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Abstract: In the upper vegetation limit of the Andes, trees change to shrub forms or other life forms,
such as low scrubs. The diversity of life forms decreases with elevation; tree life forms generally
decrease, and communities of shrubs and herbs increase in the Andean highlands. Most of treeline
populations in the northwestern Argentina Altiplano are monospecific stands of Polylepis tarapacana,
a cold-tolerant evergreen species that is able to withstand harsh climatic conditions under different
life forms. There are no studies for P. tarapacana that analyze life forms across environmental and
human impact gradients relating them with environmental factors. This study aims to determine
the influence of topographic, climatic, geographic and proxies to human uses on the occurrence
of life forms in P. tarapacana trees. We worked with 70 plots, and a new proposal of tree life form
classification was presented for P. tarapacana (arborescent, dwarf trees, shrubs and brousse tigrée).
We describe the forest biometry of each life form and evaluate the frequency of these life forms in
relation to the environmental factors and human uses. The results show a consistency in the changes
in the different life forms across the studied environmental gradients, where the main changes were
related to elevation, slope and temperature.

Keywords: tree growth form; stem; multi-stemmed; scrublands; scrub; tree; Argentinean highlands;
high Andean vegetation

1. Introduction

Life forms are functional types that have been used to describe the adaptation of
vegetative structures of plants to certain ecological conditions. They refer to the general
physiognomy of the tree or the common habit of the individual [1,2], and are used to
interpret the functionality of vegetation [3,4] as well as to group individuals with similar
morphologies [5], which allows comparisons between floras from different regions [4].
Solbrig [6] described life forms as functional groups based on a single character and
Raunkiær expressed that, in response to harsh environments, plants can develop adapta-
tions that allow the protection of renewing shoots [7].

In the upper limit of vegetation, trees change their growth strategy to shrub or other
life forms, such as low scrubs [8]. These ecosystems are characterized by a marked thermal
seasonality defined by long winters and short growing seasons, which greatly influence
plant growth. Trees are subjected to the synergistic actions of stress, due to extreme
fluctuations in temperature, drought, nutrient limitations and high levels of radiation [9,10].
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Tree distribution boundaries are rarely sharp, and the transition from tree to shrub-only
stages may be fragmented and stretched over a few meters in steep terrains or over many
kilometers in flat terrains [8].

The topography, soils and the degree of human disturbance can modify the distribution
and structure of arid and semi-arid vegetation [11]. The diversity of life forms and tree
growth forms decreases with elevation; tree life forms generally decrease while shrubs and
herbs increase in the Andean highlands [4]. Elevation represents the best example of an
environmental gradient, where resources change due to a complex combination of climatic
factors (e.g., temperature, rainfall, soils and substrate stability) [12], and it is a decisive
factor that shapes the spatial patterns of plant life forms [13]. Therefore, the identification
and estimation of different tree life forms are relevant for the evaluation of ecosystem
structure and function [14,15].

In the Andean regions at the tree line, trees show a series of morphological and
physiological responses to face extreme low temperatures and other environmental stresses,
such as drought (caused by greater levels of evaporation), lower rainfall and higher solar
radiation [16,17]. The response to this type of environmental stress is a reduction in the
aboveground biomass, manifested as a decrease in tree height [18]. In this area, some
individuals with unbranched or slightly branched woody stems have different tree life
forms [19], standing out in places with little vegetation that does not exceed 50 cm in
height [20]. These observations have generated greater interest in the adaptive importance
of tree forms in the highlands [21]. In the Andean forests, there are individuals that growth
in prostate or creeping forms, due to the effect of wind and snow, generating crooked
trunks [19]. This type of growth is described for Nothofagus pumilio (Poepp. et Endl.)
Krasser and Austrocedrus chilensis (D. Don) Pic. Serm. and Bizzarri, where low temperatures
and drought are the limiting factors that condition the growth and tree development [22],
as well as for Polylepis tarapacana Phil. forests in the Chilean highlands [19].

In the highlands of the South American Andes, P. tarapacana forests present differences
in forest structure at different elevations and climate [23]. This species is sensitive to soil
moisture content and, in response to drought, it can distribute its biomass in multiple
individual stems with smaller diameters and heights to conserve the available moisture of
the plant [19,21].

Rios [24] and Saavedra [19] described two life forms for P. tarapacana in Chilean forests:
(i) single stem trees and (ii) multi-stemmed trees. These authors calculated the frequency of
each tree life form, but they did not assess its relationship with environmental gradients
or past human uses. Due to the correlation between the environment and the structure of
these forests [21,23], it is expected that there is some influence of environmental factors
on tree life forms [13]. Therefore, there is a need to review the classification developed by
Ríos [24] and Saavedra [19], and propose a broader classification of tree life forms based on
those described for different tree-line life forms [25–32].

Tree life form classifications, which can better present the tree line [26], are: (i) “Treelets”,
or trees shorter than 5–10 m, and (ii) certain scrubby but very tree-like forms of 1–5 m,
called “dwarf-trees”. The noun ‘arborescent’ is used to refer to woody plants that branch
near the ground level. (iii) “Arborescents” are thus an intermediate form between trees
and shrubs. (iv) “Krummholz” is a wind-stunted woody scrub occurring primarily at the
tree-line and other exposed sites in mountains. (v) “Shrubs” are woody plants with multiple
stems arising from the ground level. (vi) “Dwarf shrubs” are woody, generally small-
leaved chamaephytes, not taller than 0.50 m, and more commonly 0.30 m. (vii) “Cushion
shrubs” are small krummholz forms occurring near to constantly desiccating, often cold
winds, with a completely limited vertical branch extension, resulting in an extremely dense
mass of short branches forming a flat or rounded shape. Likewise, (viii) “brousse tigrée”
(tiger bush) appear on slope gradient bands of vegetation formed perpendicular to this
direction [26,29–32].

There are no studies that relate P. tarapacana life forms with environmental and human
factors along elevation gradients [33], which is a topic of great ecological importance as a
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species adapted to very restrict environmental conditions. Moreover, it is considered a Near
Threatened species [34] due to human impact, which mainly led to habitat degradation
caused especially by the extraction of wood for fuel and construction in the area [35]. Some
studies have attempted to make comparisons among plant life forms in the Altiplano
region, but they always study different species in a community [13,36] and are not focused
on a single species that might present different life forms. These studies are needed to
assess the variability in tree life form composition within the region. There are also some
intriguing differences in this region that deserve attention. For example, where are the
tree life forms with only one trunk found? Is it more frequent to find multi-stemmed
individuals? Does the extraction and use of firewood and poles modify the frequency of
single-trunk life forms in the landscape? This and other similar questions are based on
more or less anecdotal evidence of distribution patterns, which generally relate to forest
structure data rather than form description.

In this paper, we elucidate how tree life forms change along different environmental
and human use gradients. This study aims to determine the influence of topographic,
climatic, geographic and human use factors on the occurrence of P. tarapacana life forms.
In particular, we aim to answer the following questions: (i) Which tree life forms does
this species have and what tree-specific biometric characteristics do the different tree life-
forms have? (ii) How does the tree life forms and its distribution change with topography
(elevation, slope and aspect), climate (temperature and precipitation), life zones and proxies
of human uses (human footprint and distance to towns)?

2. Results

The 70 plots presented a large heterogeneity in topography (e.g., location, elevation,
slope and aspect), where the N–S range was 156 km and W–E was 61 km. The elevation
gradient was 789.1 m, where four life zones occur: Tropical alpine moist tundra (TAMT),
Tropical alpine wet tundra (TAWT), Tropical subalpine dry scrub (TSDS) and Tropical
subalpine moist forest (TSMF). Likewise, the average distance to towns was 9.7 ± 4.7 km
(average ± standard deviation). During the surveys, 1801 trees were recorded, with an
average area of 1.29 m2 of tree crown, 7.8 cm of DBT and 86.1 cm of H.

2.1. Life Forms of P. tarapacana

We found four different life forms in the studied plots: arborescent (Ar), dwarf trees
(Dt), shrubs (Sh) and brousse tigrée (Bt). The Ar life form has a unique base and branches
that cover the entirety of the trunk, protecting buds from wind damage on the bark
(Figure 1). The Ar life form presents a highly variable size between individuals (DAB
8.3 ± 7.0 cm, H 73.8 ± 51.6 cm). Its tree crown was 0.42 ± 0.57 m2 and showed a CsR
circular to oval shape (1.3 ± 0.3). In Dt, the crown is observed at the end of the main axis
of the trunk, which is not covered by branches and has frequent signs of crown dieback
(Figure 1). The DAB was 10.9 ± 7.4 cm and H was 101.0 ± 55.3 cm. Its TC and CsR were
similar to those of Ar, with values of 0.35 ± 0.41 m2 for TC and a similar CsR (1.3 ± 0.3). In
the shrub life form, we observed multiple trunks, where the shortest ones were located at
the periphery of the bush and the tallest ones in the center. A high mortality of the central
trunks was observed in some shrub life forms (Figure 1). The size was 9.1 ± 6.3 cm for
DAB and 100.7 ± 49.4 cm for H. A broad and highly variable tree crown (size and shape)
was observed, measuring 2.0 ± 2.4 m2, while the CsR value was similar to that of Ar and
Dt (1.3 ± 0.3) (Figure 1). Brousse tigrée (Bt) occurs in P. tarapacana in bands, with different
sizes of trunks, where the smallest were in the direction of the slope and the tallest were
upslope (Figure 1). In the brousse tigree life form, some trunks located upslope were dead
or with a low presence of live leaves. The size was 4.3± 3.0 cm for DAB and 57.6 ± 27.1 cm
for H, where the tree crown was 1.4 ± 1.6 m2 with an elongated shape (2.74 ± 1.36).
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quency (HTest: 305.0, p < 0.0001) of small crowns was observed in Ar and Dt, intermediate 
values were observed in Bt, and the highest values were observed in Sh. The crown spread 
ratio did not present differences among Ar, Dt and Sh, while Bt was always more elon-
gated, with an average value of 2.74 and a maximum value of 9.33 (HTest: 185.6, p < 0.0001). 
The vitality of the individuals, classified by life form, presented significant differences 
(HTest: 41.3, p < 0.0001), following the gradient of Dt < Sh < Ar = Bt, with Dt values close to 
intermediate vitality and Ar and Bt close to healthy. We provide complementary infor-
mation of the biometric characteristics of each life form in Table A1 in Appendix A. 

Figure 1. Classification of life forms in P. tarapacana. Ar: Arborescent; Dt: Dwarf tree; Sh: Shrubs; Bt:
Brousse tigrée. The red line in the photo indicates the vertical cut that is observed in the graph on
the left.

The size of the individuals among the different life forms presented significant dif-
ferences (DAB HTest: 77.1, p < 0.0001, and H = HTest: 94.8, p < 0.0001), where the smallest
values were observed in Bt, followed by Ar, Sh and finally Dt (Figure 2). A higher frequency
(HTest: 305.0, p < 0.0001) of small crowns was observed in Ar and Dt, intermediate values
were observed in Bt, and the highest values were observed in Sh. The crown spread ratio
did not present differences among Ar, Dt and Sh, while Bt was always more elongated, with
an average value of 2.74 and a maximum value of 9.33 (HTest: 185.6, p < 0.0001). The vitality
of the individuals, classified by life form, presented significant differences (HTest: 41.3,
p < 0.0001), following the gradient of Dt < Sh < Ar = Bt, with Dt values close to intermediate
vitality and Ar and Bt close to healthy. We provide complementary information of the
biometric characteristics of each life form in Table A1 in Appendix A.
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Figure 2. Kruskal–Wallis test for the diameter, height, tree crown and crown spread ratio of P. tara-
pacana life forms. Different letters indicate significant differences (p < 0.05) by Conover–Iman test.

2.2. Changes in the Frequency of Life Forms According to Topographic, Climatic, Geographic and
Human Use Factors

The frequency of each of the four life forms was analyzed by plot, and showed a
higher value for Sh (50%), followed by Ar (24%), Bt (16%) and Dt (9%). Table 1 shows that
topographic factors (elevation, slope and aspect) significantly affect the frequency of the
defined life forms. There were significant differences for all P. tarapacana life form frequency
in elevation, while slope only showing differences in Ar and Bt. At higher elevations, the
frequency of Ar and Dt was higher (>30% in Ar and >13% in Dt for >4700 m a.s.l.), while
for Sh and Bt, the frequency decreased (from 59% in <4400 m a.s.l. to 40 % at >4700 m
a.s.l. in Sh and from 19% to 12% at the same elevations for Bt). In the same way, there is an
inverse relationship between the slope and frequency of Ar, and a direct one in Bt. For the
different aspects (north and east aspects), we did not detect significant differences among
the studied life forms.

Differences in the frequency of P. tarapacana life forms were observed in relation to
the following factors: life zone, annual mean temperature and distance to towns (Table 2).
AMT showed a similar pattern to those observed in the elevation gradient analysis (Table 1),
where the frequencies of the lowest temperatures are those located at the higher elevations.
Additionally, the frequency of all life forms presented significant differences among the
different life zones, with a greater number of Ar and Dt in the alpine life zone (TAMT
and TAWT) and Sh and Bt in the subalpine areas (TSMF and TSDS). The alpine life zones
are located at higher elevations compared with the subalpine zones, which corroborates
the change in the structure described in the elevation analysis. For temperature, it was
observed that the frequency of Ar and Dt increased in colder zones, and the opposite trend
occurred for Sh. Likewise, neither AP nor HF showed significant differences. However, it
was observed that the frequency of Ar and Bt increased and decreased, respectively, with
the distance to towns (DTT).
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Table 1. Kruskal–Wallis test for the relative frequency of Polylepis tarapacana life forms compared with
topographic factors (elevation in m a.s.l., slope in degrees and two aspects). Different letters indicate
significant differences (p < 0.05) by the Conover–Iman test.

Variable Range n Ar Dt Sh Bt

Elevation <4400 14 17 a 5 a 59 b 19 b
4400–4500 17 17 a 8 ab 51 ab 24 b
4500–4600 19 26 ab 10 abc 53 ab 11 a
4600–4700 6 30 b 16 c 39 a 14 ab

>4700 14 35 b 13 bc 40 a 12 a
p 0.0082 0.0349 0.0123 0.0017

HTest 13.7 10.2 12.7 17.1

Slope <15 18 30 b 11 55 8 a
15–25 25 27 ab 11 48 14 a
>25 27 18 a 7 50 24 b

p 0.0268 0.2320 0.5501 0.0002
HTest 7.2 2.8 1.2 17.2

NA N 27 22 8 52 18
Rest 43 25 10 49 15

p 0.3250 0.3049 0.5542 0.2000
HTest 0.9 1.0 0.3 2.7

EA W 13 28 10 50 12
Rest 34 22 10 51 17

E 23 24 9 50 17
p 0.6889 0.9677 0.9456 0.5978

HTest 0.7 0.1 1.1 1.0
Elevation in m a.s.l.; slope in degrees; NA: North aspect (N: from 315◦ to 45◦); EA: East aspect (E: from 45◦ to 135◦,
W: from 225◦ to 315◦). The aspects were calculated as sine and cosine functions, where sine values range from −1
(west) to 1 (east), while cosine values range from −1 (south) to 1 (north). Ar: Arborescents; Sh: Shrubs; Dt: Dwarf
trees; Bt: Brousse tigrée. Different letters indicate significant differences determined by comparisons of means
(Conover–Iman test, p < 0.05).

Table 2. Kruskal–Wallis of the frequency of Polylepis tarapacana life forms compared with climatic (tem-
perature and precipitation), geographical (life zones), human footprint and distance to towns factors.

Variable Range n Ar Dt Sh Bt

Life Zone TAMT 8 42 b 17 b 36 a 5 a
TAWT 2 39 ab 18 ab 39 ab 5 ab
TSDS 43 18 a 8 a 52 ab 22 b
TSMF 17 29 b 8 a 55 b 8 a

p 0.0006 0.0446 0.0426 0.0001
HTest 17.3 7.9 8.2 21.8

AMT <5 15 34 b 15 b 39 a 11
5–6 33 22 a 9 a 52 b 17
>6 22 20 a 7 a 55 b 18
p 0.0340 0.0232 0.0199 0.0629

HTest 6.8 7.5 7.8 5.5

AP <150 26 24 9 50 17
>150 44 24 10 51 16

p 0.9399 0.6171 0.9890 0.3618
HTest <0.01 0.3 <0.01 0.9

HF 0 53 25 10 50 15
>0 17 20 8 50 21
p 0.2758 0.5673 0.9891 0.1700

HTest 1.2 0.3 <0.01 1.9
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Table 2. Cont.

Variable Range n Ar Dt Sh Bt

DTT <5 13 14 a 6 58 23 b
5–10 32 23 a 9 51 17 ab
>10 25 31 b 11 45 12 a

p 0.0039 0.2661 0.1225 0.0436
HTest 11.0 2.6 4.2 6.2

Life zones: Tropical alpine moist tundra (TAMT), Tropical alpine wet tundra (TAWT), Tropical subalpine dry
scrub (TSDS) and Tropical subalpine moist forest (TSMF). AMT: Annual mean temperature in ◦C; AP: Annual
precipitation in mm.yr−1; HF: Human footprint; DTT: Distance to towns in km. A: Arborescents; Sh: Shrubs; Dt:
Dwarf trees; Bt: Brousse tigrée. Different letters indicate significant differences determined by comparisons of
means (Conover–Iman test, p < 0.05).

Topographic (elevation, slope and aspects), climatic (temperature and precipitation),
and human use (human footprint and distance to towns) factors were used to define the
frequency of life forms per plot (Figure 3). The plots were categorized into one simple (Sh
n = 12), three doubles (Sh|Ar n = 22, Sh|Bt n = 18 and Sh|Dt n = 4), one triple (Ar|Bt|Dt
n= 5) and one multiple (M n = 9) in relation to the abundance of life forms. Elevation and
slope presented two differentiated groups, where, in the plots with multiple forms, Sh|Ar
and Sh|Dt occurred in high- and low-slope areas, shrubs occurred at low-elevation and
-slope areas, and finally the formations with Bt occurred on high slopes. The aspect factor
presented less marked differences, with one single group located in the north aspect and
dwarf trees (Dt) occurred in the west aspect, while shrubs with Bt and Ar tended to occupy
the east aspects. Regarding human footprint (HF) and DTT, the Dt life form was observed
far away from towns, while shrubs occurred closer to towns. The HF showed a gradient in
which Dt and Ar were found in values close to 0, and as this value increased, Sh and Bt
were more frequently observed.
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Figure 3. Topographic, climatic and human use factors classified by the frequency of life forms.
Relationship among topographic variables ((A) Elevation and slope, (B) Aspects), climatic ((C) tem-
perature and precipitation) and human use ((D) human footprint and distance to towns). Bars indicate
the standard deviation of each axis. Elevation in m a.s.l.; Slope in degree; S|N: North Aspect; W|E:
East aspect. The aspects factors were calculated as sine and cosine functions, where sine values range
from −1 (west) to 1 (east), while cosine values range from −1 (south) to 1 (north). AMT: Annual
mean temperature in ◦C; AP: Annual precipitation in mm.yr−1; HF: Human footprint; DTT: Distance
to towns in km. Ar: Arborescents; Sh: Shrubs; Dt: Dwarf trees; Bt: Brousse tigrée; M: Multiple forms.
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3. Discussion

In this study, a new proposal to classify life forms of P. tarapacana was presented.
The new life forms considered were arborescent, dwarf trees, shrubs and brousse tigrée.
This proposal differs from that of Ríos [24] and Saavedra [19] as it divides the single
stem category into two (Ar and Dt) and the multi-stem into another two (Sh and Bt).
The justification for this new classification lies in the marked differences in their specific
biometric characteristics as well as in the described influence of topographic, climatic
and human uses factors, mainly on their frequency. The inclusion of the additional life
form categories (Ar and Bt, novel for this species) help to achieve a more comprehensive
overview of the life form composition for P. tarapacana.

3.1. Frequency of P. tarapacana Life Forms in the Argentinean Altiplano

Several authors agree in the classification of the life forms of P. tarapacana into single
trunk and multi-trunk [19,24], concluding that the highest proportion of individuals found
correspond to multi-trunk. These observations were made in small and specific areas of
the distribution of P. tarapacana, and the present work offered results in a larger study
area, covering most of the heterogeneity of its distribution (e.g., location, elevation, slope
and aspects).

According to Mooney [37], there should be, for a given combination of climate and
community succession, an optimal dominant life form. With this, a high degree of similarity
in life forms would be expected at each of the sampled stands in this study because a large
environment condition was covered. We found that the highest frequency of life form
corresponded to Sh (50.3%), where the highest proportion was related to the extreme
climatic conditions of the study area. The Altiplano plateau of the central Andes represents
one of the harshest places on Earth for plant growth [8], where shrubs are associated with
disturbed and stressful environments [38,39], and due to their lower height, plants take
advantage of the relatively favorable climate near the surface [40,41]. A relatively smooth
surface reduces the turbulence and, thus, minimizes heat loss, implying that, in calm
and clear conditions, the daytime temperature of shrubs is generally higher than the air
temperature [42]. The highest proportion of Sh was found by other authors in the Chilean
P. tarapacana [19], where 64% of the individuals have a multi-stem tree life form and only
36% present a single stem. Ríos [24] found, further south in the Province of Iquique (Chile),
that the proportion of life forms changes according to different topographic conditions.
Likewise to other species that inhabit extreme ecosystems [43], the different life forms of
P. tarapacana show a great phenotypic plasticity (i.e., an ability to respond to changes in their
architecture to adapt to different environmental variations throughout their distribution).

3.2. Biometric Characteristics of Different P. tarapacana Life Forms

The size and shape of the life forms was determined by the growth restrictions that
affect the lateral shoots and apical buds as well as the ability of plants to produce shoots
from the root [4,7,13]. For example, in our study, Shrubs (Sh) presented the largest tree
crown. Epicormic shoots under the bark facilitate the horizontal growth of shrubs [44],
so they can expand horizontally as their length and mass increase to capture more light
than a small tree that tends to grow mainly upwards [45–47]. In cold and alpine areas, low
vegetation survives extreme weather and strong winds better, due to a better aerodynamic
resistance [48–50]. In P. tarapacana shrubs, the highest trunk mortality occurs in the central
zone due to the risk of cavitation caused by drought and freezing [51,52]. This could be a
beneficial adaptation to hostile environments, such as the highlands, where the maximum
height of the trees is determined in part by the problem of exposure to water in the upper
crown. A lack of water can cause xylem embolism [53] and the risk of cavitation increases
with stem height due to gravity. Related to this, both the brousse tigrée (Bt) and shrub (Sh)
life forms, by developing multiple stems, have a continuous horizontal growth, close to the
ground, allowing new roots and vertical shoots to develop [44,51].
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In the case of P. tarapacana, our results show that the dwarf trees (Dt) life form had a
lower vitality than the arborescents (Ar). This could be, as in the case of Pinus aristata, due to
the exposure of the trunk in this tree life form to wind-induced desiccation and wind-driven
cambial dieback [54,55]. The tree life form Ar had a greater general vitality, since its trunk
is covered with branches. In the case of brousse tigrée (Bt) and Sh, multiple trunks protect
one another, generating intermediate values of vitality. This could explain the increase in
the proportion of Ar as elevation increases, because of the extreme characteristics of the
climate [23].

In P. tarapacana forests, brousse tigrée occurs perpendicular to the slope line, where
the smallest are down to the slope and the tallest, with a low presence of live leaves,
are upslope. The formation of banded vegetation patterns on the slopes responds to a
deposition of sediments by the interception of plants [56,57] that affects the properties and
structure of the soil, leading to the deterioration of the environment [58] and to mortality
in the upper slope vegetation bands. The form and function of different life forms of the
alpine plant communities reflect various avoidance, tolerance, or resistance strategies to
the interactions of cold temperature, radiation, wind, and desiccation stresses that prevail
in the short growing season [59]. In this way, it can be considered that each P. tarapacana
life form fills a particular niche, so each life form has different adaptations in response to
different environmental conditions. The concept of life form as a morphological expression
of belonging to a group can help to understand the functioning of this species.

3.3. Influence of Topographic, Climatic, Life Zones and Human Use Factors in the Frequency of
Life Forms

A life form is the morphological outcome of a number of selection pressures, both
abiotic (e.g., climate and elevation) and biotic (e.g., competitive interactions and human
uses). It is a structural and functional compromise that allows for the optimization of
cost–benefit relationships [60]. In P. tarapacana, Hoch and Körner [21] found that the greater
the abundance of shrubby forms, the higher the elevation. However, not only elevation
influences the general behavior of tree life forms, but also slope, temperature, life zone and
resource use, as observed in this study.

Elevation represents a complex combination of climatic variables to which species
have to adjust and has been considered an important environmental factor affecting com-
munity structure and organization [61,62]. Two variables closely related to elevation are
temperature and precipitation [63] and this is the best example of a complex gradient
where resources change [12]. Although elevation is the most important variable explaining
differences in tree shape, this factor indisputably exercises an indirect influence through
interactions with temperature, humidity and topography [17,64]. The development of
P. tarapacana in higher elevation areas is limited by temperature drops [21,65], where forms
that protect the cambium dieback are necessary. According to an ecophysiological study
in the Chilean Altiplano, the photosynthetic processes and carbon assimilation of this
species are well adapted to withstand cold temperatures [66], which allows them to thrive
at elevations higher than 4700 m a.s.l. This was observed in this study, highlighting the
differences found in the frequencies of Ar, Dt and Sh with changes in temperature as well
as the different life zones [67].

The structure of the studied areas presented smaller trees and a higher crown cover
when the elevation decreased [23], where there was a higher proportion of Sh and Bt. This
response could be the result of the combined effect of the decrease in temperature and the
increase in precipitation as elevation increases [68], increasing the proportion of the Ar
form over the others.

Moderate to steep slopes are environments where this species presents its greatest
development [19,23], because these landscapes provide safe and suitable sites for seed
survival, germination and development of individuals, provided by, among other factors,
the higher soil moisture and proportion of daytime with shade offered by rocks that reduce
soil evaporation, as well as the smaller temperature fluctuations moderating competition
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for water with herbaceous vegetation [69]. We observed that the frequency of Ar decreases
with the slope, while the Bt form increases its frequency considerably, mainly due to
the instability of the soil, which produces the banded shape for this species, and the
damages caused by this movement of gravel and soil reduces the frequency of Ar forms.
We observed that the frequency of single-trunk forms (Ar and Dt) increases in alpine
life zones (TAMT and TAWT), while in subalpine zones (TSDS and TSMF), the Sh form
increases in proportion. This could be due to alpine areas presenting low temperatures and
intermediate precipitation values, optimal factors for the development of this species [23],
with the Sh form being more adapted to higher temperatures and low rainfall [26,37,70].
We observed the largest number of Sh and Bt specimens farther from the towns. This could
be related to human uses and access to these areas, since individuals at lower elevations
are the most accessible to the local communities, who select the Dt form that has larger
dimensions [23,24] for fuel and construction purposes [35]. This is due to the fact that the
trunks of P. tarapacana in the Argentinean highlands were used as beams for the construction
of the roofs of houses, requiring trunks of at least 2–3 m in length [35]. However, the high
durability of the wood of this species allows people to not need to replace the cut pieces
frequently, generating a lower impact on forests. Likewise, in lower elevation regions
(below 3500 m a.s.l.), there are forests of other tree species (Polylepis tomentella Wedd.
and Strombocarpa ferox (Griseb.) C.E. Hughes and G.P. Lewis) that are greatly preferred
compared with P. tarapacana, reducing its use in those regions [35].

The results of this study indicate the possible life forms that can be managed sustain-
ably. In the case of multi-trunk life forms (Bt and Sh), it is possible to extract those that
have a low vitality or are totally dry for their use for fuel or construction. In this context,
the specimen is not completely eliminated, maintaining the conservation of genetic diver-
sity [71]. In addition, it is important to consider the different life forms of P. tarapacana when
conducting conservation studies and management plans, since each life form occupies a
particular environmental situation and conserving these forests without differentiating its
life forms is to lose part of its ecological niche.

The results of this investigation are preliminary, due to the short period of research
and being concerned with an arboreal species with a very slow growth and long life,
and the lack of information about how these life forms are subject to succession. It is
necessary to continue with studies on the structure of these forests and their relationship
with environmental characteristics, taking into account P. tarapacana life forms. Likewise,
we suggest to carry out studies that evaluate the combined effect of biotic and abiotic
factors on various forms of tree life to identify the important factors that have a major
influence on their distribution and biometric characteristics.

4. Materials and Methods
4.1. Study Species

Polylepis tarapacana (Rosaceae: Sanguisorbeae) is a species that constitute rare, monospe-
cific evergreen forests distributed in the sem-iarid high beds of the western Altiplano from
southern Peru to south-western Bolivia, northern Chile and adjacent northwest Argentina
(16◦–23◦ S) [72] at 3400–5013 m a.s.l. [18,23,73,74]. This species is adapted to the Altiplano,
which is capable of withstanding harsh climatic conditions. Under different life forms,
P. tarapacana ranges from small shrubs to trees up to 7 m height [75]; however, specimens
usually oscillate between 1 to 5 m high [73]. Polylepis tarapacana is a unique tree because it
lives at a higher elevation compared to any other tree species and comprises the highest
elevation tree line on Earth [74].

4.2. Study Area

We worked in shrublands and forests of P. tarapacana distributed in the Andean
cordillera in the Province of Jujuy, Argentina (22◦04′–23◦40′ SL at 66◦46′–65◦49′ WL;
Figure 4), located in the high peaks of the Argentinean Andes mountain range from
4160 to 4952 m a.s.l. [23]. The climate is cold and dry with strong winds, characterized
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by a reduced seasonality of temperature, but marked seasonality in precipitation [76,77]
with 135 to 165 mm.yr−1 concentrated in summer, and with 4.2 to 6.5 ◦C of annual mean
temperature [23]. The vegetation in this area is composed of many species with traits
linked to extremely low temperatures, wind and xerophytism [77], and specially with
dwarf shrubs and cushion plants [20,78,79].
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4.3. Classification of Life Forms of P. tarapacana

The considered life forms were arborescents (Ar), dwarf trees (Dt), shrubs (Sh) and
brousse tigrée (Bt), where Ar is an intermediate form between trees and shrubs, with a
single base and branches that arise from the base of the trunk and along the main axis of
the tree. Dwarf trees have a single main stem shorter than 5 m, where the trunk is not
covered by branches, and well-developed lateral branches forming a crown. Shrubs are
multi-stemmed short woody plants, branching at the ground with vegetative buds to form
new shoots. The brousse tigrée tree life form occurs in bands perpendicular to the slope
line (Figure 1).

4.4. Data Obtained

We worked in 70 P. tarapacana shrublands and forests patches throughout the distribu-
tion range [23]. The patches were selected according to: (i) homogeneous cover, where the
distance between individuals was nearly constant; (ii) accessibility; and (iii) the patch size
being >1 ha. In the center of each patch, we established one plot (20 × 50 m) to describe
the vegetation structure, maintaining the elevation level. We corrected the areas according
to the slope of the terrain using the following formula: Corrected area = Area × cosine
(slope in degrees) [80]. In this way, the starting point and the ending point of the plot
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had the same elevation. We measured all live plants ≥0.20 m height, recording: (i) tree
life form of each individual; (ii) diameter at the base (DAB, cm), corresponding to the
trunk or the tallest trunk of multi-stem plants (Figure 5); (iii) height (H, cm) of the trunk
or tallest trunk of multi-stem trees (Figure 5); (iv) diameter of the maximum axis and of
the axis at 90 degrees from the each crown to calculate the area of the tree crown (TC, m2)
with the ellipse formula and the crown spread ratio (CsR) as the relation between the two
measurements; and (v) vitality or health status of each individual to test the influence
of wind damage for the different tree life forms into 3 types: (a) low vigor (more than
50 % of the foliage light green, more than 50% of dead branches and more than 50% of
dead trunk section), (b) intermediate vigor (less than 50% of light green foliage, less than
50% of dead branches and less than 50% of dead trunk section) and (c) healthy (deep
green foliage, no dead branches and no damage in the trunk). The measurements were
made in March–April and October–November, coinciding with the periods of less rain and
intermediate temperatures.
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4.5. Environmental Characterization

In all the plots, we registered longitude, latitude and elevation (m a.s.l.) with a global
geopositioning device (GPS), slope using a clinometer (◦) and the aspect with compass as
sine and cosine functions of the north magnetic direction. Sine values ranged from−1 (west)
to 1 (east), while cosine values ranged from −1 (south) to 1 (north) [80]. The environmental
characteristics of each plot were registered through Holdridge life zones following Derguy
et al. [67]: (i) Tropical alpine moist tundra (TAMT), (ii) Tropical alpine wet tundra (TAWT),
(iii) Tropical subalpine dry scrub (TSDS) and (iv) Tropical subalpine moist forest (TSMF).
The climatic factors, annual mean temperature (AMT) (◦C) and annual precipitation (AP)
(mm.yr−1), for the period of 1970–2000 were obtained from WorldClim [81], the values
of the human footprint (HF) were extracted from Lizárraga and Monguillot [70], and the
distance to the nearest town (DTT) was obtained using QGIS software.

4.6. Data Analysis

We conducted non-parametric Kruskal–Wallis tests to compare forest structure vari-
ables (DAB, H, TC, CsR and vitality) for the different life form categories determined for
P. tarapacana. Additionally, we also performed non-parametric Kruskal–Wallis tests using
topographic, climate, geographical and human use variables as the main factors to analyze
the frequency of each life form. Differences were determined by comparisons of the means
(Conover–Iman test at p < 0.05).
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To characterize the life forms, we used the maximum relative frequency of the plots in
relation to topographic, climatic and human uses, where each plot was categorized into
single, double, triple and multiple categories in relation to the abundance of the different
life forms. Single categories were considered when a frequency was >70% for a certain tree
form (e.g., 74% life form Ar, 12% Dt, 8% Sh, 6% Bt = Category Ar) and double categories
when the single categories do not reach 70% but the sum of two higher categories reaches
>70% (e.g., 54% life form Ar, 22% Dt, 16% Sh, 8% Bt = Category Ar|Dt). The multiple (M)
category is when three or more categories are needed to reach >70% frequency (e.g., 36% life
form Ar, 24% Dt, 24% Sh, 16% Bt = Category M). When the categories were represented by
less than 5% of the plots (<4 plots), these categories were grouped creating a new category
(e.g., Ar|Dt = 3 plots; Ar|Sh = 2 plots: Ar|Dt|Sh = 5 plots). With these categorizations,
the means and the standard deviations were calculated for each topographic, climatic
and human use. Additionally, the variability of the plots was determined in terms of the
simultaneous occurrence of the different forms life forms depending on the topography,
climate and human use.

5. Conclusions

A life form is the morphological result of selection pressures, both abiotic (e.g., climate
and altitude) and biotic (e.g., competitive interactions and human uses). In this study,
a new proposal for the classification of P. tarapacana life forms was presented, and we
demonstrated the influence of elevation, slope, life zone, AMT and DTT in the life form
frequency. Each life form of P. tarapacana occupies a particular niche, and this concept can
help us to understand the ways in which these Altiplano communities function.

In this study, the relative success of each life form was measured in terms of relative
frequency, but other measures, such as the biomass of each life form, may be useful
and provide additional information. This study showed a general consistency in the
changes in life forms of the high-altitude Andean vegetation, and the changes generated
by environmental gradients in this species were explained. This consistency provides a
framework for broader comparisons with species of the genus Polylepis in other parts of
South America. These comparisons will provide information on the distribution of these
and other life forms and may help us to understand the mechanisms that determine the
structure of these high-elevation forest communities and beyond.
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Abbreviations
DAB Diameter at the base of the tree
H Height
TC Tree crown
CsR Crown spread ratio
GPS Global geopositioning device
TAMT Tropical alpine moist tundra
TAWT Tropical alpine wet tundra
TSDS Tropical subalpine dry scrub
TSMF Tropical subalpine moist forest
AMT Annual mean temperature
AP Annual precipitation
HF Human footprint
DTT Distance to town
M Multiple category
Ar Arborescents
Dt Dwarf tree
Sh Shrubs
Bt Brousse tigrée
NA North aspect
EA East aspect
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Appendix A

Table A1. Biometric characteristics mean (± standard deviation) (DAB, height, tree crown and crown spread ratio) of different life forms (Ar: Arborescents; Sh:
Shrubs; Dt: Dwarf trees; Bt: Brousse tigrée) in relation to topography (elevation, slope and N and E aspect), climate (annual mean temperature, AMT; annual
precipitation, AP), life zones (tropical alpine moist tundra, TAMT; tropical alpine wet tundra, TAWT; tropical subalpine dry scrub, TSDS; tropical subalpine moist
forest, TSMF) and human uses (human footprint, HF; distance to towns in km, DTT).

Diameter at Base (cm) Height (cm) Tree Crown (m2) Crown Spread Ratio

Variable AR Dt Sh Bt AR Dt Sh Bt AR Dt Sh Bt AR Dt Sh Bt

<4400 6.3 ± 3.5 5.4 ± 3.3 6.3 ± 4.0 4.1 ± 2.5 56.2 ± 20.1 59.3 ± 24.7 71.9 ± 29.4 59.4 ± 23.5 0.3 ± 0.4 0.1 ± 0.2 1.8 ± 2.3 1.3 ± 1.4 1.4 ± 0.3 1.2 ± 0.2 1.3 ± 0.3 2.5 ± 0.9
4400–4500 6.7 ± 4.0 6.8 ± 6.7 5.9 ± 3.8 4.1 ± 2.7 63.9 ± 26.6 57.4 ± 30.5 76.8 ± 36.7 55.9 ± 18.8 0.3 ± 0.3 0.1 ± 0.1 1.2 ± 2.3 1.0 ± 0.5 1.3 ± 0.2 1.2 ± 0.1 1.3 ± 0.3 2.2 ± 1.6

Elevation 4500–4600 8.6 ± 7.3 11.1 ± 7.6 8.1 ± 5.7 3.7 ± 2.2 87.4 ± 61.0 108.5 ± 61.1 99.1 ± 46.5 52.9 ± 17.4 0.5 ± 0.5 0.4 ± 0.4 1.3 ± 1.5 1.1 ± 0.7 1.5 ± 0.4 1.3 ± 0.2 1.4 ± 0.4 2.9 ± 1.3
4600–4700 8.0 ± 6.8 11.9 ± 8.1 9.7 ± 7.8 4.1 ± 2.6 72.6 ± 54.9 108.2 ± 65.2 100.2 ± 62.1 53.9 ± 22.0 0.5 ± 0.7 0.4 ± 0.5 1.3 ± 1.3 0.9 ± 0.8 1.2 ± 0.2 1.4 ± 0.4 1.3 ± 0.4 2.9 ± 0.9

>4700 9.7 ± 8.3 12.6 ± 7.6 10.8 ± 6.7 3.7 ± 3.0 92.5 ± 59.0 118.6 ± 49.1 124.3 ± 54.5 53.6 ± 30.0 0.5 ± 0.6 0.4 ± 0.4 1.6 ± 1.5 0.9 ± 0.9 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 3.4 ± 1.4

<15 9.1 ± 7.8 12.5 ± 8.1 10.3 ± 6.7 5.0 ± 3.3 85.5 ± 59.6 118.5 ± 58.4 113.1 ± 50.6 62.4 ± 23.5 0.5 ± 0.6 0.4 ± 0.5 1.5 ± 1.3 1.2 ± 1.4 1.4 ± 0.4 1.3 ± 0.2 1.4 ± 0.4 3.3 ± 1.2
Slope 15–25 8.9 ± 7.3 11.5 ± 7.7 8.4 ± 5.6 4.2 ± 2.7 86.4 ± 56.3 105.8 ± 56.5 101.7 ± 50.7 57.0 ± 25.6 0.5 ± 0.5 0.4 ± 0.4 1.7 ± 2.3 1.0 ± 0.9 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 2.8 ± 1.5

>25 6.4 ± 4.5 5.8 ± 3.8 5.2 ± 3.3 3.5 ± 2.1 64.5 ± 37.2 60.8 ± 30.3 67.0 ± 28.8 52.7 ± 18.9 0.3 ± 0.3 0.1 ± 0.2 1.1 ± 1.6 1.0 ± 0.7 1.4 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 2.5 ± 1.3

N N 9.0 ± 7.3 10.4 ± 7.5 8.2 ± 6.0 4.2 ± 2.7 84.4 ± 56.4 98.8 ± 54.1 93.8 ± 47.9 58.8 ± 22.4 0.5 ± 0.6 0.3 ± 0.4 1.5 ± 2.1 1.1 ± 0.8 1.3 ± 0.3 1.3 ± 0.3 1.4 ± 0.3 2.5 ± 1.4
aspect Rest 7.4 ± 6.5 11.3 ± 7.9 7.5 ± 5.4 3.7 ± 2.5 75.9 ± 51.2 106.3 ± 62.5 94.6 ± 50.0 51.2 ± 21.4 0.4 ± 0.4 0.4 ± 0.4 1.4 ± 1.4 1.0 ± 1.1 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 3.0 ± 1.3

E W 9.0 ± 7.0 9.9 ± 7.6 8.8 ± 5.1 4.0 ± 2.2 88.6 ± 51.9 91.5 ± 55.6 103.2 ± 46.8 54.0 ± 21.3 0.5 ± 0.5 0.3 ± 0.3 1.5 ± 1.5 1.0 ± 0.8 1.3 ± 0.3 1.1 ± 0.1 1.3 ± 0.3 1.9 ± 0.4
aspect Rest 8.9 ± 7.3 10.2 ± 7.4 7.5 ± 5.7 4.2 ± 2.8 82.5 ± 58.6 97.7 ± 54.0 88.6 ± 45.3 58.8 ± 23.2 0.5 ± 0.6 0.3 ± 0.4 1.4 ± 2.2 1.1 ± 0.9 1.4 ± 0.3 1.3 ± 0.3 1.4 ± 0.3 2.9 ± 1.3

E 7.4 ± 6.8 11.9 ± 8.0 8.1 ± 6.2 3.6 ± 2.5 74.4 ± 50.6 112.1 ± 60.3 96.6 ± 53.6 51.5 ± 20.6 0.4 ± 0.4 0.4 ± 0.5 1.4 ± 1.5 0.9 ± 1.1 1.3 ± 0.3 1.4 ± 0.3 1.3 ± 0.3 2.7 ± 1.5

<5 9.5 ± 8.2 12.6 ± 8.4 11.1 ± 7.2 4.1 ± 3.2 89.2 ± 60.7 116.4 ± 57.5 120.9 ± 55.4 58.9 ± 30.5 0.5 ± 0.7 0.5 ± 0.4 1.6 ± 1.5 1.2 ± 1.2 1.3 ± 0.3 1.3 ± 0.3 1.4 ± 0.3 3.2 ± 1.3
AMT 5–6 8.2 ± 6.9 9.3 ± 6.8 7.3 ± 5.3 3.6 ± 2.2 81.3 ± 54.5 91.3 ± 52.9 92.0 ± 46.6 51.3 ± 18.2 0.4 ± 0.5 0.3 ± 0.3 1.3 ± 1.9 0.9 ± 0.6 1.4 ± 0.4 1.3 ± 0.3 1.3 ± 0.4 2.4 ± 1.5

>6 7.2 ± 4.8 9.8 ± 7.0 6.1 ± 4.3 3.0 ± 2.8 69.5 ± 41.8 89.5 ± 57.3 78.8 ± 38.5 59.9 ± 21.5 0.4 ± 0.4 0.3 ± 0.3 1.5 ± 1.9 1.2 ± 1.2 1.4 ± 0.3 1.2 ± 0.2 1.3 ± 0.3 2.5 ± 0.9

AP <150 7.3 ± 6.1 11.3 ± 7.5 8.6 ± 5.8 5.0 ± 3.0 73.0 ± 47.5 96.6 ± 52.9 96.5 ± 44.4 64.5 ± 25.4 0.4 ± 0.5 0.3 ± 0.4 1.8 ± 2.3 1.3 ± 1.2 1.3 ± 0.3 1.3 ± 0.3 1.4 ± 0.3 2.9 ± 1.5
>150 9.0 ± 7.5 10.4 ± 7.7 7.6 ± 5.7 3.3 ± 2.1 85.8 ± 57.7 103.7 ± 59.0 92.8 ± 50.9 50.0 ± 18.0 0.5 ± 0.5 0.3 ± 0.4 1.2 ± 1.5 0.8 ± 0.6 1.4 ± 0.4 1.3 ± 0.3 1.3 ± 0.3 2.6 ± 1.1

TAMT 10.3 ± 8.7 12.7 ± 8.2 11.3 ± 7.1 5.5 ± 4.0 95.7 ± 62.3 119.2 ± 51.6 128.2 ± 53.4 71.0 ± 32.4 0.5 ± 0.7 0.5 ± 0.4 1.8 ± 1.7 1.2 ± 1.1 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 3.3 ± 1.1
Life

Zone TAWT 9.5 ± 7.8 11.8 ± 4.5 13.2 ± 5.0 2.9 ± 1.2 97.8 ± 56.1 123.8 ± 42.4 157.7 ± 47.4 42.5 ± 7.2 0.5 ± 0.4 0.4 ± 0.2 2.3 ± 1.2 0.6 ± 0.1 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 3.3 ± 1.1
TSDS 7.1 ± 5.9 9.5 ± 7.6 7.0 ± 5.3 3.7 ± 2.4 69.3 ± 46.9 88.0 ± 58.2 85.7 ± 44.6 53.3 ± 20.6 0.4 ± 0.5 0.3 ± 0.4 1.3 ± 1.9 1.0 ± 0.8 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 2.6 ± 1.5
TSMF 8.5 ± 6.5 10.6 ± 7.6 7.9 ± 5.3 5.0 ± 2.3 82.5 ± 53.7 101.7 ± 56.4 90.1 ± 43.2 64.4 ± 22.7 0.4 ± 0.5 0.4 ± 0.4 1.5 ± 1.8 1.4 ± 1.6 1.4 ± 0.4 1.3 ± 0.2 1.3 ± 0.3 2.9 ± 0.9

HF 0 8.4 ± 6.8 11.3 ± 7.4 8.5 ± 6.0 4.2 ± 2.8 80.3 ± 52.0 104.5 ± 54.9 98.6 ± 49.5 57.0 ± 23.6 0.4 ± 0.5 0.4 ± 0.4 1.6 ± 2.0 1.1 ± 1.1 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 2.9 ± 1.4
>0 8.4 ± 8.1 8.4 ± 8.3 6.1 ± 4.5 3.4 ± 2.0 85.8 ± 64.9 88.3 ± 62.9 79.5 ± 43.3 52.3 ± 18.7 0.5 ± 0.6 0.3 ± 0.4 0.8 ± 0.7 0.9 ± 0.4 1.3 ± 0.2 1.1 ± 0.0 1.3 ± 0.3 1.8 ± 0.3

<5 5.4 ± 3.7 4.8 ± 3.4 5.6 ± 3.9 3.4 ± 2.5 51.1 ± 20.8 49.4 ± 26.2 68.0 ± 30.9 50.5 ± 22.3 0.3 ± 0.4 0.1 ± 0.2 1.9 ± 2.2 1.3 ± 1.7 1.4 ± 0.3 1.1 ± 0.2 1.4 ± 0.3 2.5 ± 1.1
DTT 5–10 9.0 ± 7.4 10.8 ± 6.8 7.6 ± 5.4 3.6 ± 2.1 87.3 ± 57.9 107.4 ± 59.0 96.1 ± 48.3 52.3 ± 18.6 0.5 ± 0.6 0.3 ± 0.4 1.4 ± 2.0 0.9 ± 0.6 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.4 2.8 ± 1.0

>10 8.3 ± 7.1 11.6 ± 8.5 9.6 ± 6.4 5.2 ± 3.0 80.2 ± 53.6 103.3 ± 54.3 103.5 ± 51.9 65.6 ± 25.1 0.4 ± 0.5 0.4 ± 0.4 1.3 ± 1.3 1.1 ± 0.9 1.3 ± 0.3 1.3 ± 0.3 1.3 ± 0.3 3.0 ± 1.7

Elevation in m a.s.l.; Slope in degrees; North Aspect: N: from 315◦ to 45◦; East aspect: E: from 45◦ to 135◦; W: from 225◦ to 315◦.
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