III) via oxygen released by roots;
(2) Fe retention in metabolically inactive forms in cell vacuoles and within the Fe storage
protein ferritin, mainly in plastids; (3) Fe partitioning in older plant tissues; and (4) ROS
detoxification to alleviate oxidative load. Rice genotypes are broadly classified as Fe
“excluders” or “includers”, relative to the adopted strategy [24].

Rice is the only major crop species which can incur Fe toxicity [99]; rice cultivations in
several African regions are potentially exposed to Fe-toxicity conditions [23,24].

Praiseworthily, van Oort [23] mapped the Fe-toxicity spots in the African regions for
the first time, together with maps of spots for other abiotic stresses (drought, cold, salinity,
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and sodicity). The various countries with the largest areas potentially at risk of Fe toxicity
were identified, with Nigeria being at the highest risk. Also, a list of five countries with the
largest surfaces cultivated with rice at risk of Fe toxicity was provided; such values were
expressed as “rainfed lowland rice areas on Fe rich soil”/“total rice area”, and Togo was at
the top of this list [23]. A predominance of West African countries is exposed to Fe toxicity,
involving 12% of total rice area, thus representing a relevant threat for rice production. This
percentage might become even larger, as further expansion of crop areas, which is expected
in Africa for rice as well as for other cereals, could involve wetlands, which are currently
neglected [23].

Tolerance mechanisms were investigated in seven different rice genotypes (KA-28,
Bahia, Ciherang, IR64, L-43, Tsipala, X265), either tolerant of or sensitive to Fe toxicity,
which were grown in the central highlands of Madagascar. Fe uptake rate, growth rate,
and Fe partitioning between shoot tissues during vegetative and reproductive growth were
measured, together with grain yield. Exclusion mechanisms, even in “excluder” genotypes,
were relaxed during reproductive growth, indicating that mechanisms activated by plants
to counteract Fe toxicity are dependent on developmental stage [24]. Strikingly, no corre-
lation between grain yield and visual symptoms has been observed, indicating that the
selection of tolerant lines based on visual symptoms is a simplistic approach [24]. These
findings, together with the environmental dependence of intensity and the dynamics of
Fe toxicity, highlight the need to unveil the genetic factors orchestrating responses against
Fe toxicity. An RNA-seq analysis was performed to investigate the effects of magnesium
(Mg) on Fe toxicity in the central highlands of Madagascar, as well as in hydroponic condi-
tions, thus uncovering various genes potentially affecting the enhancement of tolerance
by Mg [25]. Another research group analyzed Fe toxicity-tolerant rice varieties CK801
and Suakoko8, as well as sensitive varieties IR64 and Supa, under hydroponic conditions
for their morphological and physiological responses to Fe toxicity [17,18]. In these stud-
ies, tolerant lines showed more lateral roots, a better development of aerenchyma, and
higher O2 release. Hundreds of African rice Oryza glaberrima accessions were grown in the
Plateaux region of Togo and analyzed for growth parameters, together with symptoms
of Fe toxicity [26]. Physiological and biochemical responses against Fe toxicity were also
studied in 15 accessions of cowpea (Vigna unguiculata) [65].

6. Other Research Lines

Analysis of fenugreek (Trigonella foenum-grecum) under increasing concentrations of Fe
in the form of FeSO4 would encourage the use of such plants in Tunisian phytoremediation
programs [74]. Roselle (Hibiscus sabdaiffa L.), known as karkadeh, is cultivated in various
African regions, and it is a valuable commercial plant, as its sepals are used for human
nutrition as well as for beauty cosmetic industries. Roselle plants grown in-field were
sprayed with different compounds (Fe-EDTA, arginine, hemin, and their combinations),
and the yield and chemical and elemental composition of their sepals were analyzed,
showing stimulatory effects on flavonoid pigments [80].

7. Discussion

The responses of crops to Fe deficiency, including various approaches of plant bioforti-
fication with Fe, whether via fertilization or via genetic approaches, is a well-represented
research topic in Africa; several lines of wheat, maize, rice, and various legumes have
been examined to identify those of superior quality. Such research, in Africa, also involves
millets; this is promising, since these species can better withstand adverse growth condi-
tions and have the potential to also become an important crop outside Africa. Notably,
the Food and Agriculture Organization of the United Nations (FAO) declared 2023 the
International Year of Millets (IYM 2023) at https://www.fao.org/millets-2023/en (accessed
on 14 September 2023) Hoboken, NJ, USA. The screening for Fe-dense millets is therefore
of great importance [94]. Still, the molecular basis of Fe nutrition and homeostasis in millet
is not known in the same detail as in other plant species. The international expansion of

https://www.fao.org/millets-2023/en
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millet as a model plant in the plant Fe research community could therefore contribute to
boosting its diffusion as a “nutricereal”.

Sustainable agriculture is becoming a growing concern not only in Africa but world-
wide, requiring the adoption of eco-friendly cultivation practices for correct soil manage-
ment and for the optimization of costs versus crop yield. Several scientists in the African
continent are involved in the analysis of the effects of Fe-NP, indicating that this subject is
very relevant for such parts of the world.

Several approaches can be followed to synthesize Fe-NP, and one of them is based
on a bottom-up approach in which NPs can grow from reaction precursors by using plant
extracts rich in organic reductants [101]. Several plant extracts have already been used
for such synthesis, and various mechanisms have been proposed for the reactions in-
volved [101]. Still, the establishment of species- and developmental stage-specific protocols
for Fe-NP preparation and use in terms of concentration and times of treatments is still
needed. These shared protocols should also clearly include the green Fe-NP preparations. A
systematic comparison of green Fe-NP versus Fe-NP prepared with other chemical methods
would help disentangle the variety of results which are emerging from various research
groups; this, in turn, would offer shared avenues of collaborative approaches to this rele-
vant research field among scientists from different countries and with different expertise
(Figure 1). Moreover, in this identified research hotspot, we noticed a general lack of risk
assessment of Fe-NPs in terms of human health upon exposure to Fe-NPs during handling,
but also in terms of food safety. Fe-NP risk assessment is for sure a compulsory step in any
future research involving use of nanomaterials in agriculture (Figure 1). Historically, NP
emissions from industrial or traffic sources have been associated with health risks; however,
the expansion in the use of Fe-NPs for novel agricultural approaches requires a rigorous
risk assessment of the nanomaterials within this application field, for human health [97,98]
but also for the whole environment [102]. Notably, proposals to modify surfaces of nanoma-
terials to make them more biocompatible and reduce the inflammatory/oxidative responses
of human tissues have been put forward [97]; such hazard reduction strategies have been
named “safe by design” [103].
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Figure 1. Current works and approaches on Fe nanoparticles (Fe-NPs) in the research conducted in
the time span from 2018 to 2023 by prominently African-affiliated scientists (text boxes in blue, on the
left) and the future research expansions suggested in the present work (text boxes in red, on the right).
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Current works: green and non-green Fe-NPs, produced with or without plant extracts, respectively;
soil, growth medium, or foliar treatments with various concentrations of Fe-NP, Fe-chelates, or other
conventional Fe treatments (e.g., FeSO4) have been performed on different plant species. To identify
the best Fe-NP concentration to avoid overtreatments, plant growth and yield have been assessed.
Future research expansions: a higher number of plant species could be tested as starting green extracts
for the production of green Fe-NP; the physical/chemical features of the produced Fe-NP should
be rigorously assessed. To optimize Fe-NP use in the environment, protocols specifically adapted
for optimal treatment of each plant species with green Fe-NP should be established and shared
within the scientific community. A rigorous risk assessment is needed: direct effects on human health
during Fe-NP treatments and indirect effects on human health in terms of food and soil safety should
be considered.

Research on Fe toxicity is also well represented in African countries, as it is driven
by the need to ameliorate crop yield and quality of lowland rice. The extent of African
soil prone to Fe toxicity and the increasing African population and consequent increasing
need of crop production, including rice, make the understanding of Fe toxicity of great
importance for millions of people. Some molecular aspects of plant exposure to Fe ex-
cess have been analyzed in the past in model and/or crop plants, such as the regulatory
mechanisms of Fe sequestration through the iron storage protein ferritin [104–109]. Also,
below-ground as well as above-ground adaptive mechanisms of rice to Fe toxicity have
been elucidated [19,100]. Still, various aspects of plant response to Fe excess and defense
mechanisms against Fe toxicity need to be disentangled. Fe toxicity is indeed often accom-
panied by deficiencies in other nutrients, such as potassium, magnesium, calcium, and
silicon [19]. The impact of such deficiencies in the development of Fe toxicity symptoms
during exposure to Fe excess and their homeostatic adjustments from root to seed in toler-
ant versus Fe-sensitive species might contribute to the identification of markers of tolerance
for breeding programs (Figure 2). Most of the gene regulators involved in the responses
against Fe toxicity are also unknown [100].
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Figure 2. Current findings on tolerance/sensitivity to Fe toxicity in rice in the research conducted in
the time span from 2018 to 2023 by prominently African-affiliated scientists (blue boxes) and the
research potentialities suggested in the present work (red boxes). The sensitivity of rice plants to Fe
excess is dependent on anatomical traits (extent of root aerenchyma and expansion of lateral roots),
on the involvement of the ROS scavenging enzymes, and on Mg nutritional status of the plant; also,
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responses to Fe excess are dependent on developmental stage. All these features contribute to
tolerance/sensitivity of rice plants to Fe toxicity. Possible future research potentialities could involve
the analysis of the uptake processes and of the nutritional status of the other essential nutrients under
Fe excess, together with the analysis of their homeostatic adjustments.

8. Conclusions and Future Directions

Predictions on climate change and growth of human population make plant Fe science
of utmost relevance; more accurate working models on Fe nutrition and metabolism in
plants are needed for crops of established economic and nutritional value, as well as for
plants with emerging nutritional, economic, and ecological importance. Hence, any relevant
advancement in this field should be worthy of consideration, and its dissemination within
the scientific community should be favored. The present work therefore turns the spotlight
on plant Fe research mainly conducted in Africa, with an overview of the current research
situation. Three main research hotspots were identified, and future research expansions
were proposed, hopefully fostering initiatives with research groups worldwide.

The 48 research products identified in the time span from 2018 to 2023 are affiliated
with 22 countries; hence, more than half of the African countries are either not involved in
any research on plant Fe or did not succeed in publishing any Scopus-indexed work. Also,
around one fifth of such research products have been published in minor journals without
an impact factor. This analysis reveals that an expansion of African plant Fe research, both
quantitative and qualitative, is welcome, as it could be beneficial for Africa itself, but also
outside this continent. For example, a similar Scopus search on plant Fe research conducted
on Southeast Asian territories highlighted a limited number of total publications (22), with
Thailand, Indonesia, the Philippines, and Vietnam as affiliated countries; interestingly, half
of the publications were related to plant response against Fe toxicity (not shown). Hence, Fe
toxicity is an economical and nutritional burden for many low-income countries worldwide.
Last, ongoing projects of Fe research in Africa, if unpublished, have not been included in the
present review to avoid any bias regarding retrieval, visibility, sponsorship, or funding of
unpublished results. We nonetheless hope that the present work can be handled as a useful
tool by plant Fe scientists worldwide to come in direct contact with Fe research conducted
in Africa, as well as for future collaborations and shared initiatives. Scholarships and
shared organizations of scientific sessions at congresses in plant physiology and nutrition
might represent starting points for such collaborative initiatives.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/plants13010014/s1. Figure S1: Keywords excluded from Scopus
search; Figure S2: Journals excluded from Scopus search; Figure S3: Affiliated African countries in
the 48 publications on plant science prominently produced by African research groups in the time
span from 2018 to 2023; Table S1: List of journals in which the 48 publications of plant Fe science with
African affiliations in a prominent position have been published, from 2018 to 2023. For each journal,
impact factor IF and the number of publications published in that journal are given. Lack of IF is
indicated as “not available” (n.a.).
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accessions to iron toxicity [Fiziološki in biokemični odziv akcesij kitajske vinje (Vigna unguiculata (L.) Walp.) na toksičnost
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