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Abstract: There is increasing interest in harnessing the microbiome to improve cropping systems.
With the availability of high—throughput and low—cost sequencing technologies, gathering micro-
biome data is becoming more routine. However, the analysis of microbiome data is challenged by the
size and complexity of the data, and the incomplete nature of many microbiome databases. Further,
to bring microbiome data value, it often needs to be analyzed in conjunction with other complex
data that impact on crop health and disease management, such as plant genotype and environmental
factors. Artificial intelligence (AI), boosted through deep learning (DL), has achieved significant
breakthroughs and is a powerful tool for managing large complex datasets such as the interplay
between the microbiome, crop plants, and their environment. In this review, we aim to provide
readers with a brief introduction to AI techniques, and we introduce how AI has been applied to
areas of microbiome sequencing taxonomy, the functional annotation for microbiome sequences,
associating the microbiome community with host traits, designing synthetic communities, genomic
selection, field phenotyping, and disease forecasting. At the end of this review, we proposed further
efforts that are required to fully exploit the power of AI in studying phytomicrobiomes.

Keywords: taxonomic and function annotation for microbiome sequencing; synthetic microbial commu-
nities (SynComs); microbe–plant association; artificial intelligence; machine learning; disease forecasting

1. Introduction

In natural growth environments, plants interact with diverse microorganisms such
as bacteria, fungi, oomycetes, archaea, and viruses [1]. In fast—changing and stressful
conditions, plants associate tightly with these microbes in various ways, such as nutrient
uptake, plant growth and development, and plant health fitness [2]. Rather than functioning
and evolving independently, plants and their associated microorganisms exist cooperatively
as part of a biological system. Additionally, the plant—associated microbiome, also known
as the phytomicrobiome, is essential to the plant life—cycle. When facing stress from
insects and/or pathogens, plants can recruit protective microorganisms to suppress the
invasive agents. Microbial communities can promote resistance and tolerance to adverse
abiotic stress conditions, such as heat, drought, or high salinity [3,4]. In parallel, microbial
communities can also be affected by the plant through molecular interactions [5].

A deep understanding of the interactions between the plant and its microbiome make it
possible to leverage microbiome information in sustainable crop production. As biotic stresses
(e.g., plant pathogen and insect) and abiotic stresses under the current climate change trend
are ever—increasing threats to agricultural production, there is an urgent need to reduce the
usage of pesticides and agrochemicals [6,7], and to promote crop production and enhance
resistance against stresses through manipulating the plant—associated microbiome [8].

However, the complex interactions between plants, their pathogens, soil microbiota,
and environmental conditions under natural field conditions makes it challenging to predict
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disease development and plant health. It has been difficult to understand stochastic and
deterministic drivers from multiple factors including the genetic background of the host [9]
and pathogen [9], the density dynamics of the pathogen population [10], phytomicrobiome
composition and assembly [11], and temporal and geographic differences in stress [12].
Even for agricultural environments under relatively similar stochastic and temporal con-
ditions, considerable variations in disease dynamics exist [13,14]. This indicates that the
interactions between plants and the phytomicrobiome can be largely determined by lo-
cal agricultural environments, thereby raising a series of questions such as: (1) “which
microbes exist in the phytomicrobiome?”, (2) “which biological roles or functions from mi-
crobes or communities are beneficial to pathogen repression and plant growth promotion?”,
(3) “how can we associate the microbiome with host traits and disease development and use
this knowledge to design microbe community?”, (4) “how can we accelerate the breeding
progress to increase plant resistance to disease?”, (5) “how can we effectively conduct
disease phenotyping in the field?”, and (6) “How can we forecast plant disease based on
existing knowledge on field microbiome, plant genome, weather conditions, etc.?”.

Understanding plant–microbe interactions and answering the above—mentioned ques-
tions require information such as the microbes at different taxonomy levels, metagenome
and transcriptome data, the functions of whole microbe communities, and the impacts of
synergistic factors on plants [3]. In evaluating crop phenotypes such as disease develop-
ment, stress resistance, and physiological status, this information needs to be integrated
in order to precisely and comprehensively understand these traits [15,16]. With a deep
understanding, plant health under ever—changing environmental stresses can be managed
in a better way [17]. Computational methods could help us to understand plant–pathogen
interactions and the roles of plant microbiomes.

Artificial intelligence (AI) is a general discipline that focuses on understanding and
developing systems that display intelligence properties, which are capable of generalizing
and deriving knowledge from existing information [18]. Recent advancements in this
area are contributed to by a subset of AI techniques, and machine learning (ML) and its
sub—family, deep learning (DL), through which models learn patterns from large amounts
of raw datasets. AI models have been developed to understand microbiome data because of
their powerful ability in handling diverse multivariate data. Here, we review the AI models
and their application in microbiome data analysis, and describe the applications of these
models in phytomicrobiome studies. In the following sections, we will first introduce AI
algorithms. Then, we will review key questions in microbiome studies and how AI models
can be applied to these tasks. The main objectives of this review are, first, to introduce AI
and its sub—discipline concepts, second, to identify the major limitations of traditional
bioinformatics methods on the microbiome data analysis, and third, to highlight AI features
that may help to circumvent these limitations.

2. Major AI Models

AI has proven capable of improving performance in many areas such as predicting
earthquakes, classifying plant species based on leaf/plant images, automobile self—driving,
recognizing faces, and filtering emails. ChatGPT, the most advanced natural language
processing (NLP) AI model [19], received more than 100 million users within the first
two months and receives 13 million visits a day as of 2023. Even in an editorial article,
ChatGPT was used to generate content to introduce a special journal issue to illustrate
how advances in AI can help stem cell researchers [20]. Another example to show the
power of AI comes from the AlphaFold, which predicts the three—dimensional protein
structure based only on its amino acid sequence [21]. AlphaFold can regularly predict
protein structures with competitive accuracy to experimental structures in most cases, and
greatly outperformed other computational methods in the 14th Critical Assessment of
Protein Structure Prediction.

ML (a subset of the AI technique) refers to a diversity of methods that analyze data
statistically, which has the ability to adapt and improve model performance [22]. In other
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words, ML infers knowledge from existing data, applies the knowledge to new data, and
makes corresponding predictions. ML can be generally grouped into unsupervised and
supervised learning. Unsupervised learning enables users to explore unidentified patterns
and to cluster unlabeled datasets without human intervention. In contrast, supervised
learning focuses on interpolating the patterns for a labeled dataset, and needs assistance
from human experience or knowledge.

2.1. Unsupervised ML

Unsupervised ML methods can be applied to two types of tasks: (1) clustering tasks
that group data on the basis of data similarity, and (2) dimension reduction tasks, which
regenerate representative features from a large number of variables. One method for
clustering analysis is k—means (Figure 1A). The objective of the k—means method is to
group n observations into a specific number of (k) non—overlapping clusters based on
distance calculation, with each data point belonging to only one cluster.
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method. (D) Random forest (RF) method.

Dimension reduction involves taking observations from high—dimensional variables
and transform them into low—dimensional features to compress a large number of variables
into a limited number of features while retaining useful information and minimizing
information loss [23]. In dimension reduction tasks, principal component analysis (PCA)
is most commonly used [24]. In PCA, a set of uncorrelated principal components (PCs)
are converted from the original variables (Figure 1B). PCs contain the most important
information that explains the variance of the original observations. In addition, PCs reduce
the number of variables that represent the original observation to a small number of PCs
instead of the large set of original variables; this can simplify linear or logistic regression
analyses. Principle coordinate analysis (PCoA) is a similar method to PCA but it uses
dissimilarity measures rather than correlations. PCoA is commonly adopted in microbiome
studies. For example, PCs generated from operational taxonomic units (OTUs) from
microbiome information were visualized and prepared for further analysis [25,26].
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2.2. Supervised ML

Unlike unsupervised methods, supervised ML can be more elaborate in phytomicro-
biome data analysis, such as the taxonomic annotation of sequence data, gene function
analysis, or trait–microbiome association. In supervised learning, each microbiome dataset
is grouped into a specific category and assigned a label (Y). During the training process,
models adjust their parameters to minimize the difference between their calculated out-
come and the ground truth. Once trained, the adjusted parameters can be functional
for extracting information from unlabeled datasets and assigning labels (Y). Among the
supervised learning approaches, some commonly used algorithms will be introduced in
the following sections, including support vector machine (SVM), random forest (RF) [27],
artificial neural network (ANN), and DL—based methods.

SVM [28] is a widely used classification method. SVM searches for a non—linear
or linear separating surface from the provided dataset to maximize the distance to the
nearest training variables of designated labels (Figure 1C). A decision boundary is drawn
to separate each class while maximizing the margin from the nearest samples. As SVM
is effective in high—dimensional data and is computationally tractable, it is well—suited
to microbiome data. For example, SVM was successfully used to predict agricultural
soil health using microbiome composition generated from 16S rRNA gene sequences in a
continental—scale study [29].

The RF comes from the concepts of decision trees and bootstrap aggregation (bag-
ging) [30]. Each decision tree starts with a basic question to separate data entries, followed
by other questions that are added step—wise (Figure 1D). Each question helps a data entry
to reach a final decision. In processing data, hundreds or thousands of decision trees can
be constructed in an RF model. Bagging, another feather of RF, integrates close trees by
choosing a specific or average value. Through this operation, RF is an ideal algorithm
to identify a “real outcome” in complex and heterogeneous data, which is common in
microbial datasets, and thus it is widely used in a diversity of classification tasks that
involve high—dimensional microbiome data [31]. The high—dimension microbiome data
usually have limited numbers of samples and could result in model overfitting problems,
which happens when the model contains too many parameters than what is needed to
justify the data, and may fail to predict future observations reliably. The RF algorithm is less
impacted upon by the overfitting problem, as RF is made up of subunits that are trained
completely independently on subsets of the training data. Thus, it is appealing in microbial
community analysis. The RF models can also estimate the prediction power for each vari-
able and thus provide meaningful information in analyzing the relative importance of each
of the factors [32].

Mimicking the neurons in a brain, ANN employs a network of artificial neurons to
solve learning problems [33]. ANN contains many weights. The training process adjusts
weights based on differences between the ground truth and the generated output. The
model structure and dimension can be adjusted by adding or deleting hidden layers. Thus,
ANNs are very flexible in handling complex and high—dimensional datasets, making
them a powerful technique in analyzing the role of microbes in complex settings [34]. In
addition, ANNs do not involve data processing, dimension reduction, or feature selection
in conducting classification tasks. However, as with ANNs, it is difficult to trace how a
decision is made, and they are often regarded as “black box” approaches.

DL, as a much more advanced form of ANN, is gaining more attention in microbiome
studies. Different from original ANNs, DL consists of many hidden layers [35,36]. In this
way, the multiple hidden layers can reveal non—linear relationships between the input and
the output data [37], and thus, they can perform very complex functions that are insensitive
to background noise and sensitive to minute but informative signals.

2.3. Major Deep Learning Architectures

There are several major DL architectures, including convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformer. CNNs were originally
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developed to perform tasks whose input variables are distributed in a space pattern, such
as 2D/3D images or sequential information such as sounds, texts, DNA sequences, or
single nucleotide polymorphisms (SNPs) (Figure 2A). CNN models contain at least one
convolutional layer in their architectures [38,39]. In a convolutional layer, the convolutional
operation is conducted with a pre—defined window (height × width) and stride across the
input data matrix. One of the main advantages of CNNs is their capability to capture space
features [40]. At the shallower or beginning layers, more basic and low—level features can
be learnt, while the learnt features become more specific and descriptive with the depth
of the network. The convolutional layers thus act as automatic feature extractors from the
input matrix.
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Figure 2. Illustration of major deep learning (DL) methods. (A) Illustration of the convolutional
neural network (CNN) model. In a convolutional layer, the convolutional operation with a pre—
defined window (height ×width), and stride is conducted across the input matrix. The convolutional
layers act as automatic feature extractors from the input images. (B) Illustration of recurrent neural
network (RNN) models. RNN processes the inputs one-by-one, progressively based on the input DNA
sequence. The output from the previous layer(s) is processed at the current neuron, together with
the current input, making the current neuron produce output with the consideration of “memories”.
(C) Illustration of self-attention model [41]. The self-attention mechanism takes into account each
nucleotide in a DNA sequence at the same time and decides which ones are important by attributing
different weights.

RNNs are specifically designed to receive sequential inputs such as DNA sequences
(the data are composed of nucleotide-by-nucleotide), texts (the data are composed of word-
by-word), and audios (the data are composed of note-by-note). Unlike ANN and CNN,
which process all input units at the same time, RNN processes the inputs progressively
one-by-one, based on input sequence (Figure 2B). In the RNN, the output from previous
neuron(s) is processed at the current neuron, together with the current input, making
the current neuron produce an output with the consideration of “past memories”. RNNs
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are very useful in handling sequence data, but are hard to train because of the vanish-
ing/exploding gradient problem [42]. Long short-term memory (LSTM), a special type of
RNN algorithm, has been developed to solve this problem. LSTM can memorize long-term
dependent information through the input gates, forget gates, and output gates, which
finally control the information that needs to be forgotten and passed to the next unit [43].

Transformer architecture consists of input positional encoding, and encoder and
decoder parts. A positional encoding tensor assigns a relative position to each input unit.
Thus, the input units can be differentiated based on their positions in the sequence, even
when some of them might be the same in meaning [41]. The encoder part includes self-
attention, feed-forward networks and layer normalization (Figure 2C). A self-attention
mechanism was originally proposed for natural language processing, to extract features
from an extremely long-distance crossing of 10,000 input units with parallel computing [41].
The self-attention mechanism can directly acquire long-distance dependencies for any
combination of positions in a sequence data, rather than traversing all the positions from
itself to its dependencies, such as what should be achieved in RNN or LSTM. Thus, the
self-attention mechanism improved the capability for extracting information from sequence
data. In a transformer, the self-attention module calculates the attention score for all
nucleotides in the DNA reads with respect to a specific one, and thus it could learn the
pairwise relationships between nucleotide sequences. The related nucleotides will be
designated with a high probability of relationship with respect to the focused ones and
create a combined representation. When these nucleotide sequences are combined, the
effects of these nucleotides will be high and most of the other irrelevant nucleotides can be
filtered out.

3. AI Applications in Taxonomic Annotation, Gene Function Annotation, Associating
Plant Traits, and Designing Synthetic Microbe Communities

Microbial studies have benefited from the advancement of the sequencing technique,
where the technological revolution has increased the DNA sequencing length and has
reduced the cost when sequencing a large number of microbe samples. The major se-
quencing technique used in plant microbiome studies includes 16S amplicon sequencing,
internal transcribed spacer (ITS) sequencing, and metagenomic shotgun sequencing. 16S
amplicon sequencing amplifies a conserved region of the 16S rRNA gene, which is found
in all bacteria and archaea, and the resulting data can be used to identify the types and
relative abundances of different microorganisms in the community [44]. ITS sequencing
specifically, on the other hand, amplifies the ITS region of eukaryotes, which is highly
variable among different fungal species, making it a useful marker for identifying and
characterizing fungal communities [45]. Metagenomics shotgun sequencing is a more
comprehensive approach that can be used to study the diversity of all microorganisms,
including bacteria, archaea, fungi, viruses, and even small eukaryotes, in a sample [46].
It involves randomly fragmenting the DNA extracted from the sample and sequencing
the resulting fragments. The resulting data can be used to reconstruct the genomes of
the organisms present in the sample, and to identify the types and relative abundance of
different microorganisms in the community. Each of these techniques has its advantages
and limitations. The technique of 16S amplicon sequencing is specific to bacteria and
archaea, but it can be less informative at the species level and may not capture the full
diversity of the community [44]. ITS sequencing is highly specific to fungi and can provide
a detailed view of fungal diversity, but it provides less reliable information about other
microorganisms present in the sample [45]. Metagenomics shotgun sequencing can provide
information about all microorganisms in the sample, but it can be more complex and
expensive to perform and analyze [46]. The choice of technique depends on the research
question and the specific microbial community being studied.

A diversity of bioinformatics tools has been designed to classify the DNA sequences
in the metagenome into taxonomic and functional groups. There are two major annota-
tional approaches. The first one consists of k—mer–based approaches including CEN-
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TRIFUGE [47], GeneMark [48], and kraken2 [49]. A k—mer is a substring of length k that
occurs within a DNA sequence, and k—mer–based methods involve counting the frequency
of the occurrence of each k—mer within the sequence data to generate a k—mer frequency
table. This table can be used to identify regions of the genome that are likely to be protein—
coding genes, non—coding RNA genes, repetitive sequences, or other functional elements.
One limitation of the k—mer based method is that it can be computationally intensive,
particularly for large datasets or complex genomes. Generating a k—mer frequency table
requires counting of the occurrence of every possible k—mer within the sequence data,
which can be time—consuming and memory—intensive. As a result, some k—mer–based
methods may not be practical for use with very large datasets. Another limitation is that if
there are errors or gaps in the sequence, this can affect the accuracy of the k—mer frequency
table and may lead to errors in annotations. Additionally, k—mer–based methods are not
effective at identifying genes or functional elements that have low k—mer frequencies or
that are otherwise difficult to detect based on k—mer content alone.

The second class of algorithms are the alignment—based algorithms which classify
sequences based on sequence similarity with reference genomes in the databases. These
types of methods include DIAMOND [50] and BLAST [51]. These methods involve aligning
the query sequence to a reference database to identify the similarity of the query sequence
to the reference. Alignment—based methods have several advantages over k—mer–based
methods. They can be more effective at identifying genes or other functional elements.
They can also be more accurate in cases where the query sequence is highly divergent
from the reference sequence or where there are significant structural differences between
the two sequences. However, this method can be computationally intensive. Addition-
ally, alignment—based methods rely on the accuracy and completeness of the reference
database. Thus, annotating DNA sequences into the levels of species, taxonomy, functions,
pathway and host trait is challenging, as not all reference genomes have been annotated
into a similar range of ranks and the annotation ability becomes lower with the increasing
annotation specificity.

In recent years, ML— and DL—based algorithms have been developed to annotate
sequencing data. ML—based methods are capable of learning complex patterns in the
sequencing data that may be difficult to detect using other methods. This can be particularly
useful for identifying non—coding functional elements or for predicting the functions of
novel genes [52]. ML algorithms can also be adapted to different types of sequence data
and annotation tasks, making them versatile tools for genome annotation and functional
characterization [53]. Handling large datasets with many variables is another advantage
of ML—based methods, making them well—suited for analyzing complex genomic data.
However, ML methods usually require large, high—quality datasets for model develop-
ment, and the accuracy and generalizability of the predictions can be influenced by the
quality and representativeness of the training data. Additionally, ML methods require
significant computational resources and expertise in machine learning and bioinformat-
ics. Overall, machine learning methods are a valuable tool for genome annotation and
functional characterization, particularly when combined with other annotation methods to
achieve comprehensive and accurate results. For example, general linearized models are
commonly used to differentiate the microbial composition of samples, while PCA was ap-
plied to decreasing data dimension and data visualization [54]. Learning and predicting the
health status of plants with metagenome samples is not common, but an insightful study
has been conducted for clinical metagenomics studies with more than 2400 metagenome
samples [55]. In this section, we will attempt to illustrate ML and DL applications in phy-
tomicrobiome sequence analysis, and we have summarized some of the related applications
in Table 1.
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Table 1. Summary of AI techniques used in microbiome—based analyses. This table briefly summarizes AI applications in the areas of microbe taxonomic annotation,
function annotation, association with host traits, and designing SynComs. This table is not exhaustive but it mentions current and commonly employed methods
that are tailored for microbiome data or specific tasks.

Reference Research Type Research Priority Raw Sequences AI Method

[56] Taxonomic analysis Assignment of raw sequences to the origin of the
genome without knowing the reference genome.

Microbiome datasets from several different habitats
from GMGCv1 (Global Microbial Gene Catalog),
including the human gut, non−human guts, and
environmental habitats (ocean and soil).

Semi−supervised learning

[57] Taxonomic analysis Annotation of viral components in mixed
metagenomes containing both viral and host contigs.

Sequences subsampled from prokaryotes and viral
genome sequences at several contig lengths: 500, 1000,
3000, 5000, and 10,000 bp.

Unspecified machine learning

[58] Taxonomic analysis Taxonomic identification of microbial eukaryotes from
integral components of natural microbial communities.

Raw sequence reads of microbial samples mainly
originating from groundwater. SVM

[59] Taxonomic analysis
Classification of microbes into species and genera, and
the estimation of abundance for human
gut microbiomes.

2505 representative genomes of human gut
microbe species. LSTM; self−attention

[60] Taxonomic analysis Identification of eukaryotic sequences in
metagenomic datasets.

Datasets from NCBI and the Joint Genome Institute,
including 8220 genomic sequences representing
Eukarya (4381) (nuclear (73), plastid (2260) and
mitochondrial genomes (2048)), Bacteria (1860), and
Archaea (1979).

ANN

[61] Taxonomic analysis Identification of phage sequences without a
reference genome. Metagenomic sequences from NCBI. LSTM

[62] Functional annotation
Prediction of antibacterial or antifungal activity based
on features of known natural product biosynthetic
gene clusters.

Biosynthetic gene clusters that were available from the
Minimum Information about a Biosynthetic Gene
Custer database (version 1.4).

SVM; RF

[63] Functional annotation
Functional annotation and classification of the
complete (genomic proteins) and partial (metagenomic
ORFs) protein sequences.

Protein sequences and associated information of
orthologous groups of genes (from eggNOGv3.0). RF

[64] Functional annotation
Identification of biosynthetic gene clusters in bacterial
genomes, and improved identification precision and
ability to identify novel functional gene classes.

Open reading frames in 3376 reference
bacterial genomes. BiLSTM

[65] Functional annotation Identification of transcription activator−like effector
that causes bacterial leaf streak of rice.

Promoter sequences, defined as the 1000 bases
upstream of the start codon, for the approximately
56,000 rice genes annotated in the MSU Rice Genome
Annotation Project Release 7.

Naive Bayes and logistic
regression classifiers
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Table 1. Cont.

Reference Research Type Research Priority Raw Sequences AI Method

[66] Functional annotation Identification of promoters in atypical microbial hosts. Promoter sequences from the Geobacillus 7544 core
coding sequence.

RF, ANN, and partial least
squares regression (PLS)

[67] Functional annotation

Annotation of Lactococcus genes with molecular
functions needed for biological nitrogen fixation in
Sierra Mixe maize, including mucilage carbohydrate
catabolism, glycan−mediated host adhesion,
iron/siderophore utilization, and
oxidation/reduction control.

Whole genome sequences. RF

[68] Functional annotation

Identification of bacterial sequence functions that are
associated with the growth of the plant Brassica rapa in
different soil microbial treatments and at different
stages of plant development.

16S rRNA amplicon variants. Generalized linear and Bayesian
multilevel modeling

[69] Functional annotation

Annotation of DNA sequences of crop pathogens for
functions in nutrient acquisition, avoidance of host
defenses, regulation of symbiosis, symbiosis, and
movement in the environment of another organism.

16S rRNA amplicons. SVM; RF

[70] Functional annotation
Classification of non−ribosomal peptides from
soil−associated microbes with a high tolerance to
sequence modification.

The DNA sequences of microbial datasets from
Xenorhabdus and Photorhabdus families (XPF),
Staphylococcus (SkinStaph), soil−dwelling
Actinobacteria (SoilActi), and a collection of
soil−associated bacteria within Bacillus, Pseudomonas,
Buttiauxella, and Rahnella genera generated under the
Tiny Earth antibiotic discovery project (TinyEarth).

SVM

[71] Functional annotation Annotation of non−ribosomal peptides. Nucleotide sequences including complete and draft
genome assemblies. SVM

[72] Functional annotation Identification of potential sources of novel antibiotic
resistance genes (ARGs).

ARG genes were obtained from three major databases:
CARD, ARDB, and UNIPROT. ANN

[73] Functional annotation Gene prediction using metagenomics fragments. Sequencing reads from Orphelia and MGC
metagenomic dataset. CNN

[74] Association with host traits

Rice traits (dried biomass, tissue nitrogen
concentrations, and net photosynthetic rate) were
associated with bacterial microbiota, including those in
the seed, root endosphere, and rhizosphere.

16S rRNA amplicons. RF
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Table 1. Cont.

Reference Research Type Research Priority Raw Sequences AI Method

[75] Association with host traits Classification of fungi into lifestyle classes (pathogen,
saprobe, or others). The whole genome of 101 Dothideomycetes. SVM

[16] Association with host traits
Association of crop productivity with bulk soil
microbiome composition and several nitrogen
utility−related taxa.

Shotgun sequences for bulk soil samples. RF

[76] Association with host traits
Association of rhizosphere microflora and root exudate
profiles to cucumber resistance to Fusarium
wilt disease.

16S rRNA amplicons. PCA; RF

[77] Association with host traits Association of a microbiome profile with its
original location.

Microbiome datasets (16S rRNA amplicon and
shotgun sequences) from Boston urban and blinded
samples from eight cities.

RF

[78] Association with host traits

Association of root microbiomes with rice traits,
including sulfur oxidation and reduction, biofilm
production, nitrogen fixation, denitrification, and
phosphorus metabolism.

16S rRNA amplicons. RF

[79] Association with host traits
Association of the relative OTUs abundance with rice
age, and identification of OTUs in the rhizosphere and
endosphere compartments that discriminate rice age.

16S rRNA of 1510 samples from root spatial
compartments in field−grown rice (Oryza sativa)
throughout three consecutive growing seasons, as well
as two geographic sites.

PCoA, RF

[80] Association with host traits Association of root microbiota with rice
developmental stages. 16S rRNA amplicons. RF

[81] Association with host traits Association of root microbiota with different
Panax species.

Amplicon sequencing for 405 multi−niche samples of
three Holarctic distinct Panax species. RF

[82] Association with host traits
Revealing worldwide soil microbial community
patterns by merging independent taxonomy−based
data sets.

16S rRNA amplicons. RF

[83] Association with host traits Deciphering the functional relationship between
soil−specific microbes and ecosystem properties. 16S rRNA amplicons. Neural network; RF

[84] Designing SynComs
Development of a novel approach to design microbe
communities and to predict plant response to
phosphate starvation.

16S rRNA amplicons ANN
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3.1. AI Applications in Taxonomic Analysis

ML algorithms can be trained to conduct taxonomic analysis based on their genomic
data and other phenotypic information. This can be particularly useful for identifying and
characterizing novel organisms. For example, McHardy et al. (2007) first applied a SVM
model to classify assembled metagenomic contigs into different taxonomic ranges [85].
The authors evaluated the SVM prediction ability, based on the class output, ranging from
genus to domain taxonomic levels. The sensitivity of this SVM model reached 0.9 for long
DNA sequences. The model was further developed into a web-based tool for annotating
metagenomes by Patil et al. (2012) [86]. The SVM model was also developed recently by
Vervier et al. (2016) [87] to provide a flexible taxonomic annotation function. As certain
alignment-based classifiers could not classify sequences into different taxonomic levels,
this SVM model presented a rank-flexible method that could output the most appropriate
level to classify the sequences based on the maximum score across all of the different
rank-orientated models.

Fiannaca et al. (2018) introduced DL methods of CNN and ANN to annotate 16S
sequences and to classify metagenomics data [34]. The sequence data were processed into
a digital image format and then fed into the DL models. These two models were compared
to the baseline 16S ribosome database project (RDP) classifier, which is the Naive Bayesian
(NB) classifier [88]. The results indicated that the CNN and DBN models (reaching 91.3% in
accuracy) outperformed the NB classifier (83.8% in accuracy). Liang et al. (2020) developed
the DeepMicrobes model, which involves two DL algorithms, bidirectional LSTM, and a
self-attention (which is a basic block for the transformer) model, to classify metagenomic
reads [59]. To optimize models, the authors tested approximately 30 parameters such
as the input data encoding method, different DL algorithms, and the inclusion of a self-
attention mechanism. Through comparison, the bidirectional LSTM model outperformed
the other models. The model was then compared with the state-of-the-art classifiers,
CLARK-S [89], Centrifuge [47], kraken2 [90], and Kaiju [91]. In general, the DeepMicrobes
model outperformed the other annotation tools in the perspectives of recall, precision,
and genus abundance estimation. Nevertheless, kraken2 and Kaiju performed better in
estimating abundance at the species level, although the annotation ability was relatively
lower.

3.2. AI Applications in Functional Annotation

Functional information and its potential role in the habitat environment of the mi-
crobial community can also be explored with AI. Examples of studies that have applied
ML to microbial functional analysis are listed in Table 1. Sharma et al. (2015) developed a
two-step annotation process named WOODS [63]. The first step is to classify sequencing
reads with ML, followed by the second step, alignment-based annotation. In this method,
the ML functions as a pre-processing step to align the fragments to a gene category. The
RAPsearch2 tool [92] was used in the alignment step, and eggNOG3 [93] was used as the
functional reference. Among the ML models evaluated in this study, RF outperformed other
models in classifying the testing dataset, and the overall function alignment performance
was better than via BLAST. As the related ML application in phytomicrobiome analysis
was not found to our best effort, we tried to use an ML application for detecting the ARG
from metagenomic data. As microbial resistance is becoming a widespread concern, the
screening of ARGs in microbial communities received a lot of attention recently [94,95].
Detecting AR genes directly from shotgun metagenomic data is very challenging. Limited
by the related reference databases, alignment methods were less effective compared to
the ML-based methods. Arango-Argoty et al. (2018) developed DeepARG, a DL-based
method, to detect 30 categories of AG determinants in metagenomic sequences [72]. For
this method, the accuracy of AR gene annotation outperformed alignment-based tools,
although DeepARG also takes alignment scores as inputs. The better performance might
be explained by the principle that DL adapts the threshold automatically in identifying
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AR categories during the learning process, rather than manually designating a similarity
threshold for each AR class.

An integrative framework has also been developed to detect functional genes from
microbial communities. This framework uses ML-based models and analyzes the data
combining microbial composition and context information such as the structures of phy-
logenetic relationships in the communities [96]. This model was designed to detect OTU
features and to predict their functions. With a CNN-like DL model, Khodabandelou et al.
(2019) illustrated the promise of DL in annotating microbe sequences for their function [97].
This model is capable of annotating short sequences with functions such as promoters for
different species. Al-Ajlan and El Allali (2019) developed another CNN model (CNN-MGP)
to detect genes from metagenomic DNA reads with no pre-selection for the features [73].
Candidate fragments can be selected with a preset possibility value of 0.5 with the following
post-processing manipulation. With this DL method, functional annotation can be applied
in a set of reference databases, including KEGG, GenBank, COG [98], FunGene [99], and
MG-RAST [100].

The annotation process, which mainly relies on the connection between the DNA
sequence and the function of the encoded protein, can be impacted upon by the confi-
dence threshold for the similarity between the query and the reference sequence. When
annotating the functions of sequencing reads, different thresholds need to be assigned
based on the nature of the function in traditional methods. However, as different reference
databases have their own specificities, there is no such threshold standard to annotate func-
tion [93,101–106]. Such diversity in annotation standards makes it challenging to transfer
knowledge from one to another dataset. AI, the method of which is capable of transferring
knowledge through training with a dataset but applied to another dataset, might be useful
for conducting functional annotation with better performance, although this has not been
used commonly in handling phytomicrobiome data. This method is particularly useful for
when there are undefined microbe species in the reference dataset.

3.3. AI Application in Plant–Microbiota Association Analysis

A set of core microbiome members could be used to determine the key functions
of a microbiome community and to speculate plant traits such as plant resistance to bi-
otic/abiotic stresses [107] and productivity [108]. However, it is the whole community
rather than several core taxa that enable observable effects on the plant [109]. In natural en-
vironments, the plant trait is the overall outcome of the plant genome [110], characteristics
of stress [111], soil environments [112], the microbe community, and other undiscovered
players. A minor difference in microbe constitution or function, such as nitrogen-fixing
ability, pathogenicity, or toxicity may have a subtle influence on plant traits [111]. Therefore,
it is difficult to attribute a microbiome with specific plant traits with classical methods,
particularly when some species in the microbiome are unclassified.

Recent advances in ML methods make it possible to predict plant traits directly from
the overall microbiome data. We summarized some of the ML applications in microbe–
plant associations in Table 1. A phytomicrobiome association with the plant host involves
other environmental conditions such as temperatures, soil conditions, organic matter, nu-
trition, or metal ions. As such, when considering the interaction between the plant and
the environment, one must also consider environmental differences. This may limit the
applications of certain MLs and DLs, which may predict poorly across different environ-
ments. Nevertheless, a number of datasets were constructed in research projects to associate
microbiome data and plant traits such as drought stress [112], plant disease [107,113], and
crop productivity [16,108]. Chang et al. (2017) used the RF approach to classify and sepa-
rate plant productivity into low or high categories based on identified soil microbial taxa
information [16]. The relative contribution of each category can be estimated to reflect
sample productivity. DL methods have also been introduced in predicting host phenotype
in this end-to-end way [16].
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3.4. AI Design of Synthetic Communities

The phytomicrobiome can promote plant growth or repress pathogens. Changing
the microbiome via artificial inoculation with a community of plant growth-promoting
rhizobacteria (PGPRs) can benefit host growth, control pathogens, and resist abiotic stresses.
Some PGPRs mediate plant hormone production such as cytokinins, gibberellins, and aux-
ins, while other PGPRs such as Bacillus spp., Arthrobacter spp., and Pseudomonas spp. are able
to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase [114] to reduce stress
symptoms under adverse environmental conditions such as drought. N fixation, phosphate
solubilization, auxin production, and other pathways can be induced with PGPRs such
as Pseudomonas spp., Pantoea spp., and Paraburkholderia spp. to promote soybean or wheat
growth through the enhancement of stress resistance and nutrient uptake [114]. However,
these functions are not achieved by a single microbe, but instead by complex interactive
microbial communities. The concept of synthetic microbial communities (SynComs) has
been proposed to solve this problem. SynComs refers to a small-scale consortia of microbe
that are artificially designed to apply the acquired knowledge of function and structure
from the microbiome in natural environments. The principle of SynComs is to preserve
the native interactions between microbes and plants while reducing the complexity of the
microbial community. By doing so, the key functions of the microbial community can be
achieved and manipulated practically.

Manipulating SynComs is an advanced technology to discover microbe–plant asso-
ciations. By removing and adding microbe members in SynComs, the function of each
member can be identified. For example, removing Enterobacter cloacae from the SynComs
helped in discovering its function in mitigating maize blight disease [115]. Using an ANN
model, Herrera Paredes et al. (2018) developed a novel approach to designing microbe
communities and predicting the plant response to phosphate starvation [84]. This approach
studied microbe–plant bilateral interactions to infer the causal relationships between mi-
crobiota memberships and host phenotypes in phosphate accumulation. In the study, a
set of partially overlapped SynComs were defined and their effects on plant phenotype
were tested, and plant response at the transcriptional level was also analyzed. Through
evaluating the performance of different models, an ANN model was selected to conduct
plant phenotype prediction because of its better performance compared to the two linear
models. Strikingly, 23 out of 25 ANN-guided designs were validated through experimental
assays, supporting the advantage of AI methods in assisting SynComs design. However,
designing SynComs with AI have been rarely reported. Although this technique has been
reported as a promising technique in reviews, we did not find other AI studies in SynComs
except the above-mentioned one, reflecting the infant stage of AI in this area.

4. AI Applications in Plant Genomic Prediction against Pathogens, Phenotyping,
Plant–Microbiome Interactions, and Disease Forecasting
4.1. AI Applications in Genomic Prediction against Pathogens

Disease resistance can be qualitative or quantitative, which can often be attributed to
differences in the plant genome. The scope of qualitative disease resistance is generally
conditioned for by a single resistance (R) gene recognizing avirulence factors in a classic
gene-for-gene mechanism, and the inheritance is said to be qualitative or Mendelian. In
contrast, quantitative resistance is usually conditioned by many genes of small effect, and
the inheritance is said to be quantitative or polygenic [116]. For qualitative traits that are
controlled by single genes, DNA markers are often used to screen and to select the desired
gene in breeding programs through marker-assisted selection (MAS). The identification
of accurate markers that are strongly associated with the trait is the key to the successful
application of MAS. However, this will be more challenging for complex traits controlled by
many genes. An alternative method that investigates quantitative traits is genomic selection
or genomic prediction (GP). GP takes advantage of all molecular markers, regardless of the
significance threshold, to determine the breeding and/or genetic potential of a candidate
individual for selection. Compared to MAS, GP has several advantages. GP allows breeders
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to select individuals with desirable traits at an earlier stage of the breeding process, which
can save time and resources. At the same time, GP can reduce the cost of selection by
reducing the need for phenotyping, which can be expensive and time-consuming. More
importantly, GP can be used to select complex traits that are difficult to measure directly,
such as disease resistance and yield.

The key element in GP is to build a robust and accurate statistical model based on
available individuals with both phenotypic and genotypic data. Statistical models have
been developed to improve the robustness and prediction accuracy. One of the frequently
used models is the genomic best linear unbiased prediction (GBLUP). It was built based
on the assumption that all SNPs contribute to the heritability of breeding traits and that
they rise from the same normal distribution [117,118]. However, this assumption could
reduce the prediction ability of the linear mixed model (LMM) when the trait under
study is controlled under several dominant genes. In fitting these effects, Bayesian-based
methods have been developed, including BayesA, BayesB, BayesLASSO, etc. [119–123].
The Bayesian-based methods assume that SNPs belong to different groups that have their
own independent variances and specific distributions, such as the inverse chi-squared
distribution. Although these traditional LMM or Bayesian-based approaches have been
used in plant breeding, they are developed based on the assumption that genotype random
effects follow a prior distribution and that each genotype contributes to the associated
phenotype independently. Such assumptions require a large number of samples to dilute
the effects of population structure. At the same time, the individual genotype effect may
not follow a specific distribution perfectly. Additionally, these approaches are all based on
a linear mapping from genotype to phenotypes, and it is less powerful for them to capture
non-linear effects such as dominance and epistasis, which are common and important in
complex traits [124,125].

To overcome the limitations of assumptions about the genetic architecture and the lin-
ear effects, ML approaches were developed. These methods do not require pre-assumptions
and they are capable of extracting non-linear features. Many of these methods have
been applied in GP problems, including but not limited to SVM with non-linear kernels
(i.e., radial basis function SVRrbf and polynomial SVRpoly [126,127], reproducing kernel
Hilbert spaces (RKHS) regression [128,129], and Gradient Tree Boosting (GTB) [130], as
well as RF [130,131]).

DL is regarded as an efficient method in several studies of GP [130,132–139] because of
its capability in handling a diversity of high-dimensional tasks [134,140]. After major inno-
vations in recent years, advanced DL architectures have been developed to conduct complex
trait predictions in several crops [141,142]. Jubair et al. (2021) developed a transformer-
based DL model, GPTransformer, to conduct GP for barley resistance to Fusarium head
blight (FHB) which is caused by Fusarium graminearum Schwabe [143]. Two pathogen inoc-
ulation methods were used to fully explore the possible pathogen–plant interactions. The
first method inoculated the barley plant with the microbe communities on maize kernels
which were infected with two strains of F. graminearum. In GP, the pre-screened essential
genomic markers were fed into a GPTransformer to predict FHB and deoxynivalenol (DON).
The results indicated that the GPTransformer performed similarly to the GBLUP model,
with only 1% improvement over BLUP for DON and the performance for FHB. This study
suggests the potential of DL methods in understanding pathogen–plant interactions or
predicting plant disease phenotype when compared to the popular BLUP model.

However, ML models did not always outperform other methods for all traits and
species. Linear models tend to perform consistently across predictions, while the ML
models varied substantially from trait to trait. Montesinos-López et al. (2018) compared
three DL architectures of ANN, CNN, and RNN against the commonly used linear GBLUP
model with nine datasets [144]. Generally, GBLUP achieved the best performance in
eight out of nine datasets when considering the interaction between the genotype and the
environment. Interestingly, DL outperformed GBLUP in six out of the nine datasets when
ignoring the interactions. From a larger view, Montesinos-López et al. (2021) surveyed
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23 papers and found that no relevant differences in prediction performance were found
between DL methods and the conventional linear models [145]. Specifically, DL performed
better in 11 out of the 23 studies when taking into account the interaction between genotype
and environment interaction, while 13 of these studies observed a better performance of
DL when ignoring the genotype × environment interaction.

One of the reasons for the modest performance of DL could be that the number of
training samples for most GP tasks was not sufficient for DL to learn non-linear interactions
when the number of SNPs (or background SNPs) is too large. It is particularly so under
a flawed experimental design which failed to screen out noisy SNPs, and the traits have
major effect loci. With datasets containing different numbers of SNP markers from six plant
species, Azodi et al. (2019) found that non-linear methods showed better performances in
predicting traits in the datasets containing fewer markers. Reasonably reducing background
information could improve DL performance. Pook et al. (2020) added a convolutional
layer to intensify information, which were then fed into the ANN layers (referred to as
LCNNs) [146]. In this way, the model performance was improved significantly compared
to ANNs, regardless of data size. It is interesting to note that adding a convolutional layer
to intensify information does not involve human screening of the markers, which is an
advantage of the DL models in refining maker information over statistical methods.

DL’s ability in handling GP tasks can also be improved by adapting advanced DL
architectures. In most cases, CNN-based models are more advanced in capturing spatial
information and can therefore outperform the relatively simple ANN models when they are
compared together. For example, using the International Maize and Wheat Improvement
Center (CYMMIT) datasets, Pérez-Enciso and Zingaretti (2019) benchmarked several ANNs
and CNNs [147]. It was found that CNNs always outperformed ANNs in GP. Similarly,
in the study conducted by Ma et al. (2018), by investigating 2000 wheat lines and 33,000
markers, CNNs showed a much better prediction performance than ANN models [148].
Further, it seems that LSTM is more appropriate for handling sequential data and for
exploring SNP dependencies. Maldonado et al. (2020) exploited the potential of LSTM
architecture in conducting GP on Zea mays L. and Eucalyptus globulus Labill [149]. A signifi-
cant increase in prediction performance was observed in LSTM compared to the other ML
method, linear models of GBLUP, and different types of Bayesian regression models. On
the contrary, when the CNN architecture was compared against linear Bayesian models,
its GP performance was less attractive on polyploid outcrossing species of strawberry and
blueberry [150]. The different performances of CNN and LSTM compared to conventional
methods in the above-mentioned two studies may be attributed to the genome differences,
presence of interactions, sample size, or model tuning. However, the differences in archi-
tecture strength between CNN and LSTM cannot be ignored, although it is still hard to
make a conclusion because of the limited LSTM applications in GP tasks. As we introduced
before, CNN is better at feature extraction from 2D data, while RNNs (or LSTMs) are more
advantageous for sequential data. The nature of SNPs is a series of mutants on a genome
sequence, and their sequential property and SNP dependencies might more easily captured
by LSTM models.

A deeper understanding of both the DL architectures and the biological questions
is also important in constructing DL networks. For example, given the situation where
adjacent SNPs usually have no underlying direct functional relation, region-specific filters
were introduced by adding a local CNN layer to reduce the background noise, and the
GP performance was improved significantly [146]. As DL models are not outstanding for
all applications, they can be integrated with conventional ML and/or linear models. For
example, Jeong et al. (2020) integrated four types of models of CNN, RF, DNN, and RRB
into the GMStool to conduct GP tasks [151]. As these individual models could capture SNP
features from different aspects, the GMStool achieved the best prediction performance on
the testing dataset. In addition, the microbes associated with plant growth environments are
critical to disease development, and GP performance is difficult to improve if the variance
and composition of microbe communities are ignored. Unfortunately, to our knowledge,
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no study has integrated phytomicrobiome information into consideration when conducting
GP. Along with phytomicrobiome data accumulation and DL method improvement, it is
very promising to improve crop trait prediction.

4.2. High-Throughput Plant Disease Phenotyping and In-Field Plant Disease Forecasting

High-throughput phenotyping is another trend for assisting with the discovery of
pathogen–plant interactions in the field. Rather than using quantitative or binary pheno-
types, other formats of phenotypes can be recorded using the formats of images, videos,
or even sounds in the AI models. Several efforts, from local to international, are ongoing
in order to construct phenomics centers for plant pathogen studies, which automate and
standardize high-throughput measurements of plant phenotypes at all levels [152]. The
physiology, development, and growth, as well as other traits of plants, can be recorded in a
fast, non-invasive, and less costly strategy [153] using AI techniques. DL has been widely
used to classify and detect various diseases [154–157]. The recognition and classification
of maize leaf diseases, including northern corn leaf blight (Exserohilum), common rust
(Puccinia sorghi), and gray leaf spot (Cercospora) diseases have been conducted using DL
with an accuracy of 93.35% [158]. In cucumber (Cucumis sativus), a semantic segmentation
model based on CNN was developed to segment powdery mildew disease on leaf images at
the pixel level, and the pixel accuracy of the CNN model (96.08%) was higher than the seg-
mentation methods of K−means, RF, and GBDT [159]. In pearl millet (Pennisetum glaucum),
DL has been applied for the identification of mildew disease, and an accuracy of 95.00%
was reported for the developed model [160]. Our lab is also developing DL models to effec-
tively rate canola blackleg disease and flea beetle bites on seedling cotyledons. At the same
time, disease progression can be acquired with hyperspectral imaging techniques [161] and
plants metabolite evaluation can be measured with mass spectrometry (MS) and nuclear
magnetic resonance (NMR) spectroscopy techniques [162], while plant transpiration and
temperature can be measured through infrared thermography [162]. All the information
can be fed into the DL model for analysis. In addition, to improve phenotype accuracy,
proteomics, microbiome, metabolomics, imaginary data, weather, and soil data can all be
integrated. Processing these complex and high-dimensional data is an ideal scenario for
advanced DL architectures such as CNN, LSTM, or Transformer because of their excellent
abilities in dealing with images, sequential data, and heterogeneous datasets with multiple
variables and outcomes. As the DL-based high-throughput phenotyping technique has
been reviewed [163–165], there is no need to review this technique explicitly in this section.

Multi-lateral interactions among microbe, plant and environment make it very chal-
lenging to make predictions on disease outbreaks in the field. In natural environments,
several factors such as microbe community, pathogen genome, plant genome [110], soil
environments [112], and climate conditions can all contribute to disease development. It is
desirable to develop prediction models with the capacity to integrate all of the information
to make precise forecasting. Recently, AI and big data methods have been used to study
disease factors and to manage disease in the field [166].

DL has been developed in integrating environmental conditions to predict disease
outbursts in the field. For example, Xiao et al. (2018) developed an LSTM model to predict
the outbreak of pests (bollworm, whitefly, and jassid) and fungal disease (leaf blight) for
cotton under consecutive weather conditions (e.g., maximum temperature, minimum tem-
perature, relative humidity, and rainfall) [43]. The results indicated that the LSTM model
reached a very high prediction performance, and outperformed the other three models
(KNN, SVC, and RF) that did not take sequence information into account. Combining CNN
and LSTM, the model used to predict the outbreak of P. dispersa (leaf rust) on wheat was
also developed by Pryzant et al. (2017) [167]. In this study, 8554 observations, each of which
include geology information (latitude and longitude), gross primary productivity, land
surface temperature, and remote sensing data on the surface, were used to predict disease
severity (on the stem, stripe, and leaf). The prediction results (with an accuracy of 76.53%)
were promising for expansion with other diseases. To predict wheat yellow rust breaks, Xu
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et al. (2018) proposed an RNN-based model of a spatial–temporal recurrent neural network
(STRNN) for agricultural emergency management [168]. In this model, time-series data
(remotely sensed data) and non-time-series data (climatic, topographic, and soil data) were
integrated into the spatial–temporal data vectors in STRNN. The performance of this model,
by considering the data dependencies between different time points, outperformed the best
baseline models of RF by 30.20%, 23.31%, and 44.52% in the evaluation indexes of MAE,
MAPE, and RMSE, respectively. The outperformance of the RNN model is understandable,
as baseline models ignore the fact that the dynamic features such as weather for a time
span are complex multi-dimensional time series data. The high relevance of dependence
between different time points is not appropriate to be fed into fixed-size networks for model
training, and the dependence between input units across time needs adequate attention.
With two years of data on climate and biotic stresses, we developed a DL model to forecast
blackleg disease outbreak, and the accuracy reached 66% (manuscript submitted).

Although diverse factors have been collected to forecast disease in commercial fields,
microbe data are surprisingly ignored in disease forecasting, given the pathogen’s im-
portance for disease development in the field. For example, pathogen race and the avr
gene profile, through gene-to-gene interactions with plant R gene, are very critical for the
development of plant diseases [169]. In addition, both the qualitative and quantitative
effects will determine the level of resistance. Along with continuously reducing the cost
of sequencing, collecting information on microbe communities and plant resistance will
become more practical. Given the successful integration of diverse sources of data in
pioneering DL-based disease forecasting studies, full usage of microbe information such as
microbe races and genotypes is promising, as well as functions to predict disease with high
accuracy.

5. Future Perspectives

As a science driven by genomic and amplicon sequencing, and phenomic databases,
phytomicrobiomes are an ideal application for AI. Although there are a growing num-
ber of studies that focus on the phytomicrobiome, there are still relatively few publicly
available datasets that can be used for training and validating AI models. This can make
it challenging to develop accurate predictive models or to identify patterns in phytomi-
crobiome data. Challenges also come from sample collection and processing. Collecting
and processing phytomicrobiome samples can be difficult and time-consuming, as it often
involves separating plant and microbial tissues and removing contaminants. This can make
it challenging to obtain large datasets that are representative of the phytomicrobiome in
different environments, and to collect similar data across studies. To address data shortages
in phytomicrobiome research, future efforts are needed to increase the number of publicly
available datasets and to develop standardized protocols for sample collection and pro-
cessing. Finally, advances in ML techniques, such as transfer learning, active learning, and
data augmentation can help to address the challenges related to the limited availability of
datasets and the need for accurate predictive models.

Integrating phytomicrobiome data with other omics data can provide a more compre-
hensive understanding of the interactions between plants and their associated microbial
communities. For example, by integrating phytomicrobiome data with transcriptomic
data, it is possible to identify genes that are differentially expressed in response to specific
microbial taxa or environmental conditions. By integrating phytomicrobiome data with
metabolomics data, it is possible to identify metabolic pathways that are influenced by
specific microbial taxa or host growth conditions. Other omics data such as proteomic data
and host genomic data can also be integrated to understand plant–microbe interactions.
Integrating phytomicrobiome data with other omics data can be challenging, as it often
involves analyzing large, complex datasets and integrating data from multiple sources.
However, advances in ML techniques are making it increasingly possible to integrate di-
verse omics data and to identify patterns and relationships that would be difficult to detect
using individual datasets alone.
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Although there are AI tools designed for specific scientific purposes, there is room for
improvement to make these tools more easily accessible. This is a likely natural progression
in the tools and has been observed in other science disciplines, such as genomics, which
was previously conducted using a few niche specific Linux command line tools, and is
now achievable on a wide set of Windows-based all-in-one software with graphical user
interfaces (i.e., CLC Genomics WorkBench, Geneious, and others). Recently, OpenAI has
released public and user-centric AI tools for creating and interacting with data, text, and
images, which have become immensely popular amongst the general public; thus, the tran-
sition of AI tools is already underway. Developing improved AI tools for phytomicrobiome
analysis will also be urgent, in order to make the process more accessible to researchers
who may not have a background in AI. For example, developing user-friendly software
that allows researchers to easily upload and analyze their data can help to make AI more
accessible. This software could include pre-built AI models and user-friendly interfaces
for data pre-processing and model training. Visualization tools could allow researchers to
visualize their data, and the results of their AI models can be more intuitive. These tools
could include interactive graphs, heat maps, and other visualizations that allow researchers
to explore their data in real time. To provide a clear explanation of how to use AI tools,
tutorials and documentation should include step-by-step guides for data pre-processing,
model training, and model evaluation, as well as examples for specific research applica-
tions. Cloud-based solutions are also waiting for establishment, to provide researchers
with access to powerful computing resources without the need for expensive hardware or
software. By developing cloud-based AI solutions, researchers can easily access the tools
and resources they need to analyze their data.

6. Conclusions

Deciphering the interplay between plant microbiomes and crop production is chal-
lenging. Data mining can be used to extract taxonomic composition, gene functions, and
associations between plant microbiomes and host plant phenotypes. AI, boosted by ML and
DL advancements, is being explored as a solution to meet some of the challenges associated
with data size and complexity when considering the plant microbiome in cropping systems.
The diverse sources of ‘omics’ data present a good opportunity for AI to predict agro-
nomic outcomes by combining information from plant-associated microbes, plant genomes,
and soil properties, as well as climate conditions. AI is advantageous in analyzing high-
dimensional variables, processing data with flexible architectures, and extracting intrinsic
patterns from phytomicrobiome data without complex and skill-required feature selection.
Such abilities make AI very suitable for speculating key information from microbiome
data, which have high-dimensionality and incomplete databases. By predicting the plant
growth status in the field, AI can also integrate plant genomes through genome prediction
techniques. Plant traits such as disease resistance vary in the field because of multi-lateral
interactions among plant genomes, the dynamics of the pathogen population, microbe
composition, and interactions across environments. Genome prediction with AI can take
full advantage of the available data to predict the breeding values of individuals while
avoiding the high cost of phenotyping all individuals. High-throughput plant phenotyping
in the field also makes it possible to gather large amounts of data that can be integrated
into the models and that can predict plant phenotypes. By combining diverse sets of
data on microbiomes, plant pathogens, phenomics, crop genomics, and climate data, it
is also possible to predict crop performance and the occurrences of pathogen outbreaks.
While the application of AI in the above-mentioned areas may still be in its infancy, many
application-specific tools are now being put into practice; they have been demonstrated to
be remarkably efficient and accurate, and they may be ushering in a new era of AI-driven
crop research.
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Glossary

AI artificial intelligence
ML machine learning
DL deep learning
NLP natural language processing
PCA principal component analysis
PCs principal components
PCoA principle coordinate analysis
OTUs operational taxonomic units
SVM support vector machine
RF random forest
ANN artificial neural network
CNNs convolutional neural networks
RNNs recurrent neural networks
SNPs single nucleotide polymorphisms
LSTM long short-term memory
ITS internal transcribed spacer
RDP ribosome database project
NB Naive Bayesian
ARGs antibiotic resistance genes
ACC 1- aminocyclopropane-1-carboxylic acid
PGPRs plant growth promoting rhizobacteria
SynComs synthetic microbial communities
MAS marker-assisted selection
GP genomic prediction
GBLUP genomic best linear unbiased prediction
LMM linear mixed model
RKHS reproducing kernel Hilbert spaces
GTB Gradient Tree Boosting
FHB Fusarium head blight
DON deoxynivalenol
CYMMIT International Maize and Wheat Improvement Center
MS mass spectrometry
NMR nuclear magnetic resonance
STRNN spatial–temporal recurrent neural network
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