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Abstract: RNA interference (RNAi) that is triggered by small or short RNAs has shown enormous
potential in the development of pest control strategies. Two microRNAs (miRNAs), Csu-novel-260
and Csu-miR-14, were used in insect-resistant genetically engineered (IRGE) rice lines to confer
resistance to Chilo suppressalis. However, a risk assessment of RNAi-based products is essential to
determine the safety of a biopesticide or IRGE crop for commercialization. The non-target organism
Folsomia candida, which plays an important ecological role as a soil decomposer in agricultural
ecosystems, was used to assess the risk of miRNAs Csu-novel-260 and Csu-miR-14. In this study, a
dietary miRNA toxicity assay system was established in F. candida. The expression levels of target
genes, survival rate, fecundity and body size were investigated to evaluate the effects of the miRNAs
on F. candida under the worst-case scenario. The results showed that the dietary miRNA toxicity assay
system could be used for risk assessment of miRNA in F. candida. The target genes of miRNAs were
influenced by miRNA at some time points. However, no significant differences were observed in
the life-table parameters in F. candida fed with a diet containing miRNAs. The dietary effects of two
miRNAs on F. candida are neutral.

Keywords: microRNA; non-target arthropod; risk assessment; Folsomia candida; genetically engi-
neered crops

1. Introduction

RNA interference (RNAi) that is triggered by small or short RNAs has shown enor-
mous potential in the development of pest control strategies [1–3]. It can effectively and
specifically silence target genes, resulting in mortality or disrupting development [4]. RNAi-
based biocontrol products have already been used to trigger gene silencing in insects for
pest control, including biopesticide and insect-resistant genetically engineered (IRGE) crops
that produce double-stranded RNA (dsRNA), hairpin RNAs or microRNAs (miRNAs) [1].
For instance, in 2007, two RNAi-based IRGE crops were reported; one of the crops was
a corn that expressed dsRNA against the western corn rootworm (Diabrotica virgifera vir-
gifera) [5], while the other crop produced hairpin RNAs that targeted the cotton bollworm
(Helicoverpa armigera) [6]. Additionally, IRGE rice producing miRNA Csu-novel-260 [7] or
Csu-miR-14 [8] were found to be resistant to striped stem borer (Chilo suppressalis) under
field conditions.

However, the potential to use the technology for pest control has led to concern
about the ecological risk assessment of RNAi-based products, with a particular focus on
the effects on non-target organisms that represent diverse ecological functions, including
pollinators, soil decomposers and natural enemies [9–12]. A substantial body of literature
has been published reporting studies on the effects of genetically modified plants on
non-target arthropods. Most of the studies show neutral or “negligible” effects, while
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some reported negative or positive effects [13]. For example, studies have shown that
dsRNA targeting the v-ATPase A gene of western corn rootworm has negligible effects on
larvae and adults of honeybee (Apis mellifera) [14], monarch larvae (Danaus plexippus) [15]
and collembolan (Sinella curviseta) [16]. However, several ladybird species have shown
differential responses [17,18].

Collembolans play an important ecological role as consumers of plant residues and soil
fungi in agricultural ecosystems, and they might be exposed to RNAi-based products [19].
A common species, Folsomia candida, has a long history of being used as a “standard” test
organism for estimating the effect of pesticides and environmental pollutants on non-target
soil arthropods since it is parthenogenetic and is easy to maintain in the laboratory [20].
F. candida has also been widely used for assessing the non-target effects of insecticide and
IRGE crops [21,22]. Up to now, most of these studies have been performed on Bacillus
thuringiensis (Bt) crops [22–25]. A few studies have also been carried out on RNAi-based
IRGE crops. For example, DvSSJ1 dsRNA expressed by maize is not expected to be harmful
to F. candida populations [26]. F. candida was not negatively impacted when exposed to
dsRNA targeting western corn rootworm [27]. To our knowledge, the risk assessment of
miRNAs in F. candida has not been reported.

A tiered approach to risk assessment of transgenic crops was used internationally [28,29].
Diets containing Bt protein or dsRNA were usually used in first-step laboratory studies
aimed at analyzing toxic effects on non-target organisms. However, there is a lack of studies
on the risk assessment of miRNAs, and no consensus has been reached on whether they
should be included due to the possible unintended effects on transgenic plants. Nonetheless,
dietary exposure studies are effective initial steps in evaluating the environmental risks of
RNAi-based biocontrol products on non-target organisms. The dietary miRNA approach
is expected to introduce concentrations of testing compounds 10–100 times or more than
those found in plants to non-target organisms, and it is cost-effective and time-saving.
In this study, a first-tier (laboratory-scale) experiment system using an artificial diet was
developed to expose F. candida to high doses of miRNAs, with the aim of determinizing
their potential effects on the non-target organism F. candida. A suitable positive control was
identified, and the stability of miRNA in the artificial diet, as well as the uptake of miRNA
by F. candida, was checked. The effects of two miRNAs (Csu-novel-260 and Csu-miR-14)
that have shown promise in controlling C. suppressalis on F. candida were investigated in the
first-tier experiments. The binding probability of miRNA and homologs of target genes
were predicted in this study. The expression levels of target genes, survival rate, fecundity
and body size were investigated to evaluate the effects of the miRNAs on F. candida under
the worst-case scenario. It should be noted that a previous study reported neutral effects of
miRNA Csu-novel-260 on the non-target organism A. mellifera [30].

2. Results
2.1. Binding Probability of miRNA and Target Genes

Disembodied (Dib) is target gene of Csu-novel-260, while ecdysone receptor (EcR)
and spook (Spo) are target genes of Csu-miR-14 in C. suppressalis (NCBI accession num-
bers: KX833964.1, AB067811.1 and MN010764.1) [7,8]. The homologous genes of these
target genes in F. candida were identified by sequence similarity (NCBI accession numbers:
XM_035854100.1, XM_035846430.1 and XM_022094060.2) and confirmed by Sanger sequenc-
ing. No potential binding sites were found between Csu-novel-260 and F. candida Dib (FcDib)
gene or between Csu-miR-14 and F. candida Spo/EcR (FcSpo/FcEcR) genes by miRanda even
with a low threshold minimum free energy (MFE) at −1 kcal/mol. RNAHybrid shows
that there are potential binding sites with a low probability between the miRNAs and
their target genes. The MFEs are −15.5 kcal/mol, −16.5 kcal/mol and −13.2 kcal/mol,
respectively (Figure 1). These results suggest that there is a small possibility that both
miRNAs interact with the target genes in F. candida and induce mRNA degradation.
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be high enough to ensure that the mortality is easy to observe. The concentration should 
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Figure 1. Binding probability of Csu-novel-260 and Csu-miR-14 with their target genes in C. sup-
pressalis (A) and F. candida (B). Cs refers to C. suppressalis; Fc refers to F. candida. CsDib is the target
gene of Csu-novel-260, while CsEcR and CsSpo are the target genes of Csu-miR-14 in C. suppressalis.
Alignment and the MFE between miRNA and UTRs were predicted by RNAhybrid.

2.2. Response of F. candida to Chlorpyrifos

Chlorpyrifos (CPF) was chosen as the positive control to evaluate the test validity of
the experimental procedure based on a preliminary experiment. The mortality rate of F.
candida increased with the CPF concentration in the artificial diets. Kaplan–Meier survival
curves were generated (Figure 2), and a log-rank (Mantel–Cox) test indicated significant
differences in the survival rate of F. candida among the artificial diets with varying CPF
concentrations (df = 5, p < 0.0001). At CPF concentrations below 50 µg/g diet, the mortality
after 30 days remained 38%. However, when the CPF concentration reached 400 µg/g
diet, all test insects died at 14 days. An appropriate concentration of the positive control
should be high enough to ensure that the mortality is easy to observe. The concentration
should not be too high to prevent all the insects from dying within a few days since the
experiment spans 30 days. At 100 or 200 µg/g diet, the survival rate was 0% at 20 days
or 0.6% at 30 days (Figure 2). Therefore, a concentration range of 100–200 µg/g diet was
deemed appropriate for this assay system, and 200 µg/g diet was used in the subsequent
experiment.
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2.3. Stability of miRNA in Artificial Diet

The miRNA was diluted in RNase-free water and added to baker’s yeast. Initially,
233,700 fmol miRNA was added per gram dry diet. After dilution, lyophilization and
grinding, only 45,547 fmol/g diet of Csu-novel-260 and 138,234 fmol/g diet of Csu-miR-14
remained in the artificial diet. The miRNA concentration decreased slowly in the first
24 h of feeding exposure. The concentrations of two miRNAs in the artificial diet were
37,618 fmol/g and 56,758 fmol/g at 24 h. Then they quickly decreased to 281 fmol/g and
35,163 mol/g only at 36 h, and they decreased to even lower values at 48 h (Figure 3). These
results suggest that miRNAs in yeast powder were degraded soon after 24 h. It is suggested
that the artificial diet containing miRNA be replaced every 24 h.
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Figure 3. The stability of miRNA Csu-novel-260 (A) and Csu-miR-14 (B) in artificial diet for F. candida.
The diet was placed in the experiment environment and exposed to springtail feeding. The data are
shown as means ± SE, and each dot presents a biological replicate, n = 5. Different letters on the bar
indicate significant differences among different time points (Tukey HSD test, p < 0.05).

2.4. Uptake of miRNA in F. candida

The absolute expression levels of two miRNAs were measured when F. candida was fed
a diet containing Csu-novel-260 or Csu-miR-14 (Figure 4). Csu-novel-260 was not detected
in RNase-free water-treated and random sequence-treated collembolans, and it was not
detected in the first two days of Csu-novel-260-treated collembolans. The concentrations
of Csu-novel-260 detected at 3 days, 5 days, 10 days and 30 days were 21,562 ± 11,542,
15,381 ± 2340, 19,798 ± 2788 and 18,442 ± 7136 fmol/g weight. Csu-miR-14 was detected
in untreated collembolans and was supposed to exist in F. candida (Figure 4B). When the
springtails were fed the diet containing Csu-miR-14, the miRNA detected in their bodies
was significantly affected by the treatment (Figure 4B, two-way ANOVA, factor treatment,
F2,42 = 4.839, p = 0.0128). These results suggest that collembolans can uptake miRNAs
through an artificial diet and keep them in vivo.

2.5. The Expression Levels of Target Genes of miRNA

The relative expression levels of three target genes (FcDib, FcEcR and FcSpo) were
measured during the 30-day experiment and compared among three treatment groups:
RNase-free water, random sequence treatment, and treatment with Csu-novel-260 or Csu-
miR-14. The expression levels of these genes varied during the 30 days in the control group,
with FcDib showing the most variation from 0.81 to 6.95 (Figure 5).
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Figure 4. (A) The absolute expression levels of Csu-novel-260 in F. candida with Csu-novel-260
treatment. (B) The absolute expression levels of Csu-miR-14 in F. candida with different treatments.
No Csu-novel-260 was detected in RNase-free water and random sequence treatments. Csu-miR-14
could be detected in control collembolans and varied during the experiment period. The data are
shown as means ± SE, and each dot presents a biological replicate, n = 3. One-way ANOVA was
used for the analysis of Csu-novel-260 (F3,7 = 0.190, p = 0.900). Two-way ANOVA was used for the
analysis of Csu-miR-14 (Time: F6,42 = 5.149, p = 0.0005; Treatment: F2,42 = 4.839, p = 0.0128; Interaction:
F12,42 = 2.396, p = 0.0183). Asterisks indicate significant differences (**** p < 0.0001).

During the first five days, the expression levels of three genes were affected by Csu-
novel-260 or Csu-miR-14 treatment on one or two of the five days, but FcEcR and FcSpo
quickly recovered to the same level as the control group, while the FcDib gene did not.
The expression level of FcDib was significantly increased after the collembolans were fed a
diet containing Csu-novel-260 for 30 days, as determined by a two-way ANOVA analysis
with treatment and time factors. The analysis showed a significant effect of treatment
(F2,6 = 12.000, p = 0.008) on the expression levels of FcDib (Figure 5). These results suggest
that miRNA uptake by collembolans can affect the expression levels of their target genes,
but the effects are mostly transient and not significant under most conditions.

2.6. Effects on Life-Table Parameters

The effects of miRNAs on life-table parameters were analyzed. Results showed that
the survival rate of F. candida was not affected by miRNAs (Figure 6A). However, the
survival rate of F. candida in the CPF-treated group (PC) was significantly different from
that of other treatment groups (Figure 6A). The survival rate of F. candida in the other four
groups, namely the Csu-novel-260-treated group, Csu-miR-14-treated group, RNase-free
water-treated group (CK) and random sequence-treated group (NC), was consistently high,
ranging from 88 to 98%. No significant differences were observed among these four groups.

The number of eggs produced per female and body size were analyzed (Figure 6B,C).
The CPF group had a significantly lower number of eggs per female compared to the
other groups, likely due to the high mortality rate during the experiment. We observed a
significant difference in the number of eggs per female between the Csu-novel-260 group
and the NC group, but not between the Csu-novel-260 group and the CK group (Figure 6B).
Body length did not show any significant differences among the four groups, except for the
CPF group (Figure 6C).
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genes are (A) FcDib, (B) FcEcR and (C) FcSpo. The expression levels of the genes in all the samples
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± SE, and each dot presents a biological replicate, n = 3. The significant differences between different
treatment groups are shown by asterisks (* p < 0.05, ** p < 0.01, *** p < 0.001).
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3. Discussion

One of the major concerns associated with RNAi-based products is their potential
effects on non-target arthropods within the agricultural ecosystem [10]. Therefore, it
is essential to evaluate these effects on non-target organisms before commercialization.
According to a guideline of environmental safety standard, Tier I assays are recommended
under the worst-case scenarios in the laboratory [31,32]. A previous study demonstrated
the non-target impacts of miRNA Csu-novel-260 on A. mellifera [30]. In this study, miRNAs
Csu-novel-260 and Csu-miR-14, which show high resistance to rice stem borer and have
the potential for pest control [7,33], were assessed in F. candida and showed neutral effects
on collembolans.

Prior to conducting the toxicity assay, the probability of miRNAs binding to target
genes in F. candida was analyzed. The results revealed that Csu-novel-260 and Csu-miR-14
have the potential to bind to the 3′ UTR of homologs of target genes of miRNA in F. candida.
However, it should be noted that the structures of the binding complex are not stable, as
indicated by the high MFE value (Figure 1). It is also important to note that there may be
more potential binding sites in F. candida, particularly miRNA binding to the target RNA
through partial complementarity [34].

The dietary exposure assay in F. candida has been previously used for Bt protein, but
not for miRNA [23]. The uptake mechanism and low stability of miRNA differ from those
of Bt protein. Therefore, the existing framework for assessing the safety of Bt crops should
be optimized to accommodate the unique characteristics of RNAi-based products [31,35].
To ensure that the dietary exposure conditions are suitable for testing the potential harmful
effects of miRNAs on F. candida, RNase-free water and CPF are tested as CK and PC,
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respectively, in this assay system (Figure 2). The survival rate of F. candida was 98% in
the control during the 30-day experiment. The survival rate for CPF was dose-dependent,
and 100–200 µg/g diet was deemed suitable for the assay. The miRNA in the artificial diet
was observed to be relatively stable over a 24 h period (Figure 3) and recommended to be
replaced daily to ensure that the miRNA concentration remained 161–592 times higher than
the expression level in the IRGE rice [36]. In this study, the initial concentration of miRNA
in the artificial diet was 1000 times higher than that in terminal leaves of a transgenic rice
line. These findings provide critical information that this dietary exposure assay system is
suitable for detecting the potential detrimental effects of miRNAs.

The uptake of miRNAs into the collembolans was confirmed by the absolute expression
level of the miRNAs, and their expression level changes in vivo were shown (Figure 4).
It is possible that the miRNAs can be packaged into extracellular vesicles or absorbed by
the gut epithelium and enter the hemolymph directly in F. candida. However, the specific
mechanisms by which miRNAs are able to survive in the insect and enter the hemolymph
are still not fully understood. We concluded that the Csu-novel-260 does not exist in F.
candida, while Csu-miR-14/miR-14 exists. It has been reported that miR-14 is present in
various insects, such as Drosophila [37], Bombyx mori [38] and A. mellifera [39]. The target
genes of miR-14 are involved in ecdysone signaling in many insects [8,38,40,41]. When the
collembolans were fed with Csu-novel-260, the expression level of FcDib was approximately
2 times higher than that in CK and NC groups at 30 days (Figure 5A), and the number
of eggs produced per female was reduced by 26.53% compared to that in the NC groups,
but there was no significant difference compared to that in the CK group. No significant
difference in the number of eggs was observed between CK and NC groups either. Because
the concentration of Csu-novel-260 was several hundred times higher than that in fresh
plant tissue and the miRNA is unstable under natural conditions, no significant differences
were observed between the Csu-novel-260-treated group and RNase-free water-treated
group. In conclusion, Csu-novel-260 is unlikely to pose a threat to the population size of
springtails under field conditions. Similarly, Csu-miR-14 showed neutral dietary effects on
F. candida.

Collembolans are important decomposers in soil, with a unique ecological function.
Collembolans, particularly F. candida, have been the focus of attention for the environmental
risk assessment of IRGE crops [22,23,25]. Many previous studies demonstrated the negative
impacts of Bt toxin or dsRNA on collembola [16,24,26,42]. However, a few studies revealed
that Bt corn caused a significant negative effect on collembola [43,44]. A long-term “minor”
effect of Csu-novel-260 was shown on the expression level of the FcDib gene and the
number of eggs produced by females, although it is not likely to be recurrent under field
conditions. Therefore, it is essential to evaluate miRNAs on non-target arthropods before
their commercial use, even if the miRNA is supposedly highly specific.

While Bt crops have achieved great success in the past, the sporadic emergence of
resistance in target insects and limitations on target pest species have prompted researchers
to explore new technological approaches [45,46]. In recent years, the use of RNAi has
emerged as a promising alternative to the Bt protein-based approach for the development
of IRGE crops [46]. The first RNAi-based IRGE maize was approved for commercial use
in 2017 [47]. It should be noted that most studies on RNAi-based insect resistance have
been based on dsRNA. However, the delivery efficiency of dsRNA is often low, making
it difficult to produce enough stable dsRNA [48], and dsRNA may be ineffective in some
pests [49,50]. miRNA showed a better delivery and uptake efficiency for RNAi-based IRGE
cops [48,49].

In summary, a dietary miRNA toxicity assay system was established to assess the
potential effects of miRNAs on F. candida, and two miRNAs were evaluated for their risk.
The results suggest that the potential effects of miRNAs on F. candida are neutral, supporting
the use of miRNA-based approaches for pest control in agriculture. However, there are a
few considerations to take into account. Firstly, the actual exposure of F. candida to miRNAs
in the plant and in the field can be more complicated and may require further theoretical
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or experimental support. Secondly, it is important to conduct risk assessments on other
representative non-target species before commercialization.

4. Materials and Methods
4.1. Insect Strain and Rearing

The FCDK/Berlin strain of the soil collembolan F. candida [23] was obtained from the
Shanghai Institute of Biological Sciences; it originally came from the former Department of
Terrestrial Ecology at Aarhus University. The cultures were reared in Petri dishes (diameter
90 mm; height 10 mm), which were filled with plaster of Paris, activated charcoal and
distilled water in a ratio of 8:1:7 (w:w:w) to cover the bottom (referred to as plaster–charcoal
base or dish below). The dishes were kept at 20 ◦C in total darkness, and the relative
humidity was ~80%. Baker’s yeast (AB Mauri Food Sales & Marketing Co., Ltd., Beijing,
China) was provided as food every week at the top center of the plaster–charcoal base.

Fifty collembolans were placed in one plaster–charcoal dish with baker’s yeast to
obtain the eggs. After 48 h, the adult springtails and residual yeast were removed. Dis-
tilled water was supplied to keep the plaster–charcoal base moist. The eggs hatched after
7–8 days, and the neonates were fed with untreated yeast powder if they were not imme-
diately used for the experiments. Collembolans that were 12 days old were used for the
following experiments.

4.2. miRNAs and Testing Compounds

The agomirs used in the experiment were Csu-novel-260 (TTTTGGATGACTGGCC-
CATGTCGGCGT), Csu-miR-14 (TCAGTCTTTTTCTCTCTCCTAT), and a random shuffled
sequence of Csu-novel-260. In this experiment, miRNA agomirs and reagent CPF (Sigma-
Aldrich, St. Louis, MO, USA) were tested. They were mixed with baker’s yeast, and the
required amounts of agomirs or CPF were diluted in 10 mL of RNase-free water and mixed
with 5 g of yeast powder. The mixture was then lyophilized and ground into powder again.
The diet was kept at −80 ◦C until it was fed to F. candida.

The miRNA agomir was a chemically modified, cholesterylated, stable miRNA mimic.
The agomirs used in this experiment were commercially synthesized by Sangon Biotech
(Shanghai, China). The RNase-free water was used as the blank control (CK), the random
sequence supplied was used as the negative control (NC) and CPF was used as the positive
control (PC). The concentration of miRNA was determined as 233,700 fmol/g dry diet,
which is 1000 times the concentration of Csu-novel-260 in the terminal leaves of transgenic
rice, which have the highest expression level among all tested tissues according to a
previous study [36].

4.3. Binding Probability of miRNA and Target Genes in F. candida

The target genes of miRNA Csu-novel-260 were Dib gene and Spo/EcR, respectively, in
C. suppressalis. To analyze the binding probability between the miRNAs and the homologs
of these three target genes in F. candida, the programs miRanda (https://cbio.mskcc.org/
miRNA2003/miranda.html, accessed on 17 March 2023) [51] and RNAhybrid (https://
bibiserv.cebitec.uni-bielefeld.de/rnahybrid/welcome.html, accessed on 17 March 2023) [52]
were used with the highest sensitivity parameters. The sequences of FcDib, FcSpo and
FcEcR were obtained from NCBI (accession numbers: XM_035854100.1, XM_035846430.1
and XM_022094060.2) and verified by Sanger sequencing.

4.4. Determination of Positive Control

CPF was selected based on a preliminary experiment, and different concentrations
were tested in F. candida. The baker’s yeast with different concentrations of CPF water
solution (0, 25, 50, 100, 200, 400 µg/g) was placed in the collembolan rearing system. To set
up the experiment, a 12-day-old collembolan was placed in a 30 mL polystyrene plastic cup
(height 4 cm, diameter 4.4 cm at the top and 3 cm at the bottom). A total of 50 replicates
were set up for each concentration, and the diet was replaced every day. If necessary,

https://cbio.mskcc.org/miRNA2003/miranda.html
https://cbio.mskcc.org/miRNA2003/miranda.html
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/welcome.html
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/welcome.html
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distilled water was added to keep the substrate humidity. The survival of each springtail
was observed every day.

4.5. Stability of miRNA in Artificial Diet

The miRNA agomirs were added to the yeast following the protocol described above,
and the initial concentration was set as 233,700 fmol/g dry diet. The yeast powder was then
placed in the center of the moistened plaster–charcoal base. Ten 12-day-old collembolans
were introduced to each dish. Three replicates were set up for each miRNA, and samples
of the yeast powder were collected at eight time points (0 h, 1 h, 2 h, 6 h, 12 h, 24 h, 36 h,
48 h) and weighed. The samples were stored at −80 ◦C until miRNA extraction for qPCR
analysis to determine the stability of the miRNAs over time in the artificial diet.

4.6. Uptake of miRNA and Expression Level of Target Genes in F. candida

Around 200 12-day-old collembolans were collected in each replicate and placed in
a plaster–charcoal dish. Four yeast powders were provided for diet as four treatments.
The yeast powders were mixed with RNase-free water, Csu-novel-260 agomir, Csu-miR-14
agomir or random sequence agomir; lyophilized; and ground into powder. The initial
concentration of agomir was 233,700 fmol/g dry diet. The diets were replaced every day.
The insects were collected at seven time points: 0 days, 1 days, 2 days, 3 days, 5 days,
10 days and 30 days; approximately 100 individuals at 0–3 days and 20 individuals at 5
days, 10 days and 30 days were collected for each replicate. Three replicates were set and
sampled at each time point. The samples were stored at −80 ◦C until use.

4.7. miRNA Effects on Life-Table Parameters

Twelve-day-old collembolans were subjected to five different treatments: Csu-novel-
260 agomir, Csu-miR-14 agomir, random shuffled sequence of Csu-novel-260, CPF and
RNase-free water. The agomirs were administered at an initial concentration of
233,700 fmol/g diet, while CPF was administered at a concentration of 200 µg/g diet
as determined in the previous section. Individual collembolans were placed in 30 mL
polystyrene plastic cups (height 4 cm, diameter 4.4 cm at the top and 3 cm at the bot-
tom). A total of 50 replicates were set up for each treatment. The survival and egg-laying
of each collembolan were monitored and recorded daily. At the end of the experiment,
three springtails were randomly selected from each replicate, and their body length was
measured.

4.8. Real-Time Quantitative PCR

miRNA in the artificial diet was isolated using TRIzol (Invitrogen, Waltham, MA,
USA), while total RNA containing small RNA in F. candida was extracted using the miRcute
microRNA isolation kit (Tiangen, Beijing, China) according to the manufacturer’s protocol
for total RNA extraction. For the miRNA assay, 1 µg of miRNA from diet or total RNA from
insects was reverse transcribed using the miRNA 1st Strand cDNA Synthesis Kit (by stem-
loop) (Vazyme Biotech, Nanjing, Jiangsu, China) following the manufacturer’s protocol.
The specific stem-loop primers (Bulge-Loop Csu-novel-260 stem-loop Primer and Bulge-
Loop Csu-miR-14 stem-loop Primer) (Table 1) for reverse transcription were synthesized by
Guangzhou RiboBio Co., Ltd. (Guangzhou, Guangdong, China). The miRNA expression
levels were detected by a real-time quantitative PCR assay (qPCR) using miRNA Universal
SYBR qPCR Master Mix (Vazyme Biotech, Nanjing, Jiangsu, China). A standard curve was
generated using pure Csu-novel-260 agomir. The absolute miRNA expression levels were
calculated using the standard curve method.
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Table 1. Primers used in this experiment.

Name Sequence Note

Bulge-Loop Csu-novel-260
stem-loop primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGCCG Reverse

transcript
Bulge-Loop Csu-miR-14

stem-loop primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATAGGA Reverse
transcript

Csu-novel-260-F TTGGATGACTGGCCCATGT qPCR
Csu-miR-14-F GCGCGTCAGTCTTTTTCTCTC qPCR

Csu-miRNA-universal AGTGCAGGGTCCGAGGTATT qPCR
FcSDHA-F ACACTTTCCAGCAATGCAGGAG qPCR
FcSDHA-R TTTTCAGCCTCAAATCGGCA qPCR

FcDib-F TTCCGGAAGGCACGAATATC qPCR
FcDib-R GACTGACGAAGGGATGGATTT qPCR
FcEcR-F TGCGACAATCATCCATATACCC qPCR
FcEcR-R TCCACCTTCATTGCACACATA qPCR
FcSpo-F ATGCCAAGGAGTTGTCCTTATT qPCR
FcSpo-R CCTCGGAGAAAGTTGTCCTAATC qPCR

In the mRNA assay, 1 µg of total RNA was reverse transcribed using TransScript
One-Step gDNA Removal and cDNA Synthesis SuperMix kit (TransGen, Beijing, China).
The qPCR was performed using PerfectStart Green qPCR SuperMix (TransGen, Beijing,
China). The relative expression levels of each gene were calculated using the 2−∆∆CT
method. The SDHA gene was used as the internal control [53]. All the primers used for
qPCR were listed in Table 1.

4.9. Statistical Analysis

Log-rank (Mantel–Cox) test was used for survival data. For comparison of differ-
ences among groups under different conditions such as stability of miRNA in diet, gene
expression levels and number of eggs, one-way ANOVA followed by Tukey’s HSD test and
two-way ANOVA were used.
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