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Abstract: Mining operations degrade natural ecosystems by generating a large quantity of mine
tailings. Mine tailings remain in dams/open ponds without further treatment after valuable metals
such as iron ore have been extracted. Therefore, rehabilitation of tailings to mitigate the negative
environmental impacts is of the utmost necessity. This review compares existing physical, chemical
and amendment-assisted phytoremediation methods in the rehabilitation of mine tailings from the
perspective of cost, reliability and durability. After review and discussion, it is concluded that
amendment-assisted phytoremediation has received comparatively great attention; however, the
selection of an appropriate phytoremediator is the critical step in the process. Moreover, the efficiency
of phytoremediation is solely dependent on the amendment type and rate. Further, the application of
advanced plant improvement technologies, such as genetically engineered plants produced for this
purpose, would be an alternative solution. Further research is needed to determine the suitability of
this method for the particular environment.
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1. Introduction

Mining, mineral processing, and extractive metallurgy are essential industries for metal
production but generate huge amounts of tailings [1]. Mine tailings are by-products of
separating valuable minerals from uneconomic materials [2,3] and are generally deposited
in open-air tailings impoundments without any treatments for a long time [4,5]. The global
mining industry produces billions of tons of tailings each year, with an estimated 14 billion
tons produced in 2010 [3], which equals the annual volume of mineral production. Iron
ores are complex in nature, and tailings generation is varied from place to place; in Western
Australia, it is estimated that tailings generation is 2 tons per ton of iron ore [6]. There is no
accurate information on the volume of tailings waste produced during the iron extraction
process, but the generation of fines content in the waste could be 10 million tons per year,
as reported in India [6,7].

Therefore, huge quantities of tailings are generated during iron extraction from the
ore and disposed of into the surrounding areas, creating vast barren lands [8]. These
types of tailings ponds damage local land resources and produce severe environmental
pollution [4] spatially in terms of the storage area and temporally in terms of the long time
scales over which tailings must be managed and rehabilitated [2]. However, mine tailings
management is a crucial issue in mining operations because of the irreversible impacts of
tailings. Mine tailings have been reported to create significant risks to human health and
the environment [9,10]. The adverse effects of metals on plants, including oxidative stress,
fluorescence, stomatal resistance, chlorophyll and photosynthesis, reproductive processes,
seed germination, seed morphology and seed physiology, have been reported [11]. More-
over, human health may be at risk via exposure to mine tailings through dermal contact,
unexpected inhalation and the ingesting of dust from tailings. Consumption of food crops
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grown on mine tailings is harmful, as some of the heavy metal(loid)s (As, Ni, Cd, Cr, and
Pb) are carcinogenic and can cause problems in the skin, kidney, lungs, skeleton, and gas-
trointestinal tract [11]. Iron ore tailings in Australia generally have (w/w), SiO2 57%, AlO3
10%, TiO2 1%, and Fe2O3 25% [6]. As reported by [2], the physicochemical properties of
tailings present many challenges to achieving physically and chemically stable landscapes.

This review intends to provide an overview of the iron ore mine tailings knowledge
and to frame the importance of green solutions coupled with the modern concept of
“amendments-assisted” in the context of iron ore mine tailings rehabilitation, and future
perspectives that could be addressed in terms of using advanced technology. The method-
ology used was an open-access literature search through Google scholar with the main
keywords being “iron ore”, “mine tailings”, “phytoremediation”, “compost”, “topsoil”,
“biochar” and “straw” over the ten-year periods.

2. Physicochemical and Biological Characterisation and Strategies to Improve Iron Ore
Mine Tailings
2.1. Physicochemical Characterisation of Iron Ore Mine Tailings

Tailings often exhibit adverse physicochemical properties (Figure 1) such as poor struc-
ture [12] with a fine-grained blend of ground-up stone particles [13], low macronutrients,
extreme pH [14], high salinity [15], high concentrations of metals, and residuals of process-
ing chemicals [14]. Iron ore tailings are characterised by small particle sizes [4,5,12,16]. The
content of heavy metals in tailings is influenced by many factors such as textural charac-
teristics [17,18], mineralogical composition and depositional environment [19]. Numerous
studies have emphasised the significance of soil properties such as particle size distribution
and clay content on the behaviour of heavy metals in tailings [20,21]. Further to [21], metal
mobility has been shown to be lower in fine- than in coarse-textured soils, especially if the
mineralogical assemblage of the clayey soil is dominated by 2:1 tetrahedral: octahedral
silicate clay minerals (e.g., illite or vermiculite with high cation-exchange capacities).
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Figure 1. Schematic representation of physicochemical and biological characteristics of iron ore
mine tailings.

In some cases, iron ore tailings show high alkalinity, which reduces other nutrients [22]
such as N, P, Ca and Mg availability [23]. The highlighted physical characteristics, such
as poor water-holding capacity [17,24], low permeability [22], and high bulk density [17]
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make the situation critical. High bulk density of tailings increases the mechanical resistance,
which limits aeration and reduces the infiltration of water and nutrients to the roots [25].

Low nutrient levels and potential ionic stress result from high solute concentra-
tions [8,26] such as Si, Al, Ca and Mg [27]. Iron ore tailings are iron-bearing silicates
consisting of silica skeletons formed by (SiO4) tetrahedron and forming a complex com-
position and stable structure with Fe3+, Ca2+ and Mg2+, which indicates that iron ore
tailings have the potential to serve as a sustainable material by regulating the framework
structure [27], but not for plant growth. In addition, the high content of organic matter
also can enhance metal adsorption, thereby reducing mobility in the environment; how-
ever, mine tailings lack organic matter [28] and nutrients, which makes them an infertile
substrate for plant growth [17,29]. However, if the mine tailings are acidic, the acidity will
decrease the soil exchange capacities of metal cations and increase metal solubility in the
soil environment, making heavy metals more mobile [21].

2.2. Biological Characterisation of Iron Ore Mine Tailings

The soil microbial community has a fundamental role in organic matter mineralisation,
which allows the recycling of nutrients [30]. Heavy metals affect the number, diversity
and microbial activity of soil microorganisms and also slow down growth and reproduc-
tion [30]. Some studies suggest that heavy metals negatively influence soil microbiological
activities such as growth, morphology and metabolism through functional disturbance,
protein denaturation or the destruction of the integrity of cell membranes [31]. In contrast,
a few studies indicate no correlation between microbial aspects and heavy metal concen-
trations [32]. However, the lack of soil microorganisms and soil animals [17,33] in mine
tailings leads to less microbial activity and enzyme activities in tailings [34]. The reasons
could be identified as a low organic matter [35] and poor plant growth, resulting in low
levels of aerobic heterotrophic bacteria, which use organic matter as an energy source [36].
Bacterial enumeration and enzymatic activities showed an apparent deterioration of mi-
crobial communities in the mine tailings, since no viable bacterial cells were detected, and
dehydrogenase enzyme activity was extremely low [37]. Further, [38] pointed out that
microbial activity in metal-polluted bare soils is disrupted by the toxic effects on microor-
ganisms due to the absence of vegetation cover. It is worth noting that [39] showed that
microbial diversity and structure in the rhizosphere and in bulk soils from mine tailings
were mainly influenced by the presence of pioneer plants and the environmental conditions,
especially nutrient elements and Fe contents, alongside plant community colonisation. Res-
piration can be considered a general measure of microbial activity that provides a reliable,
repeatable and scientifically sound assessment of microbial activity [40]. Generally, metal
concentration increases adversely, affecting soil microbial biomass, respiration rate and
enzyme activity [41].

2.3. Strategies to Improve Physicochemical and Biological Characteristics of Iron Ore Tailings

Developing a sustainable strategy for pollution control in abandoned mines is of the
utmost importance in reducing harmful effects on the adjacent environment and human
health [38]. The most commonly used strategies for the remediation of mine tailings mainly
focused on physical and chemical techniques, as they take less time. However, it is reported
that these techniques are expensive, environmentally disruptive, and damaging to soil
structure and biodiversity [38,42–44].

To restore the fertility of the tailings in order to make them suitable for vegetation
growth, physical remediation uses physical methods, which include covering them with
new and semi-new soil for melioration, electro-remediation technology, and heat treat-
ment [45]. However, of the above-mentioned technologies, one of the most commonly used,
the covering of the ground with new soil, has achieved desirable results and attained agri-
cultural soil quality standards in China [45]. Although this physical method has achieved
some success in tailings restoration, it is very costly and requires much labour. In addition,
there is a high chance of collapsing the system due to precipitation, slope gradient, slope
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characteristics, and cover thickness in the tailings area and the new soil collection area due
to ecological destruction and disturbances [45].

Chemical remediation uses chemical methods to improve pollution control and tailings,
including leaching, organic fertiliser, chelating, and fixing agents [4,45]. Some studies [45]
suggested that the application of alkaline materials (CaCO3) to the tailings may increase
tailings’ pH value and result in reduced phytoavailable heavy metals concentration in
tailings, concomitantly increasing metal sorption by the soil [46]. The addition of phosphate-
based materials such as highly soluble diammonium phosphate (DAP) has proven to be
highly effective for immobilising Cd, Pb and Zn in soil [47].

However, chemical methods such as leaching/acid extraction and soil washing are
identified as effective and efficient compared to physical treatments and are applicable
as an intensive treatment for small tailings facilities with a heavy pollution load [4,48];
however, this method impoverishes the physical properties of the soil and becomes a
major limitation in chemical remediation [4,33]. Table 1 compares the costs associated with
physical, chemical and biological remediation methods [4,49] as of July 2022.

Table 1. Cost comparison of different remediation methods for mine tailings calculated as AUD$
from published findings of [4,49].

Technique
Cost (AUD$/ton) Factors to Be Considered

[4] [49]

Physical remediation 140–720 - Transport/excavation/monitoring
Chemical remediation 140–720 90–420 Recycling of pollutants
Phytoremediation 7–60 - Long-term monitoring

Biological remediation strategies exploit microbial metabolism to stimulate favourable
biotic and abiotic reactions to transform toxic compounds into innocuous substances [50].
However, the inner interrelationship between microbial resistance to heavy metal ions
and their remediation ability remains unclear [51]. The proposed mechanism is that
heavy metal ions can be captured by functional groups in/on microorganisms, and some
heavy metal ions can be transformed from a toxic form to a less harmful form through
a redox state change by microorganisms in order to reduce the toxicity of heavy metals
efficiently [51]. These methods exhibit several environmental, technical and economic
advantages compared to conventional methods, and implementation is promising [50]
and cheap [4]. In addition, appropriate and cost-effective ecological rehabilitation at metal
mines is an essential environmental measure and practice for building/developing mines
in a greener concept [52].

3. Phytoremediation

Recent studies showed phytoremediation is a safe and efficient way to handle heavy
metals in soil [19,53]. This cost-effective [12,54] plant-based approach to remediation takes
advantage of the remarkable ability of plants to concentrate elements and compounds from
the environment and to transform various molecules in their tissues [55]. Studies showed
that the cost of phytoremediation of one square meter of Pb-contaminated soil (AUD 0.1)
is 50–65% less compared to conventional restoration methods such as excavation and
landfill (AUD 0.2) [12]. Further to [28], introducing plants in such a disturbed environment
can reduce the migration of metal(loids) through the ecosystem and help restore soil
fertility. The time required for the restoration of mining tailing sites depends on several
factors, including metal concentrations in tailings, heavy metal mobility, target metal final
concentrations, plant biomass, and rates of plant growth [56].

However, traditional phytoremediation techniques lack large-scale applications be-
cause of many limitations [57]. As explained by [57], the conventional approach of phy-
toremediation (phytoextraction, phytostabilisation, phytovolatilisation and phytomining)
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has changed and a new concept has arisen, which is to combine conventional–modern
techniques such as organic amendments-assisted phytoremediation [57].

The plants and their associated microbiome can extract, degrade or immobilise pollu-
tants from contaminated soil and water, and improve the ecological environment of the
damaged soil [58,59], but not metals. Toxic heavy metals and organic pollutants are the
primary targets for phytoremediation [55,57]. Chaney first suggested the concept of phytore-
mediation [57]. The phytoremediation techniques include phytoextraction, phytofiltration,
phytostabilisation, phytovolatilisation and phytodegradation [60] (Figure 2). However,
phytoremediation of mine tailings should include either inoculation of microorganisms
and/or amelioration of organic amendments coupled with a phytoremediator (Figure 2).
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3.1. Phytoextraction

Phytoextraction is the most important phytoremediation approach for removing
metals(loid)s from contaminated soils, water, biosolids and sediments [61]. This technique
uses uptake by plants to remove metals and other contaminants from soils, sediments
or water, and it seems to be a simple and economical technique for the remediation of
metal-polluted soils [62]. Successful phytoextraction requires that pollutant concentrations
be reduced to a level that complies with environmental regulations. From an economic
viewpoint, this should be achieved at a lower cost than an alternative technology or the cost
of inaction [63]. However, it is stated that successful phytoextraction can be guaranteed by
removing the time constraint of the operation, and any costs of phytoextraction incurred
will be increased in proportion to the time taken [64].

Many factors affect the efficiency of phytoextraction, including soil properties, metal
availability to plants, metal speciation and phytoremediator characteristics [57]. Therefore,
the plant species/genotype selected for phytoextraction should possess the characteristics
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of (i) rapid growth rate that creates large biomass production, (ii) hyperaccumulator of
heavy metals that translocates metal from root to shoot, (iii) tolerance to the toxic effects
of heavy metals, [35] resistance to pathogens and pests, (v) good adaptation to prevailing
climatic conditions, ease of cultivation and harvest, and (vi) no attractiveness to herbivores,
to avoid the metal entry into the food chain [57,65].

Shoot metal concentration and shoot biomass mainly determine a suitable plant
species for the phytoextraction of metals. Depending on these parameters, two different
phytoextraction approaches have been used: (i) hyperaccumulators with relatively low
shoot biomass, and (ii) use of plants with lower ability to accumulate heavy metals but
with higher shoot biomass [66]. Further to [66,67], metal translocation to shoots is a crucial
biochemical and physiological process, and it is desirable in effective phytoextraction
because the harvest of root biomass is generally not feasible.

3.2. Phytostabilisation or Phytoimmobilisation

Phytostabilisation allows vegetation to be established on the surface of polluted
soils/tailings by reducing the bioavailability/mobility of contaminants and their availabil-
ity and thus preventing the transmission of elements into the food chain [68] by certain
mechanisms including adsorption by roots, precipitation, and complexation in the root
zone [57,66,69]. Phytostabilisation can be enhanced by using organic soil amendments that
immobilise metal(loid)s when combined with plant species tolerant of a high level of con-
taminants while simultaneously improving the physical, chemical and biological properties
of mine tailings [70]. Metals of different valences showed varied toxicity levels. Plants can
convert those hazardous metals to a relatively less toxic state and decrease possible metal
stress and damage by excreting redox enzymes [66]. In addition, phytostabilisation limits
the accumulation of heavy metals in biota and minimises their leaching into underground
waters [66]. However, this technique is not a permanent solution because the heavy metals
remain in the soil; only their movement is limited [66]. However, it is a management
strategy for stabilising (inactivating) potentially toxic contaminants [71].

4. Phytoremediation with Amendments
4.1. Phytoremediation with Biochar Amendment

Biochar is a fine-grained [72] carbonaceous porous substance synthesised as a result of
pyrolysis of organic feedstock such as plant materials, organic manure and sludges [73]
and was first discovered in the Amazon basin [74]. It has been postulated that biochar is
an inert substance that could be a beneficial soil amendment for increasing soil quality
and permanent mechanisms for carbon (C) sequestration to reduce CO2 enrichment of the
atmosphere from anthropogenic activities [75,76]. Properties of biochar produced in slow
pyrolysis tends to be similar to that produced by fast pyrolysis, which is a high-temperature
process in which biomass is rapidly heated in the absence of oxygen. Furthermore, biochar
can also be generated by gasification and hydrothermal carbonisation [77].

Chars are a more chemically heterogeneous group [75]. Still, the biochar produced by
both methods has standard features regardless of feedstock source or synthesis. Biochar
possesses some specific, unique physicochemical properties, i.e., extreme pH, large surface
area for sorption of metals, carbon content and the ability to immobilise toxic heavy
metals [57], and it shows the promising direction towards heavy metal remediation [78].
The high pH and alkalinity of biochar may decrease the bioavailability of metals and
increase their precipitation in soil amended with biochar (Figure 3). It has been reported
that the pH of biochar increases with pyrolysis temperature, possibly due to an increase in
biochar ash content (fixed carbon and volatiles of metals) [57,79–81].
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Biochar can also be combined with traditional phytoremediation techniques to enhance
their effectiveness against heavy metals, as biochar is widely reported to improve plant
growth and biomass production by up to 10% [82]. This increase in plant biomass is
attributed to the high nutrient and water-holding capacity (4 to 130%), cation exchange
capacity (CEC), and high pH (<7.0) of biochar, which affects nutrient cycling and improves
the nutrient turnover of plants [83]. Furthermore, biochar influences the porosity (14 to 64%)
and mechanical strength by changing the particle surface area, the pore size distribution,
the particle size distribution and the density and aggregation (wet aggregation stability by
3 to 226%) [84,85]. Due to its highly porous structure, including various functional groups,
it has been shown to be effective in the adsorption of heavy metals, especially in aquatic
systems [72].

In addition, some chemical substances available in biochar, such as ethylene glycol
and propylene glycol, hydroxy-propionic and butyric acids, benzoic acid and o-cresol,
quinones (resorcinol and hydroquinone), and 2-phenoxyethanol, are reported to influence
the soil microbial community, possibly by favouring beneficial microbes and suppressing
pathogens [86]. The effect of biochar amendments on soil respiration and CO2 emission
could vary [19,87]. Biochar application to mine tailings does not affect microbial respiration
and CO2 emissions, which is consistent with previous studies that showed no significant
effect on CO2 emissions from different soil types and land uses when applying biochar
produced at high temperatures [88], confirming the possible effect of the high recalcitrance
of this material and its high C sequestration potential [89]. The effects of its application
may last for an extended period, given that biochar is highly recalcitrant [90]. In addition,
biochar also resists microbial degradation, and its contribution to the microbial community
is minimal [85,91]. Further to [92], there was no effect of birch biochar on soil respiration
from a wheat field reported in Southern Finland, and soil CO2 evolution in Swiss loam soil
was shown to be unchanged after being amended with pine wood-derived biochar, but
increased under grass-derived biochar amendment [93].

CO2 production after biochar application could most likely be due to the labile C
fraction originating from the condensation of bio-oil during the cooling period followed by
pyrolysis of the feedstock; hence, it would not originate from the stable C of the biochar [75].
However, some studies, in contrast, suggested that it depends on the soil type that uses
biochar and the feedstock used to produce biochar. Some studies have shown that different
feedstocks have significantly affected the properties of biochar (yield, ash, element content,
functional groups, aromaticity, porosity and specific area etc.) [94] (Table 2). The biochar
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produced from woody biomass has a significant level of thermal stabilising capacity of
lignin, which showed higher specific surface area and porosity [86]. Further, crop residue
and organic waste biochars have a higher pH than woody biomass biochar [95].

Table 2. List of metal pollutant removal rates of certain biochars derived from different feedstocks
under field conditions.

Feedstock Pyrolysis Temperature Type of Metal Pollutant Removal Rate (%) Reference

Rice straw 500 ◦C Cd2+ 98% [96]
Rice straw 420 ◦C Pb2+ 95% [97]
Corn straw 400–600 ◦C Pb2+, Cd2+ 60%, 80% [98]
Peanut shells and shea nut shells 700 ◦C Pb2+, Cd2+, Hg2+ 100% [99]
Rice husk 500 ◦C Cd2+, Pb2+, Zn2+ 25%, 18%, 17% [100]

The application of biochar significantly increased soil respiration, which might be
attributed to the reduced toxicity of metals, and increased nutrients by de-bonding com-
plexes and plant growth, thereby enhancing microbial activity and decomposition of soil
organic matter [72]. This is supported by the study of [75], which stated that they observed
increased CO2 production from soils after biochar amendment from switchgrass (Panicum
virgatum) feedstock, which increased when larger amounts of biochar were applied. Fur-
thermore, [101] argued that biochar application to soil could repress the breakdown of
native soluble organic carbon, often referred to as a negative priming effect. However, [19]
concluded that small short-term C release in biochar-amended soil should not overshadow
its potential for long-term C sequestration in soil environments, while [102] suggested that
mechanisms for biochar-induced microbial activity simulations are yet to be discovered.

4.2. Phytoremediation with Compost Amendment

Compost production may be defined as the process whereby thermophilic, aerobic
microorganisms convert organic materials such as plant residues, animal manure and bed-
ding, or hay into pathogen-free, nutrient-enriched and biostable products [103]. To thrive
and be most efficient in their work, the thermophilic microorganisms must be provided
with temperatures of 50–70 ◦C. The inclusion of compost can facilitate the development
of the arbuscular mycorrhiza (AM) symbiosis and improve plant growth even in extreme
conditions in mine tailings [104,105]. Different studies showed the potentialities of com-
post derived from different feedstocks in improving the physicochemical characteristics of
heavy-metal-contaminated soils and on intensively cultivated areas (Table 3).

Compared with inorganic materials, amendments such as composts have been proven
to buffer soil pH, thereby indirectly affecting the adsorption and complexation of metals in
mine tailings [4,106]. Additionally, compost could improve soil properties [105], nutritional
status, water infiltration and water-holding capacity [33], ultimately having a positive effect
on crop growth [107]. Phytoremediation of mine tailings by adding compost (15% and 20%
w/w) in Arizona and the results demonstrated that canopy cover ranging from 21 to 61%
developed after 41 months in the compost-amended planted treatments, while no plants
grew on unamended tailings [108].

Compost from urban residues can be an adequate alternative to fertilisers because it
provides organic matter and nutrients to the soil and stimulates the soil microbiological
activity [109]. However, in barley (Hordeum vulgare), compost from sewage sludge appli-
cation (4 kg m−2) induced a significant decrease in chlorophyll content in leaves due to a
higher level of As translocation from roots to shoots [109].
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Table 3. Summary of compost production with different feedstocks in literature.

Compost Feedstock References

Dairy manure [110]
Poultry manure and horse bedding [111]
Pig manure [112]
Rice straw [113]
Sewage sludge, swine manure, sawdust, mushroom residue [114]
Sewage sludge, barley straw, wood chips [115]
Sewage sludge, kitchen waste and corn stalks [116]
Municipal solid waste [117]
Vegetable and fruit waste [112]
Pine bark [118]

4.3. Phytoremediation with Topsoil Amendment

According to [119], topsoiling may be necessary given the adverse physical and chem-
ical properties of mine waste, the economics of properly amending these materials, and/or
state and federal regulations. Some researchers advocated the placement of good quality
topsoil over acidic mine waste, as the addition of topsoil may improve the water-holding
capacity and nutrient status of the mine tailings and provide a source of reproductive
parts and soil microorganisms [120]. However, one of the critical challenges faced in the
post-disturbance restoration of arid lands, particularly post-mining, is the limited availabil-
ity of topsoil [121]. Other problems encountered are the appropriate collection (stripping
or stockpiling), storage and redistribution of topsoil, which are critical to maintaining
these benefits in restored ecosystems. Once stripped, the viable topsoil (2–100 mm), which
contains the bulk of the seed bank, should be returned and spread immediately, as storing
of topsoil significantly reduces the seed bank viability [122]. Further, topsoil should be
spread to a maximum depth of 10 cm to optimise efficacy and should be selected according
to the topography of the restored area [123].

A possible approach to overcome this deficit is the reconstruction of soil profiles
using alternative substrates, including mine tailings generated during the mining process
and, where topsoil is available, a blend of topsoil and waste material [120,122,124,125].
Further, [121] revealed that seedling growth and survival rates were similar in topsoil
and a topsoil/waste material blend, highlighting the importance of topsoil addition in
reconstructing soils to ensure plant recruitment of key native species. For instance, topsoil
amendments (50% w/w) to the Pb/Zn tailings facilitated the survival and growth of plants,
arbuscular mycorrhizal fungi and earthworms [126].

4.4. Phytoremediation with Straw Amendment

Crop straw is an organic material that enriches soil nutrients and has a low envi-
ronmental footprint [127]. However, burning crop straw at every summer harvest or in
later autumn and winter [128,129] causes severe atmospheric environmental pollution and
threatens human health. Therefore, extensive use of crop straw has become an economical
and environmental approach to recycling waste straw [129].

At present, straw returning is an advanced technology for soil cultivation and usage
which can significantly improve and modify the physicochemical and biological attributes
of cultivated soil [130]. Most importantly, the application of crop straw can reduce the bulk
density and increase the total porosity of the soil, which could provide a good space for root
growth [131]. Studies have shown that adding crop straw increased soil pH and improved
the metal adsorption by ligands in organic matter. Crop straw applied to the soil produces
various organic anions by decomposing. The carboxylation process of organic anions and
the OH- ligand exchange reaction can increase soil pH value [132]. However, as [133]
explained, the crop straw decomposed under the action of microorganisms, resulting in a
large amount of humic acid and organic acid, which decreased the soil pH value.
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Crop straw exerted a positive impact by increasing soil organic matter content, espe-
cially that of soluble organic carbon (SOC) [134], promoting crop growth and increasing
the microbial populations in the topsoil, thus improving the microecology of soil and crop
yield [135,136]. Moreover, the inhibition effect of crop straw mainly relies on the decom-
position products produced by soil microbes. In addition, a higher number of functional
groups present on the surface of crop straw may cause complex metal ions [131]. Further
to [137], after adding rice straw and wheat straw, the accumulation of Cd in maize shoots
decreased by 70 and 67%, respectively.

5. Plants in Poaceae Family Phytoremediating Heavy-Metal-Contaminated
Mine Tailings

Plants used for effective phytoremediation should be fast-growing, deep-rooted, easily
propagated and should show high biomass production and be able to tolerate and accumu-
late the targeted metal [54]. Selection of appropriate plant species would be essential to
ensure a self-sustainable vegetation cover. Generally, those species which can accumulate
high concentrations of heavy metal in aerial parts are supposed to be better and are called
hyperaccumulator plants. According to [138], a plant that accumulates Cu, Co, Cr, Ni and
Pb by > 1000 mg kg−1 or Mn and Zn by > 10 mg kg−1 is considered a hyperaccumulator.

The effectiveness and efficiency of phytoremediation technologies largely depend
on the physiological characteristics of the selected plants and the kind of pollutants [139].
However, most hyperaccumulators have only a small biomass [139] and there is no suitable
use for these hyperaccumulators, which absorb many heavy metals and quickly release
them to the surrounding environment again as they are directly burned or converted into
bioenergy. However, they could be promising candidates for hyperaccumulators because
they usually have large biomasses and strong stress resistance [139] and few of them are
shown in Table 4.

The grasses capable of growing in many places with different adverse climate conditions
and having massive and deep root systems [140] include, for example, vetiver grass (Vetiveria
zizanioides), tropical grass (Brachiaria brizantha), Smilo grass (Piptatherum miliaceum), Italian
ryegrass (Lolium multiflorium), and perennial ryegrass (Lolium perenne) [140]. Atriplex
spp. is known as a pioneer plant on mine tailings in semiarid Western Australia as a
phytostabiliser [141].

Table 4. Application of grass species in remediating metal-contaminated lands.

Grass Remediating Metal
Accumulation in
Shoots
(mg kg−1)

Reference

Vetiver grass (Vetiveria zizanioides) Pb2+, 300 [142]
Signal grass (Brachiaria decumbens)) Pb2+ 70 [143]
Italian ryegrass (Lolium multiflorium) Pb2+, Cd2+ 350, 800 [144]
Perennial ryegrass (Lolium perenne) Cu2+, Zn2+ 15, 180 [145]
Bermuda grass (Cynodon dactylon (L.) Pb2+ 400–1200 [141]
Esparto grass (Lygeum spartum (L.) Zn2+, >4100 [146]
Giant reed grass (Arundo donax) As2+, Cd2+, Pb2+ 23,25,26 [147]
Amur silver grass (Miscanthus sacchariflorus) Zn2+, Cr2+ 320,100 [139]
Rhodes grass (Chloris gayana) Mn2+, Fe2+ 164, 830 [148]
Buffel grass (Cenchrus ciliaris) Ni2+, Cu2+, Zn2+ 100, 13,10, [149]
Common reed (Phragmites australis) As3+ [150]

Vetiver grass (Vetiveria zizanioides (L.) Nash), has been well documented to have a solid
resistance to undesirable environments, to be able to survive in high concentrations of heavy
metals [139] and to remediate oil shale disposal piles. Naturally colonised Bermuda grass
(Cynodon dactylon (L.) Pers.) yielded promising results when grown in Pb accumulated mine
tailings in Spain [141]. As reported by [146], metal accumulation of Esparto grass (Lygeum
spartum (L.) Albardine), known to colonise acidic mine tailings sites in Mediterranean
regions, was examined in plants collected from the field and a greenhouse study. Arundo
donax and Miscanthus sacchariflorus are two promising perennial energy grasses due to
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their fast growth rate [139], very high biomass (30–40 t ha−1) [151], strong stress resistance
(e.g., cold, drought, salt) [139] and high conversion rate into ethanol [152], and are used
to remediate Zn and Cr. A study conducted using Rhodes grass (Chloris gayana Kunth cv.
‘Pioneer’) found that it is well suited to metalliferous mined land revegetation and would
be highly effective in the tropical and subtropical areas in Australia [153]. Further, these
authors reported that buffel grass (Cenchrus ciliaris) is used effectively to remediate the
lands disturbed by coal mining in Australia.

As reported by [154], the plant species perennial ryegrass (Lolium perenne) and peren-
nial ryegrass/lucern (Medicago sativa) mixture caused the greatest change in the rhizosphere
bacterial community in petroleum-contaminated soil, and these changes contributed to
the degradation of the petroleum hydrocarbons in the contaminated soil. Common reed
(Phragmites australis) and switchgrass (Panicum virgatum) have been demonstrated to be
efficient in the detoxification of terbuthylazine and atrazine, respectively [155]. Compared
with most hyperaccumulators, ryegrass is preferentially used for phytoremediation because
it grows extensively, is easy to manage, incurs high biomass, and can accumulate many
toxic substances in the tissues due to its high tolerance to heavy metals [156] and is more
economical than other species [157]. However, the use of grasses in phytoremediation is
not yet widespread due to the lack of studies on their metal accumulation potential under
field conditions [158].

6. Conclusions and Future Perspectives

Rehabilitation of mine tailings is a critical environmental management practice as it
conserves the surrounding environment, including the water, soil and air. Biological reha-
bilitation methods are more cost-effective and long-term than physical and chemical ones.

However, traditional phytoremediation approaches face certain limitations, such as:
(i) they require a long time to remediate the contaminated soil, and the phytoextraction
ability of hyperaccumulator plants is limited due to low aboveground biomass production;
(ii) a tiny fraction of metals is bioavailable, and this bioavailable concentration varies
with soil pH, organic matter, competitive cations, calcareousness, etc., and is applicable
to sites with low or moderate contamination; (iii) lack of knowledge about agronomy,
breeding potential, the insect pests and disease spectrum; and (vi) any mismanagement
or carelessness may result in food chain contamination [57,66]. Therefore, to avoid these
circumstances, traditional concepts were modified to ensure the large-scale application
of phytoremediation.

Therefore, the best way to initiate biological rehabilitation is to combine it with the
application of organic amendments in order to maintain a sustainable plant cover. The
modified traditional concept/approaches are more economically applied on large scales, as
naturally occurring hyperaccumulators are generally fast-growing and produce relatively
more harvestable aboveground biomass when assisted with organic amendments such as
biochar, straw, compost and topsoil.

Mining is a profitable industry that governs and dominates many countries’ economies.
Therefore, they would prefer to invest in rehabilitation projects to gain profit/revenue. In
such cases, phytoremediation is the best approach/scenario for mining land restoration, as
it involves profitable and sustainable land use.

Further, co-cropping the tailings-deposited facilities using indigenous/endemic plants
together with non-endemic plants would be beneficial in the long-term, over which the
non-native plants improve the growth of the native plants by removing heavy metals and
aiding in soil formation. However, in tropical climates, non-native plants act as invasives,
threatening the establishment and biodiversity of the local environment. Nevertheless, it
is worth noting that non-native invasive species are strong phytoremediators, since they
can resist and uptake heavy metals by growing fast in unfavourable climatic conditions.
Therefore, the selection of plants for mine tailings rehabilitation should be the first concern.

Practically, a single approach is neither possible nor practical for strategic rehabil-
itation of mine tailings; therefore, future research should focus on combining different
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methods, including genetically engineered plants and bioremediation coupled with organic
amendments in sustainable restoration. Further, mechanisms and biochemical pathways
underlying phytoremediators and organic amendments used in mine tailings are still
uncovered, and this gap should be addressed in future research.
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