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Abstract: Over the last two decades, there has been a concerted effort by researchers to mass propagate
Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and
aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass
propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques
include the optimization of media conditions and application of various types and combinations of
plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve
the synthesis of these bioactive compounds. However, in comparison with other herbal species with
similar economic importance, many techniques have not been applied to E. longifolia. Adopting the
most recent methodologies would ensure efficiency and sustainability in the in vitro production of
bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the
success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition,
we attempted to identify some of the missing links on the road to the effective and sustainable
biotechnological utilization of this super important biological resource.
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1. Introduction

Eurycoma longifolia Jack is a versatile tree of the Simaroubaceae family, popularly
known as the Quassia family. It belongs to the genus Eurycoma together with two other
two species, namely, Eurycoma apiculata A. W. Benn., which occurs in Malaysia and
Indonesia, and E. harmandiana Pierre, which grows along the axis between Thailand
and Laos. Although these species share some similarities in terms of chromosome
number [1] and basic phytochemicals [2], E. longifolia is more widespread and more
popular, thanks to its numerous bioactive compounds [2] and uses. It is native to
southeast Asia, occurring mainly in Indonesia, Malaysia, Singapore, and Thailand. It is
also found in Brunei Darussalam, Cambodia, Laos, Vietnam, southern Myanmar and the
Philippines [3–5]. E. longifolia has various local names such as Tongkat Ali in Malaysia,
Pasak Bumi in Indonesia, Ian-don in Thailand, Cây bách bệnh in Vietnam, and Tho nan
in Laos [6].

E. longifolia is a medium-sized tree that typically reaches a height of about 15 to 18 m as
undergrowth in forests [7]. This wild natural resource served as the sole source of tongkat
ali products until recently, when growing demand exerted pressure on the wild resource,
leading to the establishment of commercial plantations [8].

E. longifolia is regarded as one of the most valuable medicinal plants. In Vietnam, it
is listed in the pharmacopoeia, and it is locally known as “chy ba binh”, which literally
means tree that cures hundreds of diseases [9]. It is considered a national treasure in
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Malaysia [10] and a popular medicinal plant in Indonesia [11]. E. longifolia is utilized in
both traditional herbal medicine and modern pharmaceutical applications. Addition-
ally, it is employed in food supplements and the cosmetic industry. The multitude of
applications has contributed to elevating E. longifolia’s status in both the commercial and
scientific realms.

Traditionally, various parts of the E. longifolia tree are used to treat many diseases,
which include skin itching, dysentery, stomach worms, diarrhea, and fever [12]. The root
extract of E. longifolia is highly valued for its aphrodisiac properties and its efficacy in
treating chronic diseases such as cancer and diabetes [13]. It is also employed for conditions
such as leukemia, syphilis, fever, and osteoporosis. Additionally, it serves as an antibiotic,
aids in slowing the aging process, and helps reduce stress and anxiety. Moreover, it is used
in addressing gynecological disorders [14].

Scientific experiments using in vitro systems, animal models, and clinical trials have
established the antimalarial [15], cytotoxic, anticancer [16–19], antidiabetic, aphrodisiac,
proandrogenic, and antimicrobial effects [20–22] of E. longifolia. In addition, its efficacy in
treating male sexual dysfunctions [23] and osteoporosis [24] has been confirmed. Further-
more, clinical studies have shown that eurycomanone, the major bioactive molecule in E.
longifolia, is effective against lung, breast, gastric, and colon cancer [25]. It also exhibits
wound healing properties [26] and effectiveness against bacteria, fungi, protozoa [27,28],
dengue [29], and coronavirus [30].

E. longifolia has been extensively researched for its phytochemicals and bioactive
compounds isolated from its root, leaf, and stem [31]. These compounds form a group
of quassinoids/degraded triterpenoids [32], including eurycomalactone, eurycomanone,
eurycomanol, and others [33–36]. Abubakar et al. [37] reported over 70 bioactive com-
pounds from various parts of E. longifolia in their review. In the last decade, numerous new
bioactive compounds have been reported [29,32,38–44]. This trend is expected to continue.

The products of E. longifolia are gaining public acceptance across the globe, with
hundreds of products being registered by the relevant authorities. The Malaysian Min-
istry of Health estimated the total value of E. longifolia at USD 1.7 billion, projecting
an annual increase of 15% [45]. This lucrative market has attracted significant interest,
raising concerns about product adulteration [46] and emphasizing the need for product
authentication [47–49].

The approved products are already in international markets [50], leading to increased
pressure on resources and prompting the implementation of government laws to ensure
sustainability [45]. Ensuring sustainability in the utilization of plant resources can be
achieved through effective propagation techniques. In the case of E. longifolia, numerous
research reports focus on in vitro propagation and various strategies for enhancing the
synthesis of bioactive compounds.

The first report on E. longifolia tissue culture surfaced in 2000. Since then, numerous pa-
pers, covering various tissue culture techniques, have been published (Figure 1A). Notably,
from 2015 to 2019, there has been a surge in interest in the tissue culture of this medicinal
tree (Figure 1B), which is expected to intensify in the coming years.

Therefore, there is a need to compile information for convenient access, facilitating
the comparison of techniques and aiding decision-making. This report serves as a com-
prehensive guide for the development and utilization of E. longifolia resources, offering
updates on successful tissue culture techniques and in vitro synthesis of bioactive com-
pounds (Figure 2). Recommendations are also provided for future possibilities to ensure
effective and sustainable biotechnological exploitation.
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Figure 1. Current trend in E. longifolia tissue culture; (A) various tissue culture techniques employed
in E. longifolia, (B) occurrence of publications of E. longifolia over the years. The last bar represents
only two years.

Plants 2024, 13, x FOR PEER REVIEW 3 of 19 
 

 

 

Figure 1. Current trend in E. longifolia tissue culture; (A) various tissue culture techniques employed 

in E. longifolia, (B) occurrence of publications of E. longifolia over the years. The last bar represents 

only two years. 

 

Figure 2. Summary of the successes in the tissue culture and in vitro synthesis of bioactive 

compounds in E. longifolia. S.E = somatic embryo; A.R = adventitious roots; H.R = hairy roots; C.S = 

cell suspension; Phe = phenylalanine; Val = valine; PEC = pectin; YE = yeast extract; MeJa = methyl 

jasmonate; JA = jasmonic acids; SA = salicylic acid; 2° = secondary; Na2CO3 = sodium carbonate; 

NaH2PO4 = monosodium phosphate; PVP = polyvinylpyrrolidone. 

2. Tissue Culture Techniques for Mass Propagation in E. longifolia 

2.1. Techniques for Direct Organogenesis 

The induction of organs, such as roots and shoots, directly on the explant is a 

micropropagation technique that allows for the swift clonal mass propagation of plants. 

In E. longifolia, various plant growth regulators (PGRs) have been utilized to stimulate 

direct organogenesis (Table 1). Hussein et al. [51], using shoot tips as explants, induced 

    

    
       

             

      
      

     

   

     

   

         

       
         

         

   

   

   

   

   

      
      

     

      
      

   

    

          
       

      

     

                       

         
    

      

     

   

   

                     
                   

   

     

         

     

   

                
            

                  

                  

          

    

          

      

          

Figure 2. Summary of the successes in the tissue culture and in vitro synthesis of bioactive compounds
in E. longifolia. S.E = somatic embryo; A.R = adventitious roots; H.R = hairy roots; C.S = cell
suspension; Phe = phenylalanine; Val = valine; PEC = pectin; YE = yeast extract; MeJa = methyl
jasmonate; JA = jasmonic acids; SA = salicylic acid; 2◦ = secondary; Na2CO3 = sodium carbonate;
NaH2PO4 = monosodium phosphate; PVP = polyvinylpyrrolidone.

2. Tissue Culture Techniques for Mass Propagation in E. longifolia
2.1. Techniques for Direct Organogenesis

The induction of organs, such as roots and shoots, directly on the explant is a micro-
propagation technique that allows for the swift clonal mass propagation of plants. In E.
longifolia, various plant growth regulators (PGRs) have been utilized to stimulate direct
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organogenesis (Table 1). Hussein et al. [51], using shoot tips as explants, induced shoots
on Murashige and Skoog (MS) medium with 5.0 mg/L kinetin and roots on 0.5 mg/L
indole-3-butyric acid (IBA). In a similar vein, Hussein et al. [52], utilizing roots as explants,
generated shoots on Driver and Kuniyuki Walnut (DKW) media with 1.0 mg/L zeatin,
and induced roots on MS medium with 0.5 mg/L IBA. Similarly, stems were used to
induce shoots on woody plant medium (WPM) supplemented with 2.0 mg/L each of
6-benzylaminopurine (BAP) and zeatin, and roots were induced on MS medium with
0.5 mg/L IBA. Using nodal segments, cotyledons, and in vitro leaves as explants, shoots
were induced on both half-strength and full-strength MS supplemented with 0.5 mg/L
BAP and 1.0 mg/L BAP, respectively. Additionally, roots were induced on half-strength
MS supplemented with 10 mg/L and 0.5 mg/L IBA and full-strength MS supplemented
with 0.5 mg/L IBA [53–55]. The light conditions used in the above studies were 16L: 8D
with an intensity of 35–150 µmol/m2/s.

Table 1. Summary of the techniques for organogenesis in E. longifolia showing the explant and the
media conditions used with the corresponding morphogenic response.

Explants Media + PGR Other Culture Conditions Morphogenic Response/Outcome Refs.

Shoot tips BAP, KIN, and Zeatin
16L: 8D lighting of
150 µmol/m2/s

5.0 mg/L KIN induced shoots while
0.5 mg/L IBA induced roots [51]

In vitro roots and stems
Shooting: MS, DKW or
WPM + BAP, KIN, and Zeatin
Rooting: MS + IBA

16L: 8D lighting of
150 µmol/m2/s

DKW + 1.0 mg/L kinetin + 1.0 mg/L
zeatin formed shoots on root explants
while WPM + 2.0 mg/L BAP + 2 mg/L
zeatin formed shoots on stem explants
MS + 0.5 mg/L IBA formed roots on
shoot explants

[52]

Nodal segments Shooting: BAP + KIN
Rooting: IBA Continuous light

½ MS + 0.5 mg/L BAP produced shoots
while ½ MS + 10 mg/L IBA
produced roots

[53]

Cotyledons Shooting: BAP + KIN and TDZ
Rooting: IBA + NAA

16L: 8D lighting of
35 µmol/m2/s

1.0 mg/L BAP and 0.5 mg/L IBA
produced better shoots and
roots, respectively

[54]

In vitro leaves Shooting: MS + BAP; KIN and TDZ
Rooting: ½ MS + IBA and NAA

16L: 8D lighting of
35 µmol/m2/s

1.0 mg/L BAP produced shoots directly;
and ½ MS + 0.5 mg/L IBA produced
roots on the shoots

[55]

Key: PGRs = plant growth regulators; BAP = 6-benzylaminopurine; KIN = kinetin; IBA = indole-3-butyric acid;
TDZ = thidiazuron; NAA = 1-naphthaleneacetic acid; MS = Murashige and Skoog medium; DKW = Driver and
Kuniyuki Walnut medium; WPM = woody plant medium.

From the above results, it can be deduced that BAP (0.5–2.0 mg/L) resulted in a higher
percentage and larger shoot formation regardless of the explants used. Similarly, IBA at
0.5 mg/L was found to be best for root induction compared to other auxins. This shows
that these PGRs are superior to others in the organogenesis of E. longifolia.

2.2. Techniques for Callogenesis and Callus Elicitation

Callus induction is a crucial event in various tissue and cell culture systems, as it can
function as a transient tissue for organogenesis, somatic embryogenesis, cell culture [56],
and more. Additionally, it can serve as a latent tissue for the synthesis of bioactive com-
pounds. In Table 2, the main techniques for the induction, proliferation, and elicitation
of callus in E. longifolia are summarized. Siregar et al. [57] tested the effects of different
genotypes, media, and naphthaleneacetic acid (NAA) concentrations on callus induction
using leaves as explants. The result showed that MS modification and the genotype have
effects on callus induction.

Siregar et al. [58] investigated the effects of BAP and NAA on callus formation
using various explants. They found that MS supplemented with 8.0 mg/L NAA and
2.0 mg/L BAP yielded the highest callus biomass on petioles. In contrast, Mahmood
et al. [59], using various plant parts as explants, discovered that different concentrations of
2,4-dichlorophenoxyacetic acid (2,4-D) and picloram were effective in inducing callus.
Similar results have shown that 1.0 mg/L 2,4-D is effective in callus induction [60].
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Studies on the effects of different concentrations of 2,4-D and NAA revealed that
1.0 mg/L NAA plus 1.0 mg/L BAP induced callus on leaves, while 1.0 mg/L 2,4-D plus
1.0 mg/L BAP induced callus on petioles [61]. Furthermore, the subculture of callus on
1.5 mg/L NAA and 1.0 mg/L kinetin resulted in improved biomass [62].

The production of bioactive compounds in E. longifolia callus has been documented.
According to Rosli et al. [63], higher levels of methoxycanthin-6-one were reported on
quarter-strength MS (¼ MS) with 2% fructose and 2 mg/L dicamba, along with the addition
of 1.65 × 10−2 mg/L phenylalanine. Furthermore, gamma irradiation [64] has been shown
to reduce callus biomass, total phenolics, and flavonoids. Interestingly, increasing the dose
to around 60 Gy enhanced the synthesis of soluble protein. This suggests that gamma
irradiation at a specific dose can stimulate changes in certain metabolic pathways. However,
the available data are insufficient to fully explain the mechanisms involved.

Table 2. Summary of the techniques for callogenesis and callus elicitation in E. longifolia, indicating
the explant, the media, and the culture conditions used with the results.

Explants Media + PGR + Additives Other Culture Conditions Morphogenic Response/Outcome Refs.

Leaves MS + NAA and various
macro nutrients Various plant sources Eu 9 plant, pH 5.75, and modified MS

formed more callus [57]

Leaves, stems, and petioles MS + BAP, NAA
24L: 0D lighting of
30 µmol/m2/s

8.0 mg/L (43.01 µM) NAA + 2.0 mg/L
(8.88 µM) BAP formed higher callus on
petioles, while 10 mg/L NAA formed callus
on leaves

[58]

All plant parts MS, SH, WH, and B5 + auxins,
sugars, and amino acids

¼ MS + 2% fructose + 2 mg/L dicamba and
1.65 × 10−2 mg/L phenylalanine produced
higher 9-MCO

[63]

All plant parts MS + 2,4-D, dicamba, picloram,
NAA, and IAA Continuous dark

1.0–4.0 mg/L 2,4-D produced callus on leaf,
petioles, rachis, stem, root, and cotyledon
explants, etc.

[65]

Callus MS + 1 mg/L 2,4-D
16L: 8D lighting of
15 µmol/m2/s and gamma

Gamma radiation decreased biomass, total
phenol, and flavonoids but improved
soluble protein at 60 Gy

[64]

Leaves and petioles MS + 2,4-D, NAA, BAP, and KIN

1.0 mg/L (1.0 ppm) NAA + 1 mg/L BAP
induced callus on leaves, and 1.0 mg/L
(1.0 ppm) 2,4-D + 1 mg/L BAP induced
callus on petioles

[61]

Root segments MS + 1 mg/L 2,4-D
16L: 8D lighting of
40 µmol/m2/s

Treatment produced callus [60]

Callus MS + 2,4-D, NAA, and KIN 8L: 16D lighting 1.5 mg/L NAA and 1.0 mg/L KIN
produced better biomass [62]

Key: PGRs = plant growth regulators; BAP = 6-benzylaminopurine; KIN = kinetin; NAA = 1-naphthaleneacetic
acid; 2,4-D = 2,4-dichlorophenoxyacetic acid; IAA = indole-3-acetic acid; MS = Murashige and Skoog medium;
SH = Schenk and Hildebrandt medium; WH = White’s medium; B5 = Gamborg (B5) medium; Gy = Gray;
9-MCO = 9-methoxycanthin-6-one; Eu 9 = code given by the author.

Different photoperiods, including continuous dark and different light intensities
ranging from 15 to 50 µmol/m2/s [58,65], were applied. The multiplicity in induction
conditions highlights that callus in E. longifolia can be induced from different explants
using various types, combinations, and concentrations of PGRs and under different light
conditions. However, leaves seem to be the predominant explants used, with 2,4-D and
NAA emerging as the most frequently employed PGRs.

2.3. Techniques for Induction and Multiplication of Somatic Embryos (SEs)

Somatic embryogenesis is a significant event that can enhance the success of clonal
and mass propagation, cryopreservation, synthetic seed production, and/or genetic im-
provement of important plant species [66–70]. In E. longifolia, the successful induction of
somatic embryos has been reported (Table 3).
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Table 3. Techniques for the induction of somatic embryos (SEs) in E. longifolia showing the explant,
media and culture conditions and morphogenic response.

Explants Culture Media + Additives Other Culture Conditions Morphogenic Changes/Results Refs.

Immature cotyledons MS + 2,4-D, NAA, KIN, and BAP Both light and darkness Direct SEs produced on NAA while indirect
on 2,4-D [71]

All plant parts MS + 2,4-D, IAA, IBA, dicamba,
and NAA

16L: 8D lighting of
150 µmol/m2/s

Cotyledons on 1 mg/L 2,4-D produced
embryonic callus (EC) and subculture of EC
on 0.5 mg/L KIN, and 1 mg/L 2,4-D
produced higher yield of SEs

[72]

Secondary callus MS + 2,4-D and BAP or KIN 12L: 12D lighting and
agitated at 120 rpm

1–2.5 mg/L 2,4-D, 2 mg/L BAP, and KIN
produced SEs [73]

Cotyledons Modified MS + IBA, Zeatin, and TDZ Activated charcoal and
in dark

0.1 zeatin + 0.2 IBA + 0.12 TDZ produced
highest SEs, and 2 mg/L IBA + 0.075 mg/L
TDZ produced secondary SEs

[74]

Primary SEs MS + IBA + Zeatin + TDZ and
0.1 g/L AC RITA ® bioreactors

Immersion rate of 5 min every 4 h produced
highest number of SEs [75]

Cotyledons MS + 0.2 mg/L IBA + 0.1 mg/L
Zeatinand 0.12 mg/L TDZ Complete darkness Globular SEs were produced [75]

Key: SE = somatic embryo; EC = embryonic calli; BAP = 6-benzylaminopurine; KIN = kinetin; IBA = indole-
3-butyric acid; TDZ = thidiazuron; NAA = 1-naphthaleneacetic acid; 2,4-D = 2,4-dichlorophenoxyacetic acid;
MS = Murashige and Skoog medium.

Aziz et al. [71] induced direct somatic embryos (SEs) and indirect ones (via embryonic
calli (EC)) from immature cotyledons on NAA and 2,4-D, respectively. Similarly, Hussein
et al. [72], using different explants, concluded that cotyledonary tissues produced EC on
1.0 mg/L 2,4-D, and EC subculture on 0.5 mg/L kinetin plus 1 mg/L 2,4-D resulted in
a higher yield. Furthermore, EC were used to induce SEs on liquid media containing
1–2.5 mg/L 2,4-D, 2.0 mg/L BAP, and kinetin [73]. Additionally, Dalila et al. [74] found
that the highest percentage of SE was produced using modified MS containing 0.1 mg/L
zeatin, 0.2 mg/L IBA, and 0.12 mg/L TDZ. Mohd et al. [75] also utilized the mentioned
liquid media and varied the immersion frequencies in RITA® bioreactors. They found that
an immersion frequency of 5 min every 4 h produced the highest SE.

From all the studies above, it is evident that cotyledons are the only explants to
successfully produce SEs on MS supplemented with NAA, 2,4-D, and zeatin. This may
result from specific cells in cotyledons that are more responsive to these hormones, leading
to the initiation of embryonic cells. Furthermore, SEs can be induced in E. longifolia both in
total darkness and different photoperiods, demonstrating the light independency of the
process that leads to somatic embryo formation.

3. Techniques for Improving the Synthesis of Bioactive Compounds in E. longifolia
3.1. Techniques for the Establishment of Cell Suspension Culture and Synthesis of
Bioactive Compounds

Plant cell suspension cultures are increasingly being utilized for synthesizing bioactive
compounds. This approach, applied to E. longifolia, offers a convenient method for pro-
ducing compounds for agricultural, pharmaceutical, and industrial applications. Various
culture conditions and elicitation techniques have been studied (as summarized in Table 4).
It should be noted that the initial steps of callus formation have already been presented in
the earlier sections of this review. Therefore, only the steps involved in the establishment
of cell suspensions from the callus are highlighted in this section.

One of the earliest reports is that of Siregar et al. [57], in which the effects of adjusting
MS nutrients and pH level on growth were tested. The best results were recorded at pH 5.75
in the modified MS. Similarly, under these conditions, variations between different cell
sources were tested [76]. The results indicated that different cell lines react differently, with
Eu9 producing the highest biomass and Eu8 producing the highest level of alkaloids. Other
studies revealed that MS supplemented with 0.5 mg/L (2.69 µM) NAA and 0.25 mg/L
(1.13 µM) 2,4-D produced more 9-methoxycanthin-6-one and 9-hydroxycanthin-6-one
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alkaloids [58], and MS with modified nutrients yielded even better levels of biomass and
alkaloids [77].

Studies on the effects of carbon and nitrogen sources have shown that glucose and
potassium nitrate (KNO3) produced the highest cell growth and soluble protein in CS
cultures [78]. In a similar study, Shim et al. [60] revealed that full-strength MS supplemented
with 3.0 mg/L NAA, 3% sucrose, and 0:60 ratio of NH4

+:NO3
− produced better biomass.

Additionally, the content of eurycomanone in the CS improved on MS plus 1.2 mg/L NAA
and 1.0 mg/L kinetin [79].

Table 4. Summary of various techniques for establishment and elicitation of cell suspension culture
in E. longifolia including the media and culture conditions and the corresponding outcome.

Medium + PGR Suspension Culture Conditions Objective Outcome Refs.

MS + NAA 1.0 g cells shaken in 20 mL MS at
130 rpm under 24L: 0D lighting

Effects of pH and
Macro-nutrients

Cells grew better in 5.75 pH and
modified MS [57]

MS + NAA 1.0 g cells shaken in 20 mL MS at
130 rpm under 24L: 0D lighting

Effects of cell source and pH on
canthin-6-one

Eu9 produced highest biomass while Eu8
produced more canthin-6-one at pH 5.75 [76]

MS + NAA and 2,4-D 0.5 g cells shaken in 20 mL MS at
130 rpm

Effects of PGR on growth
and synthesis

MS + 0.5 mg/L (2.69 µM) NAA and
0.25 mg/L (1.13 µM) 2,4-D gave better
9-MCO and 9-HCO alkaloid

[58]

MS + 0.5 mg/L NAA and
0.25 mg/L 2,4-D

1.0 g cells shaken in 20 mL MS at
130 rpm under 18 µE/m2/s

Effects of modified MS Modified MS formed more biomass
and biosynthesis [77]

Modified MS

Callus in MS + Chitosan,
Na2CO3, NaH2PO4, and PVP
and 24L: 0D lighting of
32.5 µmol/m2/s

Elicitation

100 g/L chitosan produced more biomass;
150 produced the highest 9-MCO and
9-HCO; 2.0 mg/L and 20 mg/L
NaH2PO4 produced the highest biomass
and alkaloid, respectively

[80]

MS + 0.5 mg/L NAA and
0.25 mg/L 2,4-D

1.0 g cells in 25 mL MS + casein
hydrolysate and shaking at 130
rpm under 1525 lux of light

Effects of casein hydrolysate and
light on biomass and 9-MCO

0.1–2.0% casein hydrolysate and 1525 lux
of light improved the synthesis of 9-MCO [81]

MS + 1.0 mg/L 2,4-D; sugar
and nitrogen sources

Callus shaken at 100 rpm under
16L: 8D lighting Optimization for growth

Glucose and KNO3 produced the highest
cell growth, soluble protein, and activity
of peroxidase

[78]

MS + 2,4-D and KIN Cells suspended in ½ MS and
shake at 100 rpm Elicitation with UV

UV + 1.1 mg/L (1.1 ppm) 2,4-D and
1.0 mg/L (1.0 ppm) KIN improved
alkaloids synthesis

[82]

MS + IBA, NAA, sugar, and
nitrogen sources

5.0 g cells shaken in 100 mL MS
at 110 rpm under
40 µmol/m2/s, 16L: 8D lighting

Optimization for growth
Full-strength MS, 3.0 mg/L NAA, 3%
sucrose, and 0:60 NH4

+:NO3
− produced

better biomass
[60]

MS + NAA and KIN;
sugar sources

3.0 g callus shaken in 50 mL MS
at 120 rpm under 500 lux

Optimization for
eurycomanone synthesis

1.2 mg/L NAA and 1.0 mg/L KIN
produced more eurycomanone [79]

MS + NAA and KIN; YE,
MeJa, and SA

3.0 g callus shaken in 50 mL MS
at 120 rpm under 500 lux Elicitation 200 mg/L YE, 20 µM each of MeJa and

SA produced more eurycomanone [83]

MS + NAA and 2,4-D; YE,
PEC, and VAL

1.0 g callus shaken in 20 mL MS
at 120 rpm under
32.5 µmol/m2/s

Biotic elicitation Elicitation improved biosynthesis [84]

Key: PGRs = plant growth regulators; KIN = kinetin; IBA = indole-3-butyric acid; NAA = 1-naphthaleneacetic
acid; 2,4-D = 2,4-dichlorophenoxyacetic acid; MS = Murashige and Skoog medium; YE = Yeast extract;
MeJa = methyl jasmonate; SA = salicylic acid; PEC = pectin; VAL = valine; PVP = polyvinylpyrrolidone;
9-MCO = 9-methoxycanthin-6-one; 9-HCO = 9-hydroxycanthin-6-one; Eu 8 and Eu 9 = code given by the author.

Different elicitation techniques using both biotic and abiotic factors on the CS of
E. longifolia have also been reported. Keng et al. [80], using modified MS and different
elicitation agents, reported that 100–150 g/L chitosan produced higher biomass and 9-
methoxycanthin-6-one and 9-hydroxycanthin-6-one. However, NaCO3 and PVP inhibited
growth but had no effect on alkaloid synthesis. Similarly, Siregar et al. [81] tested the
elicitation effects of casein hydrolysate and found that 0.1–2% casein hydrolysate, along
with 1525 lux of light, improved the synthesis of 9-methoxycanthin-6-one. Additionally,
the effect of UV irradiation on the CS resulted in improved the alkaloids content [82].

In addition to physical and chemical elicitation, biotic elicitors such as yeast extract
(YE), methyl jasmonate (MeJa), salicylic acid (SA), pectin (PEC), and valine (VAL) were
tested in E. longifolia. Nhan and Loc [83] found that 200 mg/L YE and 20 µM each of



Plants 2024, 13, 107 8 of 18

MeJa and SA were ideal for enhancing the synthesis of eurycomanone. Similarly, Kwan
et al. [84] reported that YE, PEC, and VAL have positive effects on the synthesis of bioactive
compounds in E. longifolia.

From Table 4, it can be inferred that the most appropriate PGR combination for
establishing cell suspension cultures in E. longifolia is either a combination of 5.0 mg/L
NAA and 2.5 mg/L 2,4-D or 1.2 mg/L NAA and 1.0 mg/L kinetin. This shows the cells
can respond positively to a variety of PGRs. Additionally, the optimal culture density and
shaking frequency were determined to be 1.0 g/20 mL and 120 rpm, respectively. Biotic
elicitation techniques have been shown to be efficient in enhancing the cell biomass and
synthesis of bioactive compounds. This could help positively towards the mass production
of phytochemicals in E. longifolia.

3.2. Induction, Proliferation, and Elicitation of Adventitious Roots (ARs)

Adventitious roots (ARs) are induced to propagate true-to-type plants and/or to
produce bioactive compounds from medicinal plants. In E. longifolia, there are only a few
reports on the induction and/or elicitation of ARs (Table 5).

Ali et al. [85] observed that ARs could be produced on leaf explants by adjusting the
MS medium to contain half the normal quantity of nitrate plus 5.0 mg/L IBA. Similarly,
Lulu et al. [86] achieved successful ARs production on leaf explants using ¾ MS strength
and 3.0 mg/L IBA. Consistent results were reported by Cui et al. [87], where ¾ MS with
3.0 mg/L IBA led to improved ARs and metabolite production. Giap et al. [88], using
cotyledons as explants and testing various PGR combinations, established that MS with
1.5 mg/L NAA and 0.1 mg/L BA is optimal for ARs induction. Furthermore, 3.0 mg/L
NAA with 50 g/L sucrose was found to induce better ARs, while elicitation with MeJa
showed a reduction in alkaloid contents [89].

Table 5. Summary of the techniques for induction, growth, and elicitation of adventitious roots (ARs)
showing the explants, media, and culture conditions and the corresponding outcome.

Explants Media + PGR and Other Culture Conditions Morphogenic Response/Outcome Refs.

Leaves MS + IBA, IAA, NAA, and sucrose MS (½ nitrate) + 5.0 mg/L IBA produced better ARs [85]

Leaves MS + IBA, NAA, and IAA; different carbon source in
continuous dark

MS + 3.0 mg/L NAA and 50 g/L sucrose produced
better biomass [89]

In vitro roots
MS + 5.0 KIN and MeJa under 16L: 8D lighting of
150 µmol/m2/s

MeJa reduced alkaloids concentration [90]

In vitro leaves ¾ MS + 3.0 mg/L IBA + 30 g/L sucrose in
dark condition Treatment produced ARs [86]

In vitro cotyledons MS + BA and NAA under 16L: 8D lighting of
2500–3000 lux 1.5 mg/L NAA and 0.1 mg/L BA produced ARs on cotyledons [88]

Leaves Diff. media type, and IBA and sucrose in
dark condition

¾ MS + 3.0 mg/L IBA and 30 g/L sucrose produced better ARs
and metabolites [87]

Key: PGRs= plant growth regulators; BA = benzyl adenine; KIN = kinetin; IBA = indole-3-butyric acid; NAA =
1-naphthaleneacetic acid; IAA = indole-3-acetic acid; MS = Murashige and Skoog medium; MeJa = methyl jasmonate.

From these results, it can be deduced that ARs are mostly induced using leaves as
explants with 3.0–5.0 mg/L IBA under dark conditions. However, other PGR combinations,
such as NAA and BA, are suitable for cotyledonary explants. This explains the facts
that different tissues response differently to different PGRs depending on their cell types,
endogenous hormones, and total physiology.

3.3. Transformation with A. rhizogene and Induction of Hairy Roots (HRs)

HRs are engineered to serve as living factories for producing valuable phytochemicals
for pharmaceutical, cosmetic, and agricultural applications. Inducing HRs marks a mile-
stone in plant biotechnology, enabling the large-scale production of bioactive compounds
without the need for PGRs [91–94].

In E. longifolia, limited reports document the successful generation of HRs (Table 6).
Balakrishnan et al. [95] achieved the successful generation of HRs using somatic embryos
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(SEs) with two strains of A. rhizogenes (AR12 and AR14). The infected tissues were cultured
in the dark for three days, and ultimately, a transient expression of the β-glucuronidase
(GUS) gene was detected.

Table 6. Techniques for A. rhizogenes transformation and/or induction of hairy roots (HRs) in E.
longifolia showing different co-culture techniques and their outcome.

Starting Material A. rhizogenes Strain
and Media Inoculation/Transformation Initial Co-Culture

Conditions
Subculture
Media Outcome Refs.

Somatic embryos
(SEs)

AR12 and AR14
strain grown in
LB medium

SEs immersed in bacterial
suspension for 20 min

Infected tissue inoculated
in MS + 0.5 mg/L IBA
and 1% PVP in dark

MS + 500 mg/L
cefotaxime

Transient GUS
expression observed in
the explants

[95]

In vivo and in vitro
plants, seedlings,
embryos, and SEs

MAFF106590,
106591, 201265,
301726, and 720002
strains in
LB medium

A. rhizogene suspension
injected into explants

Infected tissues
inoculated in MS in dark

MS + 300 mg/L
cefotaxime

Only MAF201265, 301726
and 720002 induced HRs
in hypocotyls region

[96]

Cotyledons and
hypocotyl

ATTC 15834 strain
in YMB medium

Explants incubated on
bacterial plates for 30 min

Infected tissues
inoculated on WPM
under low light

WPM + 500 mg/L
cefotaxime

HR tips appeared from
the explants [39]

Key: LB = Luria–Bertani media; YMB = yeast mannitol broth medium; WPM = woody plant medium; MS =
Murashige and Skoog medium IBA = indole-3-butyric acid; PVP = polyvinylpyrrolidone; GUS = β-glucuronidase.

In research conducted by Danial et al. [96], various explants and strains of A. rhizogenes
were tested, revealing that two strains induced HRs on the plants’ hypocotyl region. Simi-
larly, Ngoc et al. [39] successfully produced HRs from in vitro cotyledons and hypocotyls
using A. rhizogenes strain ATTC 15834.

The generation of hairy roots from E. longifolia may not have received significant atten-
tion or could have presented challenges. Nevertheless, the current results suggest that hairy
roots can be induced from hypocotyl and cotyledon tissues, which are somewhat related
in plants, explaining their ability to differentiate into HRs after successful transformation.
Furthermore, successful transfection can be achieved through co-culturing tissues and
bacteria using various media compositions.

3.4. Improving the Synthesis of Bioactive Compounds in Hairy Roots (HRs) Culture

Following the successful induction of HRs, the focus shifts to optimizing the growth
conditions and synthesizing target bioactive compounds. HRs exhibit rapid growth even
without PGRs, prompting the exploration of factors such as media type, culture density,
and external elicitors. The effects of different media and the elicitation on E. longifolia HRs
are summarized in Table 7.

Studies investigating the effects of media types and elicitation techniques on the
growth and synthesis of hairy roots revealed that Gamborg B5, Schenk and Hildebrandt
media (SH), and woody plant medium (WPM) supported the maximum growth and
synthesis of alkaloids [97,98]. Furthermore, elicitation with jasmonic acid (JA), YE, MeJa,
and SA enhanced the synthesis of canthin-6-one alkaloids [98,99].

Table 7. Techniques of maintenance and elicitation of HR cultures in E. longifolia indicating various
media types and their effects.

Medium + Additives Culture Conditions Objective Outcome Refs.

B5, ½ B5, SH, ½ SH, N6, and ½ N6 0.2 g HRs agitated at 110 rpm Effects of media type B5 supported maximum growth and
production of alkaloid [97]

MS + MeJa + SA 0.2 g HRs in 50 mL MS at 110 rpm Elicitation for
9-MCO production

MeJa and SA at 0.1 mM each produced high
amounts of 9-MCO [99]

WPM, MS and SH + JA and YE 0.3 g HRs in 100 mL media and
agitated at 80 rpm

Elicitation for improved
biomass and 9-MCO

SH and WPM produced the best biomass and
9-MCO alkaloids, and JA and YE elicitation
improved only 9-MCO synthesis

[98]

Key: B5 = Gamborg B5 medium; SH = Schenk and Hildebrandt media; N6 = Chu (N6) medium; MS = Murashige
and Skoog medium; WPM = woody plant medium; MeJa = methyl jasmonate; JA = jasmonic acid; YE = yeast
extract; SA = salicylic acid; 9-MCO = 9-methoxycanthin-6-one.
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Based on the results presented in Table 7, it can be concluded that elicitation techniques
have positive effects on the synthesis of bioactive compounds in the HRs of E. longifolia.
This can therefore add to the inherent abilities of HRs. The findings also indicate that HRs
can grow well on a variety of media. Furthermore, agitation at 110 rpm in dark conditions
is the most frequently employed technique.

3.5. Upscale Production of Bioactive Compounds in Bioreactors

Bioreactors are utilized for the scaled-up production or synthesis of bioactive com-
pounds in living cells or tissues. Bioreactors offer a superior alternative to other culture
systems [100] because of their efficient contact between cells or tissues and the medium, as
well as their improved aeration and growth.

There are only a few reports on the use of bioreactors for the large-scale production
of bioactive compounds in E. longifolia (Table 8). Natanael et al. [82] tested the effects of
bioreactors and UV irradiation on CS. The results showed that UV has a positive effect on
the synthesis of canthin-6-one and β-carboline. In a similar study, Shim et al. [60] found
out that a CS density of 50 g/L at an aeration rate of 0.3 vvm was optimal for growth and
the synthesis of phenolics.

In other studies, adventitious roots (ARs) were fed to a bioreactor at a density of
5.0 g/L and an aeration rate of 0.1 vvm to test the effects of nitrogen sources [86]. The
results showed that a ratio of 1:2 NH4

+ and NO3
− was optimal for growth and synthesis.

In Fan et al. [101], ARs were fed to bioreactors containing ¾ MS to optimize the growth
conditions. The results showed that 40 g/L sucrose, a 5.0 g/L cell density, and a 0.05 vvm
aeration rate were optimum for the growth synthesis of eurycomanone. Additionally, the
effects of bioreactors on the HRs resulted in improved biomass and synthesis of canthin-6-
one alkaloids compared to shake flasks [102].

In summary, three types of tissues (CS, HRs, and ARs) have been reported for use
in bioreactors. These tissues exhibit little variation in their culture conditions. Generally,
different types and strengths of media are applicable. ARs and HRs were cultured in
the dark, while CS requires light. The aeration rate ranged between 0.05 and 0.3 vvm.
Therefore, the large-scale production of E. longifolia products is possible using bioreactors.

Table 8. Techniques for the large-scale production of bioactive metabolites in E. longifolia using
bioreactor including the explant used, the culture condition, and the results.

Explants Bioreactor Type Culture Media/Condition Inoculation Condition Outcome/Opt. Condition Refs.

CS Bubble column ½ MS with 25 g/L sucrose + 1.1
and 1.0 mg/L 2,4-D and KIN

5.0 g/L cells at 0.3 vvm
aeration and 18L: 6D UV

UV improved
canthin-6-one and
β-carboline

[82]

ARs 5 L balloon-type bubble ¾ MS + IBA and NAA and
varying ratios of NH4

+:NO3
−

5.0 g/L ARs at 0.1 vvm
aeration in dark

IBA, NAA, and 1:2
NH4

+:NO3
− are optimum [86]

CS 5 L balloon-type bubble
MS + 3.0 mg/L NAA, 3%
sucrose and 0:60 NH4

+:NO3
−

40–80 g/L cell at 0.05–0.3
vvm and 16L: 8D lighting
of 40 µmol/m2/s

50 g/L and 0.3 vvm
improved biomass
and phenols

[60]

HRs 20 L spherical bubble Liq. WPM with 30 g/L sucrose
and 40 mg/L YE

3.0 g/L HRs inoculated at
1.5 vvm in dark

Bioreactor improved
biomass and synthesis of
canthin-6-one alkaloids

[102]

ARs 5 L bubble column ¾ MS with diff. sucrose cons.
+3 mg/L IBA

2.5–5.0 g/L ARs inoculated
at 0.05–0.1 vvm in dark

40 g/L sucrose, 5.0 g/L
density, and 0.05 vvm were
optimum for biomass and
eurycomanone synthesis

[101]

HRs 5 L bioreactor MS basal medium Dark conditions Biomass improved
by 20-fold [103]

Key: CS = cell suspension; ARs = adventitious roots; HRs = hairy roots; KIN = kinetin; IBA = indole-3-butyric
acid; NAA = 1-naphthaleneacetic acid; MS = Murashige and Skoog medium; WPM = woody plant medium;
YE = yeast extract.
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4. Future Perspectives

Despite considerable efforts to enhance the yield of bioactive metabolites in E. longifolia,
there is still a need for improvement to ensure sustainability. Adopting recent techniques
already applied to other valuable medicinal plants would further enhance the synthesis of
metabolites. The following sections briefly outline promising areas in tissue culture and
biotechnological advancements that have not yet been applied to E. longifolia.

4.1. Elicitation Techniques

Elicitation induces stress in cells and tissues, enhancing secondary metabolite produc-
tion. Biotic elicitation agents (bacteria, fungi, etc.) and abiotic stressors (heavy metal ions,
UV radiation, nanoparticles, etc.) are utilized in various plants. Despite the proven effective-
ness of elicitation techniques [104–110], research in this area on E. longifolia is insufficient.

4.1.1. Biotic Elicitation

E. longifolia has been tested with only a few biotic elicitors, such as YE, JA, and SA.
Many other biotic elicitors, including aspergillus and fusarium [111], remain unexplored.
Additionally, effective elicitation agents like algae [112,113], proteins, and plant-growth-
promoting microorganisms such as rhizobacteria and trichoderma [114,115], etc., have not
been investigated. This represents a gap in academic research.

4.1.2. Abiotic Elicitation

Although physical elicitation methods are highly effective [115], limited research has
been conducted on E. longifolia. While UV and gamma radiation have been tested, the
details of their mode of action remain unclear. Furthermore, essential abiotic elicitation
techniques such as LED [116] and nanoparticles [117] have not been explored.

Different LED monochromatic lights have been employed individually or in combi-
nations to enhance the synthesis of crucial metabolites. LEDs have the ability to improve
metabolite production in both callus [118–122] and cell suspension [123,124]. Moreover,
several studies highlight the effectiveness of LEDs in enhancing the synthesis of bioactive
compounds in various in vitro cultures [116]. Additionally, numerous research papers doc-
ument the efficacy of nanoparticle elicitation in enhancing metabolite production [125–128].
Therefore, there is a need to explore these aspects in E. longifolia.

4.2. Modern Breeding Strategies for Improved Biosynthesis

Modern molecular breeding techniques have been employed to enhance the synthesis
of various plant substances. Initially, molecular markers [129] were used to identify existing
variations in the population. Subsequently, omics technologies [130–132] can be utilized
to identify the specific biosynthetic pathways and their underlying genes. In ginkgo, for
instance, transcriptomics and metabolomics have been instrumental in improving bioactive
metabolites [133–136]. Similar techniques have been applied to enhance the biosynthesis
of taxol and other metabolites in yew trees [137–141]. Additional recent and efficient
techniques include metabolic engineering and synthetic biology [142–147] for directly
enhancing the synthesis of target metabolites.

The application of modern breeding technologies in E. longifolia is still in its early
stages. Currently, only a limited number of studies have explored genetic variation in E.
longifolia. These studies have utilized molecular markers such as inter-retrotransposon am-
plified polymorphism (IRAP), single-nucleotide polymorphism (SNP), random amplified
polymorphic DNA (RAPD), simple sequence repeat (SSR), and microsatellites [148–151].
Additionally, DNA barcoding has been employed for the characterization of E. longifo-
lia [152]. There is a clear need to expand research in this field to enhance the synthesis
of bioactive metabolites, highlighting a substantial gap in the overall biotechnological
exploration of E. longifolia.
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