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Abstract: UV-B treatment deeply influences plant physiology and biochemistry, especially by acti-
vating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific
perception mechanism. Although the UV-B-related molecular responses have been widely studied in
Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest
UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the tran-
scriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime)
fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88%
of the differentially expressed genes—DEGs), compared to 3 h recovery. The overexpression of
genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI),
and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting
in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones,
dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes
(HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in
post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling pro-
cess (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome
of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely
via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to
enhance the content of health-promoting compounds in peach fruits and extending the knowledge of
the UVR8 gene network.

Keywords: flavonoids; metabolomics; Prunus persica; secondary metabolism; transcriptomics;
UV-B radiation

1. Introduction

Depending on the wavelength and intensity, light might affect several aspects during
plant lifespan. Particularly, UV radiation has been studied over the last decades because of
its strong impact on both plant primary and secondary metabolism [1,2]. In the UV range
(100–400 nm), UV-B (280–315 nm) represents the most energetic wavelengths reaching the
Earth’s surface, since the extremely harmful UV-C is totally shielded by the stratosphere.
Therefore, due to its high energy, it may determine severe damage to intracellular com-
ponents, e.g., nucleic acids and proteins, compromising their physiological functions [3].
However, millions of years of evolution have led plants to adapt toward UV-B conditions
because of specific photoreceptors and complex transduction pathways, which in turn
determine a fine regulation at gene expression level with repercussions on specific sec-
ondary metabolites [4]. In Arabidopsis, UV resistance locus 8 (UVR8) has been found to
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be the photoreceptor responsible for the perception of UV-B and, partially, UV-A radia-
tion [5,6]. The highly energetic UV wavelengths determine the dissociation of the inactive
UVR8 dimer into active monomers that activate the downstream signaling cascade by
binding the E3 ubiquitin ligase constitutively photomorphogenic 1 (COP1), preventing
the elongated hypocotyl 5 (HY5) bZIP transcription factor from being degraded [3,7]. The
UVR8-COP1 complex, once translocated within the nucleus, induces a specific chromatin
modification, activating the transcription of specific UVR8-responsive genes, which con-
tributes to the acclimation of the plant organism to the UV conditions [8,9]. In addition,
the expression of HY5 was also found to be promoted by the UVR8-COP1 complex, ampli-
fying the UVR8-COP1 action. Several genes involved in the phenolic pathway have been
found to be strictly regulated by UV-B radiation, such as chalcone syntase (CHS), chalcone
isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol
4-reductase (DFR), and anthocyanidin synthase (ANS) in different fruit species, e.g., apple,
tomato, and peach [10–12]. The UV-B signal is then turned off by the action of the UVR8-
COP1 complex-activated repressor of UV-B photomorphogenesis 1 (RUP1) and 2 (RUP2),
which promote the reconstitution of the UVR8 dimer [13].

Phenolic compounds represent one of the largest classes of plant secondary metabo-
lites, which include more than 8000 members. Phenolics, and particularly flavonoids,
play fundamental roles during plant lifespan, contributing to, e.g., the resistance against
pests, herbivores, and pathogens, the neutralization of the reactive oxygen species (ROS),
the shielding against potentially harmful UV radiations, and in general, the protection
against adverse environmental conditions [14,15]. Additionally, once ingested by people
through their diet, they exhibit beneficial effects both in prevention and treatment of several
diseases, such as cardiovascular diseases, many types of cancers, diabetes, age-related
diseases, oxidative stress, and disorders of the immune system [16–20]. The main dietary
sources of flavonoids are fruits and vegetables; thus, their consumption is highly encour-
aged. Additionally, the ever-increasing attention toward food rich in health-promoting
compounds, together with the search for eco-friendly technologies, such as UV-B radiation,
to increase their content within fruits and vegetables, has gained great popularity [21,22].

Recently, several studies were conducted using whole transcriptome sequencing (RNA-
Seq) on the Prunus family, exploiting the availability of the complete genome sequence of
Prunus persica [23], aiming to identify genes involved in biological processes such as cold
injuries [24], fruit ripening [25], drought stress [26], and leaf senescence [27].

However, although it is known that UV-B, depending on the dose and duration of
the exposure, has the potential to enhance the nutraceutical quality of peach fruit by in-
creasing flavonoid content [12,28], the current studies investigating the molecular response
following UV-B exposure on fruit organisms focus on specific flavonoid biosynthetic genes,
without investigating the changes in the whole peach transcriptome. With this work, for
the first time, the peel transcriptome of UV-B-exposed peach fruit has been investigated
by using RNA-Seq, to have an exhaustive overview of the molecular response of the fruit
toward the UV-B radiation. In addition, the results from gene networks obtained from tran-
scriptomic analysis have been correlated with metabolomic data, with particular attention
to flavonoids.

2. Results
2.1. cDNA Libraries Aligning on Reference Transcriptome

In total, 339,016,520 sequence reads, each 150 nt in length, from 12 libraries of P. persica
UV-B-treated (UVB) and control (CTR) fruit peels at two recovery time points (1 and
3 h) were generated. Removal of low-quality reads resulted in 335,883,778 total trimmed
reads and the number of reads for each library spanned from 23,126,890 to 32,949,871.
The trimmed high-quality reads were aligned on the reference transcriptome of P. persica,
resulting in a mean of mapping reads of 94%, a reliable percentage of mapped reads to
establish gene expression analysis (Table 1).
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Table 1. Summary statistics for the Illumina sequencing and mapping against Prunus persica reference
transcriptome. CTR = control; UV-B = UV-B treated; 1 h = 1 h of recovery after the UV-B treatment;
3 h = 3 h of recovery after the UV-B treatment.

Library Replicate
Raw Reads
Per Library

(N)

Trimmed Reads
Per Library

(N)

Aligned Reads on
P. persica
Reference

Transcriptome
(N)

Aligned Reads on
P. persica
Reference

Transcriptome
(%)

CTR_1 h 1 33,257,571 32,949,871 31,328,689 95.08
2 28,285,172 28,032,925 26,375,914 94.09
3 27,168,547 26,980,657 25,341,162 93.92

UV-B_1 h 1 27,439,039 27,181,626 25,618,232 94.25
2 27,978,969 27,717,323 26,033,386 93.92
3 30,422,616 30,161,462 28,388,389 94.12

CTR_3 h 1 26,980,674 26,692,135 25,040,323 93.81
2 28,983,969 28,740,615 26,775,717 93.16
3 24,796,737 24,601,286 22,984,308 93.43

UV-B_3 h 1 28,917,100 28,587,951 27,065,772 94.68
2 31,460,791 31,111,037 29,191,493 93.83
3 23,325,335 23,126,890 21,689,653 93.79

2.2. Differential Expression and Gene Ontology Analysis of Genes of Control and UV-B-Treated
Peach Fruit

The 47,089 transcripts included in the P. persica genome assembly [23] were evaluated
according to their expression. Genes were considered expressed when RPKM > 1 in at least
one library. A total of 24,893 expressed genes were selected. Overall, 847 DEGs were found
between control and UV-B treated samples at 1 h and 3 h recovery time points. In particular,
1 h after the end of the UV-B treatment, we detected 580 over-expressed genes (OE) and
165 under-expressed genes (UE). At the 3 h recovery time point, 83 OE and 19 UE were
found (Figure 1), showing that most of the differential gene expression occurred after 1 h
from the UV-B exposure.

Regarding OE genes, 539 genes were uniquely activated after 1 h, and 43 genes were
over-expressed solely after 3 h from the end of the UV-B treatment. Interestingly, 40 genes
were over-expressed in both the recovery time points (Figure 1). The complete set of DEGs
from the peel of control and UV-B-treated fruit is shown in Table S2.

Under- and over-regulated DEGs, considering 1 h and 3 h recovery, were analyzed
by gene ontology (GO) (Figure S1A and Figure S1B, respectively). Over-expressed DEGs
in the two time points showed a very similar GO term distribution. The most abundant
terms regarding molecular function were “Catalytic activity” (GO:0003824) and “Binding”
(GO:0005488), whereas concerning biological processes, the most frequent GO terms were
“Cellular process” (GO:0009987), “Metabolic process” (GO:0008152), “Biological regulation”
(GO:0065007), and “Regulation of biological process” (GO:0050789). Furthermore, under-
expressed DEGs during the two time points shared few GO terms with over-expressed ones,
such as “Catalytic activity” (GO:0003824), “Binding” (GO:0005488), and “Metabolic pro-
cess” (GO:0008152), but also showed different GO terms belonging to biological processes
“Response to stimulus” (GO:0050896) and “Localization” (GO:0051179), cellular component
“Membrane” (GO:0016020), and molecular function “Transporter activity” (GO:0005215).

Concerning GO enrichment, 579 over- and 165 under-expressed DEGs after 1 h of
UV-B exposure were analyzed (Figure S2). Overall, we detected 14 and 1 enriched GO terms
for over- and under-expressed DEGs, respectively. The most abundant enriched GO terms
for over-expressed DEGs were “Biological regulation”, “Regulation of cellular process”,
and “Aromatic compound biosynthetic process”, whereas only one GO term, “Response to
endogenous stimulus”, was identified for under-expressed DEGs at the 1 h recovery time
point (Figure S2). No enriched GO terms were found for over- and under-expressed DEGs
after 3 h from the UV-B exposure.
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Figure 1. Venn diagram for over- and under-expressed genes detected in the peel of UV-B-treated
peach fruit after 1 h and 3 h from the end of UVB exposure.

Metabolic pathways associated with DEGs were retrieved using KEGG. In particular,
KEGG analysis was performed on “phenylpropanoid biosynthesis”, “flavonoids biosyn-
thesis”, and “circadian rhythm” maps (Figure 2a, Figure 2b, and Figure 2c, respectively),
since the resulting metabolites from the aforementioned pathways were increased in UV-B-
exposed peach fruits according to our previous metabolomic studies [12,29,30].

Concerning phenylpropanoids, we detected four and one over-regulated pathways
after 1 and 3 h from the UV-B exposure, respectively. In particular, the gene encoding an O-
hydroxycinnamoyltransferase (HCT; prupe.1g237100.1), with KO code K13065, resulted in
being activated during both recovery time points (Figure 2a). The remaining four genes in
the phenylpropanoid pathways, activated exclusively at the first time point (1 h), encoded
the following enzymes: peroxidase (POD, prupe.7g016500.1), phenylalanine ammonia-
lyase (PAL, prupe.6g235400.1), and caffeoylshikimate esterase (CSE; prupe.5g109300.1).

A flavonoid biosynthesis map showed three genes that were over-expressed after
the UV-B treatment and shared after 1 and 3 h (Figure 2b). In particular, these genes
encoded the CHS (prupe.i005700.1), the flavonol synthase (FLS, prupe.1g502800.1), and the
HCT (prupe.1g237100.1; Figure 2b). Interestingly, the CHI (prupe.2g263900.1) gene was
over-expressed in the flavonoid biosynthesis pathway exclusively after 3 h from the UV-B
treatment (Figure 2b).

Finally, concerning the “circadian rhythm” map, we retrieved three genes activated by
UV-B exposure at the two time points (Figure 2c). These genes encoded CHS (prupe.i005700.1),
E3 ubiquitin-protein ligase RFWD2 (RFWD; prupe.2g293400.1), and transcription factor
HY5 (prupe.1g208500.2).

For each analyzed map, no under-expressed genes were retrieved after the UV-B exposure.
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Figure 2. Schematization of metabolic pathway for phenylpropanoid (a), flavonoid (b), and circadian
rhythm (c), as described by KEGG 111 after 1 h and 3 h from the end of UVB exposure in the peel of
UV-B-treated peach fruit. Arrows indicate the path from reagent to product. Red arrows underline
genes encoding for enzyme that resulted in being over-expressed after 1 h of recovery; similarly,
green arrows underline over-expressed genes after 3 h of recovery; yellow arrows are over-expressed
DEGs active during both recovery times. Black arrows are for not-differentially expressed genes
in the related pathways. No under-expressed genes were retrieved for the investigated pathways.
Genes involved in the metabolic pathway are written in italics. Concerning the circadian rhythm map
(c), genes involved in cellular regulation are within the square.
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2.3. Cellular Function Clustering of DEGs Exposed to UV-B

Possible cellular and molecular function of DEGs from the peel of peach fruits exposed
to UV-B were clustered using MapMan. Especially, the map called “Overview” allowed the
clustering of DEGs in cellular function such as transcription factor, cell wall, and external
stimuli response (Figure 3).
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under-expressed ones (UE). White dots indicate genes that were not differentially expressed in one
time point but in the other. The scale, based on gene fold change, spans from dark blue (Log FC =−3)
to dark red (Log FC = 3).

Concerning transcription factors, we detected a major over-expression at the first time
point with an overall 45 DEGs (39 OE, 6 UE), often belonging to the MYB, WRKY, and
bZIP multigenic family (Table S3). In addition, we also detected the HY5 gene (Figure 3;
prupe.1g208500.2). After 3 h from UV-B exposure, a total of six DEGs involved in gene regu-
lation were retrieved; especially, two DEGs were shared with the first time point (MYB and
DREB transcription factors) (Figure 3; Table S3). Interestingly, we also retrieved two C2H2
zinc finger transcription factors, which correspond to genes ZAT10 (prupe.1g424300.1) and
ZAT12 (prupe.2g230800.1).

Regarding cell wall, a total of six genes were regulated in peach fruit at the 1 h
recovery time point. In particular, five genes resulted in overexpression, two galacturonosyl-
transferases (GalATs; prupe.3g276500.1, prupe.1g384100.1), xylan O-acetyltransferase (XOAT;
prupe.3g123000.1), beta-D-xylosidase (BXL; prupe.1g123100.1), and CSE (prupe.5g109300.1),
whereas only one gene involved in cell wall formation, a pectin methylesterase (PME,
prupe.7g190400.1), was under-expressed at the first time point of the experiment. No
genes related to the cell wall were regulated at the second time point.

Finally, considering the map “external stimuli response”, upregulation of 10 genes
occurred at the 1 h time point, three of which were activated also in the second time
point (Figure 3). The genes that were overexpressed at both experimental times were
COP1 (prupe.4g013500.1), RUP (prupe.2g293400.1), and five genes belonging to multigenic
families of CBF/DREB1 (Figure 3; Table S3). Furthermore, after 3 h from the treatment,
2 additional genes annotated as “UV-B signal transduction transcriptional regulator” were
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retrieved in the “external stimuli response map” (Figure 3). No under-regulated genes
were observed within this map. A list of differentially expressed genes associated with the
analyzed functional classes is available in Table S3.

2.4. Co-Expression Network Analysis of DEGs

Possible gene network modules in the fruit peel of peach fruits exposed to UV-B
radiation were identified by analyzing DEGs obtained at the first time point (after 1 h of
recovery). These modules were also associated to biochemical values, such as flavonols,
anthocyanins, lignans, and other phenolic classes (Table S1).

Overall, 16 modules containing DEGs were retrieved and separated by color clusters
(Figure S3). In particular, our analysis was focused on modules called “Red” and “Salmon”,
since they include genes involved in the phenylpropanoid biosynthesis and UVR8-related
pathways. “Red” and “Salmon” modules contained 35 and 19 genes, respectively.

These two modules were further analyzed to detect possible gene network associa-
tions (Figure 4). In the “Red” module, principal connections were shared by genes CHS
(prupe.i005700.1), MYB12 (prupe.8g270000.1), and PAL (prupe.6g235400.1; Figure 4A). Con-
cerning the “Salmon” module, the main network was shared between the endoplasmic retic-
ulum-localized adenine nucleotide transporter 1 (ER-ANT1; prupe.5g208700.1), HY5 homolog
(HYH; prupe.1g208500.1), and DONGLE (DGL; prupe.1g181800.1) transcripts (Figure 4B).
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3. Discussion

Post-harvest UV-B radiation as a factor able to rearrange fruit transcriptome during
storage has been scarcely investigated, since most current relevant literature focused on
studying the effects of this radiation on fruit exposed in pre-harvest [31–33]. Considering
the 847 DEGs found, almost all of them (88%) were detected after 1 h from the UV-B
irradiation, with a predominance (78%) of the overexpressed ones compared to the under-
expressed indicating that deep transcriptome modification can occur also during the first
time of recovery. To date, no studies have investigated the timing of the UV-B-induced
changes of gene expression in fruit during storage. However, in accordance with our
findings, in Arabidopsis, a strong upregulation of some UVR8-related genes (HY5, RUP1,
and RUP2) in plants irradiated with UV-B (3 µmol·m−2·s−1) was observed already after 1 h
from the irradiation, suggesting a rapid activation of the UVR8 signaling pathway leading
to an increase in the expression of downstream genes [34]. Additionally, the same study
reported a decreasing trend in the transcript level of the same three genes after 3 h from
the beginning of the irradiation. Another study on Arabidopsis investigating the photo-
equilibrium between the dimeric (inactive) and monomeric (active) state of UVR8 exposed
to 3·µmol m−2·s−1 UV-B found that the monomerization rate reached its maximum (25%)
after 45–60 min from the beginning of the irradiation, further triggering the transcriptional
changes in the downstream responsive genes [35].

UV-B radiation is known to activate the phenolic pathways through overexpression
of specific biosynthetic and regulatory genes [7,36]. Most relevant studies in this field
used Arabidopsis as the model plant [36–38], while the few pertinent manuscripts about
UV-B-irradiated fruit [10,12,39–41] focused on specific putative UV-B-responsive phenyl-
propanoid genes rather than extensively investigating the changes in the transcriptome
adopting an -omics approach. Overall, transcriptomic analyses showed an increased func-
tion of GOs such as metabolic and cellular processes, with a specific activation of genes
related to “aromatic compound biosynthetic process” such as gene pathways involved
in production of phenols. Interestingly, some metabolic pathways strongly influenced
by UV-B treatment, according KEGG analysis, were “phenylpropanoid biosynthesis” and
“flavonoids biosynthesis”. Particularly, a few of the upregulated genes belonged to the
shikimate pathway, which represents the early stage of the phenolic biosynthesis. Most
relevant literature focuses on the UV-B-mediated modulation of flavonoid-related genes,
although some published studies show that also the early stages of the phenylpropanoid
pathway are triggered by UV-B radiation [42,43]. More in detail, PAL, encoding a key
enzyme in initiating the flavonoid biosynthesis, was found to be overexpressed after 1 h
from the irradiation, indicating a UV-B-mediated stimulation of the phenolic pathway.
PAL was indeed found to be a highly UV-B-regulated gene in some plant species [44–46],
resulting in a higher enzymatic activity [45–48]. In addition to PAL, our results showed an
overexpression of HCT, CSE, and POD in the 1 h recovery samples, which are crucial genes
in the phenylpropanoid pathway. In detail, HCT catalyzes the conversion of p-coumaroyl
CoA to p-coumaroyl shikimate but intervenes also in the reaction from caffeoyl shikimate to
caffeoyl CoA [49]. Conversely, CSE esterifies the caffeoyl shikimate to produce caffeate [49],
while POD plays a key role in catalyzing monolignol polymerization into lignin, besides
acting as an antioxidant enzyme involved in ROS scavenging. These enzymes are crucial
points in the biosynthesis of monolignols, which constitute the monomers of the lignin
polymer [50]. It is well-known that, in higher plants, lignification represents a defensive
response toward several biotic and abiotic stressors [49–57]. Since UV-B radiation consti-
tutes a highly energetic portion of the solar spectrum, plants have evolved anatomical
and morphological adaptations, in addition to biochemical and physiological modifica-
tions, to avoid damages to the photosynthetic apparatus and impairments in the biological
processes [4,58]. Among them, a UV-B exposure has been found to increase not only the
content of flavonoids but also the accumulation of lignin in the trichomes and cotyledons of
different plant species [59–62]. The UV-B-triggered overexpression of genes involved in the
lignin biosynthesis observed in our study might likely determine an increase in lignin pro-
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duction, attenuating the UV-B radiation as an acclimation response and inducing a higher
resistance toward biotic stress [49–63]. In this regard, a more in-depth investigation of the
UV-B-triggered rearrangement of the cell wall architecture, as well as the UV-B-induced
modifications of lignin content and composition, will be the object of future work focused
on these aspects.

According to the flavonoid biosynthetic pathway resulting from KEGG analysis, CHS
and FLS were found to be upregulated after both 1 h and 3 h from the end of the UV-
B exposure, while also CHI was overexpressed 3 h after the treatment. An increase in
CHS, CHI, and FLS transcript levels has been observed in many UV-B-treated plants and
fruit species, e.g., peaches [12,41,64], apple [10,65], tomato [39], and table grape [66]. UV-
B-triggered promotion of flavonoid-related genes has been described as an acclimation
response toward UV-B conditions [5,36,67], since the antioxidant capacity of flavonoid
molecules can effectively neutralize the UV-B-induced ROS [68,69], preventing damages
to cellular components, such as nucleic acids and proteins. Our study also showed no
under-expressed genes belonging to either phenylpropanoid or flavonoid biosynthesis in
any of the recovery time points (1 h and 3 h), indicating that only an upregulation in the
phenolic pathway occurred following the UV-B exposure.

Although UV-B perception and signaling via UVR8 have been deeply studied in
Arabidopsis, only a few studies investigated the activation of UVR8-pathway-related genes
in fruits [12,41,70–72]. Interestingly, considering the “circadian rhythm” map resulting
from the KEGG analysis, and the DEGs classification through MapMan, an upregulation
of HY5, COP1, and RUP genes was found in both the recovery time points, 1 h and 3 h.
Transcription of HY5 and RUP genes is UV-B-regulated, since they play a key role in
activating the expression of specific UVR8-responsive genes and promoting the UVR8
re-dimerization, respectively [73–76]. Upregulation of HY5 and COP1 was also observed in
UV-B-treated peach peel and pulp [12,41], although the authors investigated the transcript
levels not earlier than 6 h after the end of the UV-B irradiation. The present study provides
evidence that upregulation of HY5 and COP1 in the peel of UV-B-exposed peach fruit, likely
because of the activation of the UVR8 receptor, occurred already after 1 h from the end of
exposure. Indeed, as aforementioned, a time-course experiment on Arabidopsis shows that,
after exposing the plants to broadband UV-B radiation (3 µmol·m−2·s−1), 1 h of recovery
is sufficient to get the highest (~25%) UVR8 monomerization rate [35]. The much greater
activation of genes encoding for UVR8- and phenylpropanoid-related pathways detected
at 1 h recovery, compared to the 3 h recovery, suggests that the UV-B signal is weakening
at the second time point considered. However, combining this observation with the one
by Santin et al. [12], who found a biphasic activation of HY5 and COP1 after 6 and 24 h
from the irradiation, it can be hypothesized that the transcript levels of such genes might
undergo fluctuations over time after their activation.

A MapMan-based cluster of DEGs revealed also transcriptional modifications of
enzymes involved in cell wall plasticity. In particular, after 1 h from the UV-B irradi-
ation, a down-regulation of a PME isoform was found. PMEs constitute a multigene
family, accounting for more than 66 members in Arabidopsis [47], 47 in Vitis vinifera [77],
60–70 in Musa acuminata [78], 78 in Gossypium raimondii [79], 54 in Fragraria vesca [80], 79 in
Solanum lycopersicum [81], and 71 in Prunus persica genome [82]. PMEs act by promoting
the demethylesterification of the homogalacturonan polymer, contributing to the cell wall
disassembly [83,84]. Therefore, PMEs, together with other cell-wall-dismantling enzymes
such as polygalacturonases and β-galactosidases, play a crucial role in the softening pro-
cess during fruit ripening and senescence, contributing to the overall commercial and
organoleptic quality of the products. A UV-B-induced decrease in PME activity in the peel
of peach fruit was previously observed [85,86]. Indeed, the authors found a reduction in
PME activity 12 and 36 h after a 60 min UV-B exposure, while a decreased PME1 expression
was detected 12 and 24 h after the UV-B treatment. In the present study, a downregulation
of the PME gene has been found already after 1 h from the end of the UV-B exposure,
confirming the influence of UV-B wavelengths in affecting PME expression. In any case,
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a decrease in PME expression, accompanied with reduced PME activity, might pave the
way for the use of UV-B irradiation to extend the shelf life of fruit and vegetable products.
Additionally, the current study revealed an increase in other genes encoding for enzymes
involved in cell wall organization, such as two GalATs (fold changes 1.36 and 1.76) and a
XOAT (fold change 1.21), after 1 h from the end of the UV-B irradiation. GalATs and XOATs
are two key enzymes in contributing to the functional architecture and the mechanical
properties of the cell wall, by catalyzing the addition of O-acetyl residues to the xylan and
by adding galacturonic acid moieties to form pectin polymer, respectively [87,88].

To detect a correlation between UV-B-triggered transcriptomic and metabolomic
changes, a co-expression network analysis of DEGs has been conducted, and the resulting
networks were associated with the metabolomic dataset of a previous manuscript from
the same authors [12]. This analysis was performed using the transcriptomic dataset from
the 1 h recovery time point, since most of the UV-B-induced changes were observed after
1 h from the irradiation (88% of DEGs), and the number of upregulated phenylpropanoid-
related genes was higher compared to the 3 h recovery. One of the most interesting
DEGs-containing clusters, the “Red” one, included some upregulated genes involved in the
phenylpropanoid pathway, such as CHS and PAL, and the gene encoding for the transcrip-
tion factor MYB12, which was found to promote the transcription of some flavonoid-related
genes, such as CHS and FLS [89–91]. The “Salmon” cluster contained the HYH gene, whose
transcription is activated by UV-B radiation via UVR8 and, partially overlapping with HY5
transcription factor, acts by promoting the expression of downstream genes involved in
UV-B acclimation and photoprotection [36,92–94]. A strong correlation was found between
genes belonging to the “Red” and “Salmon” clusters and the accumulation of specific
phenolic subclasses, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, which
are among the phenolic groups exhibiting the greatest antioxidant capacity. Interestingly,
the gene network associations analysis (Figure 4) revealed that the principal connections
resulting from the “Red” module were shared by two biosynthetic (CHS and PAL) and a
regulatory (MYB12) gene belonging to the phenylpropanoid pathway. According to the
model proposed by Santin et al. [12], the overall accumulation of phenolic compounds,
especially flavonoids, detected after 36 h from the UV-B treatment could be the result of the
UVR8-triggered activation of genes involved in the phenylpropanoid pathway. Through
qRT-PCR, the authors observed an upregulation of specific biosynthetic (CHS, F3H, F3′H,
and DFR) and regulatory (MYB111 and MYB-like) genes, as well as genes involved in the
UVR8 pathway (COP1 and HY5) after 6 h from the exposure, but earlier recovery time
points were not investigated in that study. With this work, through an -omics approach, we
found that the activation of the UVR8 pathway occurred already after 1 h from the end of
the UV-B treatment and continues also 3 h after, since HY5 and COP1 were upregulated in
both the time points considered. Interestingly, also some downstream flavonoid-related
genes were activated both after 1 (PAL, CHS, FLS) and 3 h (CHS, CHI, FLS). As a result,
the accumulation of specific phenolic subclasses was visible 36 h after the exposure [12],
indicating a UV-B-triggered accumulation of such health-promoting compounds through
transcriptional activation. However, it is important to state that the UV-B triggered ac-
cumulation of phenolic compounds is strictly dependent on both genotypes, influencing
the biochemical changes to external factors such as a UV-B irradiation, and the UV-B dose
to which the plant material is exposed [21]. Indeed, considering the importance of the
cultivars, different responses to the same UV-B treatment were observed in post-harvest
peaches [28] but also in other plant species, such as lettuce [95], blueberry leaves [96], and
olives [97]. Besides, the UV-B treatment conditions, in terms of duration and irradiance, are
also crucial to determine specific biochemical modifications in the UV-B-exposed plants of
fruits. Indeed, experiments conducted on the same plant species and cultivar but varying
the UV-B dose gave significantly different results, such as in peach fruit [29] but also in other
plant species, such as mung bean sprouts [47] and basil [98]. In light of the aforementioned
considerations, it is important to highlight that the observed responses in terms of both
gene expression and correlation with metabolite accumulation are strictly cultivar- and
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UV-B-dose dependent; therefore, they might significantly differ if a different peach cultivar
and/or different UV-B treatment conditions are considered.

A suggested working model of the transcriptional modifications and the resulting
accumulation of specific phenolic classes in the peel of UV-B-treated peach fruit is presented
in Figure 5.
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Finally, transcription factors differentially regulated in the peel of peach fruit exposed
to UV-B were collected in our analysis. In addition to the HY5 and MYB factors previ-
ously described, we retrieved several genes encoding for multigenic families involved in
transcriptional regulation such as bHLH, DREB, C2H2 zinc finger, ERF, GATA, GRAS, and
WRKY (Figure 3; Table S3). The bHLH transcription factors family has been observed to
respond to environmental UV-B signals, cooperating with other TFs, for example HFR1,
stabilizing the cell light response via the UVR8 pathway [2,99]. DREB and C2H2 zinc
finger multigenic TFs are positively regulated in response to abiotic stress and also during
UV-B irradiation [92]; interestingly, in our analysis, we detected the activation of two genes
belonging to C2H2 transcription factors, corresponding to ZAT10 and ZAT12, the expres-
sions of which have been observed in A. thaliana to rapidly increase after 1 h from UV-B
exposure [100]. Irradiation by UV-B in plant leaves is also known to stimulate ethylene
production, as in the case of A. thaliana and grapes, by inducing the activation of the ERF
transcription factor [101,102]. Some members of this multigenic family were retrieved as
overexpressed during peach peel exposure to UV (Table S3). Concerning GATA and GRAS
transcription factors, recent studies pointed out the activation of these genic families during
the circadian rhythm; especially the GATA box can physically interact with HY5 to regulate
response to UV-B radiation [103,104]. Regarding WRKY, these transcription factors have
been described as activated concomitantly to UV-B stimulation in rice, enhancing tolerance
of leaf surface to irradiation by increasing lignin [105].

4. Materials and Methods
4.1. Plant Material and UV-B Treatment

Organic peach fruits (Prunus persica L., cv Fairtime), uniform in size (8.1 cm aver-
age diameter) and color (mostly yellow with few orange spots) and without any wound
or damage, came from the farm Azienda Agricola Conforti Cristiano (43◦53′42.867′′ N,
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10◦30′57.178′′ E , 48 m above sea level) and were treated with UV-B radiation within 24 h
after harvesting. Once at the laboratory, peaches showed a firmness value of 25.60± 0.18 N,
defining the stage of the fruit as “ready to buy” [106]. The fruits were randomly assigned to
either control (n = 10) or UV-B-treated (n = 10) group. The UV-B treatment was conducted
at room temperature (24 ◦C) using UV-B tubes (Philips Ultraviolet-B Narrowband, TL
20 W/01—RS, Koninklijke Philips Electronics, Eindhoven, the Netherlands) together with
white light tubes (Philips F17T8/TL741). Control fruits were placed in a separated climate
chamber at the same temperature conditions but exposed to just white light. The UV-B
exposure lasted 60 min, corresponding to a total irradiance of 38.53·kJ·m−2 (8.33 kJ·m−2

UV-B + 30.20 kJ·m−2 white light), while control fruits were given a total irradiance of
30.20 kJ·m−2 white light. The UV-B dose and experimental conditions were chosen accord-
ing to previous studies by the same research group [12,29]. Randomized groups of five
peaches from both the control and the UV-B-treated groups were sampled after 1 and 3 h
from the end of the UV-B treatment. During the recovery period, the fruits were kept at the
same climate chambers at room temperature (24 ◦C) with just the white light on. Then, the
peach peel from the UV-B-exposed side of the fruit was accurately removed with scalpels
and tweezers, immediately dipped into liquid nitrogen, and kept at −80 ◦C until analysis.

4.2. RNA Isolation

Total RNA was extracted with the LiCl/CTAB method with few changes, as reported
in detail in a previous manuscript by the same authors [85]. Briefly, samples were ground
in liquid nitrogen and extraction buffer (2% [w/v] hexadecyltrimethylammonium bro-
mide, CTAB; 2% [w/v] polyvinylpyrrolidone (average molecular weight 40,000), PVP;
100 mM Tris/HCl pH 8.0; 25 mM EDTA; 2 M NaCl; 0.5 g·L−1 spermidine and 2.7% [v/v]
2-mercaptoethanol) was added to the freeze material. Ice-cold chloroform:isoamyl alco-
hol (24:1) was used for phase separation. Addition of 10 M LiCl at 4 ◦C with following
overnight incubation allowed RNA-selective precipitation. After rinsing with cold 70%
EtOH and re-hydration in 100 µL RNAse-free water, the RNA samples were stored at
−80 ◦C. Purification from genomic DNA was performed by digestion with DNaseI (Roche,
Basel, Switzerland). Finally, RNA was purified with phenol/chloroform and precipitated
with standard procedures. RNA concentration and quality were checked through Qubit
RNA BR Assay Kit (Invitrogen, Waltham, MA, USA), WPA Biowave spectrophotometer
(Biochrom Ltd., Cambridge, UK), agarose gel electrophoresis, and bioanalyzer analysis
using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA).

4.3. cDNA Libraries Preparation

Libraries of cDNA deriving from the peels of control and UV-B-exposed fruits of P. persica
considering two recovery time points (1 and 3 h after the irradiation) were collected and se-
quenced with an Illumina HiSeq 2500. RNA-seq data were deposited in the NCBI Sequence
Read Archive (SRA) under accession number PRJNA855351. Three biological replicates ran-
domly selected out of five fruits were collected for each treatment and time point. Overall
quality of reads was checked by using FastQC (v.0.11.9) and improved using Trimmomatic
(v. 0.3.9) [107] with the following parameters: SLIDINGWINDOW: 4:20; CROP: 80; HEAD-
CROP: 10; MINLEN: 70. Possible ribosomal contamination was removed from high-quality
cDNA libraries using CLC Genomic Workbench v. 9.5.3 (CLC-BIO, Aarhus, Denmark) and
mapping reads on P. persica rRNA, downloaded from the SILVA [108] repository, with the
following parameters: mismatch cost = 2, insertion/deletion cost = 3, length fraction = 0.5,
and similarity fraction = 0.8. Not-mapped reads were retained for subsequent analysis.

4.4. Differential Expression Analysis

High-quality reads were aligned on the P. persica transcriptome [23] “https://phytozome-
next.jgi.doe.gov/info/Ppersica_v2_1” (accessed on 15 October 2021) by using the CLC
Genomic Workbench as follows: mismatch cost = 2; insertion/deletion cost = 3, length
fraction = 0.8, and similarity fraction = 0.8. Raw counts per transcript were analyzed using

https://phytozome-next.jgi.doe.gov/info/Ppersica_v2_1
https://phytozome-next.jgi.doe.gov/info/Ppersica_v2_1
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the R package edgeR [109] and gene expression calculated as reads per kilobase per million
reads mapped (RPKM) [110]. Genes with RPKM > 1 in at least one library were considered
as expressed and used for further analysis. Differentially expressed genes (DEGs) were
obtained using the likelihood test on edgeR performing pairwise comparison between
control and UV-B-treated fruits during two time points (1 and 3 h, respectively). Genes
were selected as differentially expressed for absolute fold change >2 and false discovery
rate (FDR) [111] corrected p-value < 0.05.

4.5. Gene Ontology (GO) and DEGs Functional Classification

Description of genes and associated GO terms were downloaded from the phytozome
database of P. persica. GO distribution for differentially expressed genes was visualized
using WEGO with default parameters [112].

GO enrichment analysis was performed between GO terms of differentially expressed
genes and GO terms of the whole transcriptome of P. persica. Statistical analyses were
carried out with Fisher exact test using Blast2GO [113] and GO terms showing FDR-
corrected p-value < 0.05 were considered enriched. Subsequently, REVIGO was used to
remove redundant GO terms with the parameter “tiny similarity” [114].

MapMan was used for functional clustering and visualization of DEGs [115], correspondent
MapMan bins of P. persica were retrieved using Mercator4 v. 2.0 [116] on protein sequences.

Finally, the KEGG database (Kyoto Encyclopaedia of Genes and Genomes) was used
to retrieve metabolic pathways associated with DEGs. In particular, KEGG Orthology (KO)
id codes associated to DEGs were obtained using protein sequences on KAAS [117] with
the bi-directional blast hit (BBH) option. Subsequently, KO codes belonging to DEGs were
submitted to the KEGG [111] mapper for metabolic pathway retrieval.

4.6. Gene Co-Expression Network Analysis and Metabolic Data Correlation

Expression values (RPKM) of DEGs retrieved by RNA-seq analysis during the first
time point (1 h of recovery) were further investigated by the WGCNA algorithm [118] to
construct co-expression network modules related to UV-B exposure. The soft threshold
values were implemented and detected according to WGCNA instruction. In particular, the
gradient method was used to test different power values, ranging from 12 to 40, allowing
us to establish the most suitable soft power value of 30 corresponding to an R2 threshold of
0.85. The minimum number of genes per module was set to 15.

Correlation analysis between eigengenes from each module and the biochemical
values of phenolic classes (Table S1) was performed by using WGCNA to assess statistical
linear regression with corresponding p-value for each module. The phenolic data used
for correlation analysis was derived from an extensive re-processing of metabolomic data
derived from a previous experiment [29], conducted on the same peach cultivar adopting
the same experimental conditions and UV-B treatment. Correlation with the quantification
of several individual phenolic subclasses (expressed as the sum of integrated peak areas of
each phenolic subclass components; Table S1) was performed considering the data from
the 36 h recovery time point, since the accumulation of specific phenolic subclasses was
observed only 36 h after the end of the UV-B exposure, likely because of the antecedent
UVR8-mediated activation of flavonoid biosynthetic genes [12].

Network visualization for key genes corresponding to co-expression network modules
was performed using VisAnt [119] with the cut-off weight parameter set to 0.3. In the
representation, each node corresponds to a gene that is connected to a different number of
genes by lines.

5. Conclusions

To conclude, although some studies have investigated the UV-B-induced upregulation
of phenylpropanoid genes in different fruit species, no previous works focused on the
transcriptomic modifications in the peel of UV-B-exposed peach fruit and their correlation
with the content of phenolic compounds. This study provides evidence that the UV-
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B exposure triggers the UVR8 pathway also in peach fruit by upregulating some well-
known UVR8-related genes, such as HY5 and COP1, whose increase in transcript levels
was visible already after 1 h from the irradiation and continues after 3 h. As a result,
a downstream activation of some phenylpropanoid biosynthetic and regulatory genes
occurred, determining a consequently strong increase in specific phenolic subclasses. In
conclusion, this manuscript deepens the knowledge of the UV-B-related transcriptomics
changes in fruit, so far widely explored only in Arabidopsis.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/plants12091818/s1: Figure S1: Distribution of GO terms for DEGs of
peel of UV-B-treated peach fruit after (A) 1 h and (B) 3 h recovery time points. Overexpressed
(red bar) and under-expressed (blue bar) GO terms are shown for each macro-category: “Cellular
Component”, “Molecular Function”, and “Biological Process”; Figure S2: GO enrichment analysis
for over (OE) and under (UE) expressed genes in the peel of UV-B-treated peach fruit after 1 h of
recovery. Blue bars represent percentage of GO terms in DEGs. Red bars are the percentage of
GO terms in reference P. persica transcriptome; Figure S3: Gene network modules and biochemical
trait correlation as calculated by WGNA. R2 values and corresponding p-values are shown in each
module-treatment comparison. Color scale refers to R2 and span from red (higher correlation)
to green (lower correlation); Table S1: Relative abundance of the individual phenolic subclasses
(expressed as sum of integrated peak areas of all the phenolic compounds belonging to each subclass)
detected in the peel of post-harvest UV-B-treated peach fruit (60 min UV-B treatment); Table S2: List
of differentially expressed genes in P. persica fruit peel exposed to UVB after 1 hour and three hours
recovery; Table S3: Differentially expressed genes divided in functional classes by MapMan analyses
for P. Persica fruit peel exposed to UVB. Fold change (FC) of expression for each gene is shown for 1 h
and 3 h recovery from UVB radiation.
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