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Abstract: Plant species identity influences soil microbial communities directly by host specificity and
root exudates, and indirectly by changing soil properties. As a native pioneer species common in
early successional communities, Masson pine (Pinus massoniana) forests are widely distributed in sub-
tropical China, and play a key role in improving ecosystem productivity. However, how pine forest
composition, especially the dominance of plant functional groups, affects soil microbial diversity
remains unclear. Here, we investigated linkages among woody plant composition, soil physicochemi-
cal properties, and microbial diversity in forests along a dominance gradient of Masson pine. Soil
bacterial and fungal communities were mainly explained by woody plant community composition
rather than by woody species alpha diversity, with the dominance of tree (without including shrub)
species and ectomycorrhizal woody plant species accounting for more of the variation among micro-
bial communities than pine dominance alone. Structural equation modeling revealed that bacterial
diversity was associated with woody plant compositional variation via altered soil physicochemical
properties, whereas fungal diversity was directly driven by woody plant composition. Bacterial
functional groups involved in carbohydrate and amino acid metabolism were negatively correlated
with the availability of soil nitrogen and phosphorus, whereas saprotrophic and pathogenic fungal
groups showed negative correlations with the dominance of tree species. These findings indicate
strong linkages between woody plant composition than soil microbial diversity; meanwhile, the high
proportion of unexplained variability indicates great necessity of further definitive demonstration for
better understanding of forest–microbe interactions and associated ecosystem processes.

Keywords: plant–microbe interactions; tree dominance; soil properties; microbial community;
functional prediction

1. Introduction

Soil bacteria and fungi live with plants to form complex biotic interactions, which play
critical roles in nutrient cycle and carbon sequestration [1,2]. Soil microbial communities
usually change a lot during forest secondary succession, while the drivers of variations
on plant–microbe interaction are inconsistent among different studies [3,4]. Masson pine
(Pinus massoniana Lamb.) forest is a common pioneer community following anthropogenic
disturbance, and accounts for approximately 10% of forested area in China [5]. Masson
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pine is a favored species for soil and water conservation, carbon sequestration, and wood
production [6,7]. Although significant differences in the composition and diversity of
soil microbial communities between pine forests and other forest types have been widely
reported [8,9], it is unclear how shifts in plant composition, such as relative dominance
of plant functional groups, influence soil microbial diversity and function, especially in
Masson pine forests.

Microbial communities in forest soils are simultaneously affected by many biotic and
abiotic factors. Biotic factors such as tree species identity can regulate spatial variations
in soil microbial communities at the regional scale via host specificity of symbiotic fungi,
pathogenic fungi, and nitrogen-fixing bacteria [2,10,11]. Plant diversity is predicted to
promote the diversification of soil microbes via diversified nutrient pools and plant hosts
for microorganisms, as observed in temperate grasslands [12–14]. With regards to soil
microbes in forests, evidence supporting a positive association between woody plant
diversity and microbial diversity is mixed [15,16]. Alternatively, soil microorganisms
may depend more on the abundance of key plant species than on plant diversity per se
because of the host specificity of some microorganism groups [2,17,18]. Overall, effects
of woody plants on microbial communities are often context dependent. Whether plant
community composition has stronger effects than plant species alpha diversity on soil
microbial communities needs further study.

Abiotic factors, such as soil pH and nutrient levels, have notable influence on microbial
diversity [9,19,20]. Soil bacterial diversity may increase under conditions of neutral pH [19]
and high nutrient availability [21]; these alterations in soil chemistry can be partly driven
by variation in plant composition [22]. For example, plant functional traits tend to affect
nutrient and organic carbon inputs into the soil by plant litter and root exudates, and lead
to variations in soil acidity [11,23]. Comparatively, large groups of fungi (symbiotic and
pathogenic fungi) are directly associated with specific host plants [2,24]. Exploring the
direct and indirect effects of woody plants on soil microbial diversity is necessary to better
understand plant–microbe interactions.

Plant and soil properties also affect microbial community composition and potential
functions that are closely related to forest ecosystem processes [16,25,26]. For example,
pine forest communities can easily recruit oligotrophic microorganisms because of the
slow decomposition and limited nutrient release of dominant Pinus leaf litter [23,27,28].
Key functional groups involved in mycorrhizal symbiosis and amino-acid metabolism can
be strongly affected by shifts in soil nutrient status and forest type [29,30]. Moreover, it
has been demonstrated that there is strong competition between ectomycorrhizal (ECM)
and saprotrophic fungi for soil resources [31]. In the canopy of forests in east Asia, the
dominant trees are usually ECM species [32]. However, how microbial keystone taxa and
functional groups are linked with plant community composition in Masson pine forests, a
wide-spread community type in east Asia, is not known.

In this study, we examined soil bacteria and fungi along a gradient of pine dominance
in Masson pine forests in eastern China. We obtained plot-scale information on geographic
locations, plant community composition and diversity, soil physicochemical properties,
and microbial diversity. Plant composition in our research represented not only visualized
axes of principal coordinate analyses (PCoA) but also the relative dominance of specific
functional group, such as tree (without including shrub) species and evergreen plant
species. We addressed the question of how plant community influences the diversity
and potential function of soil bacteria and fungi. We made the following predictions.
(1) Variation in soil microbial composition and diversity would be more explained by
plant community composition than by plant species diversity, because of the distinct litter
chemistry, and litter and soil microbial structure among tree species [11,33]. (2) Bacterial
diversity would be driven by plant composition via altered soil properties, whereas fungal
diversity would be directly driven by plant composition due to the strong host specificity
of mycorrhizal fungi [10,34]. (3) Saprotrophic and pathogenic fungal groups would be
negatively correlated with the dominance of ECM plant species because of niche segregation
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with ECM fungi [31], while bacterial functional group would be mainly correlated with soil
physicochemical properties.

2. Results
2.1. Description of Plant Community, Soil Physicochemical Properties, Bacteria and Fungi

Among 44 pine forest plots, woody plant species richness ranged among the plots from
6.0 to 21.0 and Shannon diversity ranged from 1.46 to 2.61. Soil maximum water holding
capacity ranged from 291 g kg−1 to 726 g kg−1, pH ranged from 4.1 to 5.1, and nitrogen con-
tent ranged from 0.12% to 0.37% (Table 1). Study plots at three locations had similar range
in pine dominance (PIV), woody plant alpha diversity, and soil physicochemical properties,
while plant beta diversity (woody plant community composition) among locations differed.
Thus, after taking plot location as a random effect factor, the wide variation in woody plant
composition among plots allowed for analysis of their potential effects on soil microbial
communities at the local scale. Moreover, we found a negative relationship between pine
dominance (PIV) and woody plant alpha diversity (Figure S1 and Table S1). Plant PCoA1
was negatively correlated with tree species dominance (TIV, sum of importance values
of all tree species) (Figure S1 and Table S2). Plant PCoA2 was positively correlated with
the TIV and evergreen species dominance (EIV, sum of importance values of all evergreen
woody species) (Figure S1 and Table S3).

Table 1. Geographic location, altitude, woody plant community, and soil variables of each location
in southeastern China. PIV (importance values of Masson pine), Masson pine dominance; EIV
(sum of importance values of all evergreen woody species), evergreen species dominance; TIV (sum
of importance values of tree species without including shrubs), tree species dominance. MWHC,
maximum water holding capacity.

Parameters Chun’an Suichang Taishun

Latitude (N) 29◦29′26′′–29◦33′51′′ 28◦35′34′′–28◦37′11′′ 27◦33′48′′–27◦40′36′′

Longitude (E) 118◦41′22′′–
118◦59′09′′

118◦56′08′′–
119◦28′02′′

119◦41′56′′–
119◦46′55′′

Altitude (m a.s.l.) 112–257 228–641 221–602
PIV 0.19–0.37 0.19–0.43 0.10–0.55
EIV 0.63–0.94 0.47–0.95 0.83–0.95
TIV 0.26–0.47 0.53–0.85 0.39–0.71

Plant species richness 7.4–17.0 6.0–21.0 7.2–18.6
Plant Shannon diversity 1.5–2.2 1.2–2.6 1.4–2.5

Soil MWHC (g kg−1) 291–672 326–525 347–726
Soil pH 4.1–5.1 4.2–5.1 4.2–5.0

Soil C (mg g−1) 15.2–42.6 23.8–39.1 23.8–61.7
Soil N (mg g−1) 1.2–3.0 1.5–2.8 1.6–3.7
Soil P (mg g−1) 0.13–0.40 0.10–0.28 0.13–0.27

C/N ratio 11.9–16.5 12.8–17.3 14.4–18.1

According to soil samples at the quadrat level, a total of 11,923,709 high-quality
bacterial reads were clustered into 2589 amplicon sequence variants (ASVs). At the plot
level, the most dominant phylum in the bacterial community was Acidobacteriota (40.2%
on average), followed by Proteobacteria (30.0%), Actinobacteriota (12.4%), Verrucomicrobiota
(5.6%), and an unclassified phylum (4.2%). PICRUSt2 predicted that the main metabolic
genes of bacteria were global and overview maps, metabolism of carbohydrates, amino acid,
energy, cofactors and vitamins, etc. (Table S4). In total, 15,278,066 high-quality fungal reads
were clustered into 2151 fungal ASVs. Phylum-level ASV characterization indicated that
communities were dominated by Basidiomycota (47.3%) and Ascomycota (45.1%), followed
by an unclassified phylum (4.4%). According to functional annotation of fungal ASVs by
FungalTraits, functional groups of ectomycorrhizal, plant endophyte, soil saprotroph, and
plant pathogen were relatively more abundant than other groups (Table S5).
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2.2. Main Drivers of Soil Microbial Composition and Diversity

In general, soil microbial communities were affected by both woody plant community
composition and soil properties, but bacteria and fungi responded differently. Variation
partitioning analysis showed that, overall, bacterial community composition was driven
primarily by soil properties (29%), woody plant community composition (21%), and site
location (9%), with 11% of the effect of soil factors shared with plant community factors
(Figure 1a). Woody plant community traits explained 12% of overall fungal dissimilarities
among plots, followed by soil properties (11%) and site location (9%), with 7% of the effect
of plant community factors shared with the soil factors (Figure 1b).
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Figure 1. The fraction of the variation in the composition and alpha diversity of soil microbial com-
munities explained by environmental predictors. (a,b) Variation partitioning analysis of geographic,
plant, and soil environmental factors for the community variances of bacteria and fungi, with adjusted
R2 displayed in the figure. Geographic factors contained longitude and latitude of each plot; plant
factors contained PIV, EMIV, TIV, EIV, the basal area, density, PCoA1, PCoA2, and Shannon diversity
of woody plant community; soil properties contained soil pH, soil bulk density, maximum water
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holding capacity, soil N, C/N ratio, soil P, NH4
+ −N, NO3

− −N, and available P. (c–f) Random forest
mean predictor importance of plant and soil environmental factors for the community variances
of bacteria and fungi. PIV (importance values of Masson pine), Masson pine dominance; EMIV
(sum of importance values of all ectomycorrhizal woody species), evergreen species dominance; EIV
(sum of importance values of evergreen woody species), evergreen species dominance; TIV (sum
of importance values of tree species), tree species dominance; MWHC, maximum water holding
capacity. R2 values for bacterial community PCoA1, PCoA2, and PCoA3 axes are 23.05%, 15.09%, and
11.17%, respectively; R2 values for fungal community PCoA1, PCoA2, and PCoA3 axes are 17.64%,
7.78%, and 6.04%, respectively; R2 values for woody plant PCoA1 and PCoA2 axes are 31.84% and
16.74%, respectively. *, p < 0.05; **, p < 0.01.

We further analyzed the main explanatory variables of divergent microbial compo-
sition (beta diversity) and alpha diversity. Soil pH was the most important explanatory
variable of bacterial composition dissimilarities, explaining 14%, 10%, and 4% of variance
of PCoA1, PCoA2, and PCoA3, respectively. The dissimilarity of bacterial composition was
also strongly explained by soil N and P availability, evergreen species dominance (EIV),
and tree dominance without including shrub (TIV) (Figure 1c and Table S6). Soil maximum
water holding capacity (MWHC) was the most important explanatory variable of bacterial
alpha diversity, explaining 4%, 7%, and 3% of variance of Chao1 richness, Shannon diver-
sity, and Pielou evenness, respectively (Figure 1e). For fungi, woody plant composition
was the most important explanatory variable of fungal alpha diversity, with plant PCoA1
explaining 13% variation of fungal Shannon diversity and 13% variation of Pielou evenness,
and EIV explaining 14% variation of fungal chao1 richness (Figure 1f). Dissimilarity of
fungal composition was most strongly explained by soil pH and plant PCoA2 (Figure 1d).
Comparatively, neither pine dominance nor plant alpha diversity showed strong links to
variation in microbial community composition (Figure 1 and Table S6).

2.3. Relationship between Environmental Factors and Soil Microbial Diversity

Soil bacterial and fungal alpha diversity were significantly associated with plant
PCoA2 and PCoA1, respectively (Figure 2, Tables S7 and S8). Bacterial diversity was posi-
tively correlated with soil MWHC and pH (Figure 2a and Table S7). Fungal alpha diversity
was negatively correlated with evergreen species dominance (EIV) but positively correlated
with plant PCoA2 axis (Figure 2b). There were no significant correlations between fungal
diversity and soil physicochemical properties (Figure 2b and Table S8). In addition, we
found a negative relationship between plant PCoA2 and soil pH, and a negative relation-
ship between pine dominance (PIV) and MWHC (Figure S1, Tables S9 and S10). There
was no significant correlation between soil microbial diversity and PIV or between soil
microbial diversity and overall tree dominance (TIV) (Figure S1, Tables S7 and S8).

We further used structural equation modeling (SEM) to link microbial Shannon diver-
sity to plant composition and soil properties. SEM revealed that both bacterial and fungal
diversity in the soil were driven by plant community composition, but with different mecha-
nisms. Bacterial diversity was driven by plant composition via altered soil pH and MWHC,
whereas fungal diversity was directly driven by woody plant composition (Figure 3).

2.4. Linkages of Microbial Composition and Functional Groups with Environmental Factors

The first PC axis (PC1) explained 19.8% of the variance and was positively correlated
with overall tree dominance (TIV), evergreen dominance (EIV), and pine dominance (PIV),
and negatively correlated with total plant density. Because PC1 axis was associated with
environmental changes associated with shifts in tree dominance, we refer to PC1 as the
“trees” axis (Figure 4a). The second PC axis (PC2) explained 15.7% of the variance and was
negatively correlated with soil pH, available nutrient, and MWHC. Because these variables
indicate soil resources, we refer to PC2 as the “soil” axis (Figure 4a).
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Plants 2023, 12, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. Structural equation model showing the pathways through which woody plant community 
traits influence the Shannon diversity of soil bacteria and fungi. Values associated with arrows mean 
standardized path coefficients. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Red arrows indicate positive 
relationships, black arrows indicate negative relationships. Percentages associated with response 
variables represent the variance explained by the model. PIV, Masson pine dominance; EIV, ever-
green species dominance; TIV, tree species dominance; MWHC, soil maximum water holding ca-
pacity. 

2.4. Linkages of Microbial Composition and Functional Groups with Environmental Factors 
The first PC axis (PC1) explained 19.8% of the variance and was positively correlated 

with overall tree dominance (TIV), evergreen dominance (EIV), and pine dominance 
(PIV), and negatively correlated with total plant density. Because PC1 axis was associated 
with environmental changes associated with shifts in tree dominance, we refer to PC1 as 
the “trees” axis (Figure 4a). The second PC axis (PC2) explained 15.7% of the variance and 
was negatively correlated with soil pH, available nutrient, and MWHC. Because these var-
iables indicate soil resources, we refer to PC2 as the “soil” axis (Figure 4a). 

The relative abundance of major bacterial phyla and predicted functional groups 
were mainly associated with soil properties. The phyla Acidobacteriota, Actinobacteriota, 
and Gemmatimonadota were positively correlated with PC2 and negatively correlated with 
soil pH. The phyla Verrucomicrobiota and Myxococcota were negatively correlated with PC2 
and positively correlated with soil pH (Figures 4b and S2a). Functional groups of amino 
acid, carbohydrate, and lipid metabolism were positively correlated with PC2, while func-
tional groups of genetic information processing (including replication and repair, transla-
tion, folding, sorting, and degradation) were positively correlated with PC2 (Figure 4b). 

For fungi, the relative abundance of major fungal phyla and predicted functional 
groups were mainly associated with plant composition (PC1). Fungal functional groups 
(i.e., ectomycorrhizal, saprotroph, and pathogen) were significantly correlated with the 
phyla Ascomycota and Basidiomycota, which were driven by plant PCoA1 (Figures 4c and 
S2b). Moreover, we found a positive relationship between PC1 and Rozellomycota, and a 
negative relationship between PC1 and functional groups of saprotrophs and pathogens 
(Figure 4c). Functional groups of both saprotrophs and pathogens were negatively asso-
ciated with the ectomycorrhizal group (Figure 4c). 

Figure 3. Structural equation model showing the pathways through which woody plant community
traits influence the Shannon diversity of soil bacteria and fungi. Values associated with arrows mean



Plants 2023, 12, 1750 7 of 18

standardized path coefficients. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Red arrows indicate positive
relationships, black arrows indicate negative relationships. Percentages associated with response
variables represent the variance explained by the model. PIV, Masson pine dominance; EIV, evergreen
species dominance; TIV, tree species dominance; MWHC, soil maximum water holding capacity.
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resources. PIV, Masson pine dominance; EMIV, ECM woody species dominance; EIV, evergreen
species dominance; TIV, tree species dominance; MWHC, soil maximum water holding capacity.
(b) Pearson correlations between the relative abundance of phylum group and potential function
genome of bacteria, and the first two environmental PCA axes. (c) Pearson correlations between the
relative abundance of phylum and potential functional groups of fungi, and the first two environ-
mental PCA axes. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

The relative abundance of major bacterial phyla and predicted functional groups were
mainly associated with soil properties. The phyla Acidobacteriota, Actinobacteriota, and Gem-
matimonadota were positively correlated with PC2 and negatively correlated with soil pH.
The phyla Verrucomicrobiota and Myxococcota were negatively correlated with PC2 and posi-
tively correlated with soil pH (Figure 4b and Figure S2a). Functional groups of amino acid,
carbohydrate, and lipid metabolism were positively correlated with PC2, while functional
groups of genetic information processing (including replication and repair, translation,
folding, sorting, and degradation) were positively correlated with PC2 (Figure 4b).

For fungi, the relative abundance of major fungal phyla and predicted functional
groups were mainly associated with plant composition (PC1). Fungal functional groups
(i.e., ectomycorrhizal, saprotroph, and pathogen) were significantly correlated with the phyla
Ascomycota and Basidiomycota, which were driven by plant PCoA1 (Figures 4c and S2b).
Moreover, we found a positive relationship between PC1 and Rozellomycota, and a negative
relationship between PC1 and functional groups of saprotrophs and pathogens (Figure 4c).
Functional groups of both saprotrophs and pathogens were negatively associated with the
ectomycorrhizal group (Figure 4c).

3. Discussion
3.1. Soil Microbial Communities Are Mainly Associated with Woody Plant Composition Rather
Than Diversity

Accumulating evidence suggests that soil microbial community composition is struc-
tured by tree species composition [10,11]. Plant species diversity is also an important factor
influencing soil properties and microorganisms both across global terrestrial ecosystems
and at the regional or local scale [3,35,36]. However, few studies focus on the role of
plant functional groups on soil microbial community variation in forests [18,37,38]. Our
results showed that soil microbial communities were mainly explained by woody plant
community composition rather than alpha diversity, although there was a significantly
negative relationship between plant diversity and pine dominance (PIV; Figure 1). This
might be caused by the strong effects of tree species identity on the composition of both
plant and microbial communities [10,39]. According to previous studies, the deciduous
habit and/or leaf shape in trees determines litter acidity and microbial structure [33,40]. Soil
microbial community structure and litter decomposition rate are also affected by vegetation
type [9,41]. Supporting these results, both bacterial and fungal communities in our study
were driven by the dominance (= total importance value) of tree species and of evergreen
species in a plot. Thus, the differentiation of soil microbial communities in Masson pine
forests is believed to be more related to plant composition than plant diversity.

3.2. Linkages between Plant Community Composition and Soil Microbial Diversity

We found that soil bacterial and fungal diversity were driven by the composition of
woody plant communities through different pathways. More specifically, bacterial diversity
was associated with plant compositional variation via altered soil properties, whereas
fungal diversity was directly driven by plant composition (Figure 3). Probably because
of variation in nutrient inputs by litter and root exudates of different plants [11,23,40],
soil physicochemical properties in this study were significantly associated with woody
plant compositional variation (Figure S1, Tables S9 and S10). Higher soil pH tended to
negatively affect the relative abundance of certain bacterial phyla (i.e., Acidobacteriota and
Actinobacteriota) but positively affected bacterial evenness and diversity (Figures S1 and S2
and Table S7). Similar results were drawn by Fierer and Jackson (2006) [19] and could
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be explained by the reduction of acidophilic bacteria under higher pH conditions [42].
Bacterial diversity tended to be positively associated with soil physical traits such as water
holding capacity (Figure 2a), and this finding is generally in agreement with another study
in weeping cypress plantations after the formation of forest gap where bacterial alpha
diversity was positively correlated with soil moisture [43].

Consistent with other forest types [11], woody plant composition, rather than soil physic-
ochemical properties, was significantly correlated with fungal diversity as well as the relative
abundance of dominant phyla in this Masson pine forest study (Figures 2b and S2b). This
result is not surprising, considering the strong host specificity of mycorrhizal fungi [10,34].
Furthermore, fungi are more likely to be influenced by litter origin and chemistry, as they
can degrade complex carbon compounds [31,44]. In contrast, in some other pine forest
studies, soil fungal communities were more strongly influenced by soil physicochemical
properties than by forest structural variables [16,27]. Further definitive demonstration
is necessary to clarify the relationship between plant community composition and soil
microbiomes behind these observations.

3.3. Linkages between Plant Community Composition and Microbial Functional Groups

A large group of fungi are obligate root symbionts, which strengthen fungal host
specificity [2,10,34]. Although there are limitations to functional prediction of microbial
communities, we use this approach to explore possible linkages between plant community
composition and microbial functional groups. Based on the functional prediction of fungal
guilds by FungalTraits, the relative abundance of ectomycorrhizal (ECM) fungi was posi-
tively correlated with the Basidiomycota phylum, and ECM fungi was also indirectly driven
by woody plant composition (Figures 4 and S2b). In addition, our results showed different
environmental preferences between ectomycorrhizal and saprotrophic fungi. This finding
was in agreement with previous reports [45,46], and it supports a competing interaction
phenomenon known as the ‘Gadgil effect’, which affects the roles of these two fungal guilds
in the breakdown and recycling of soil organic matter [31,47,48]. Probably due to the greater
resistance against pathogens provided by Hartig net and fungal mantle surrounding fine
roots of ECM trees [49], pathogenic fungi in this study were negatively correlated with both
ectomycorrhizal fungi and tree dominance (Figure 4). Therefore, in Masson pine forests
where the canopy is mainly dominated by ectomycorrhizal trees, the niche segregation
of saprotrophic, pathogenic, and ectomycorrhizal fungi can be reasonably predicted by
variation in tree species dominance.

PICRUSt2 was used to predict bacterial gene abundance within metabolic pathways.
Results of Pearson correlation on bacterial functional group with environmental variables
indicated the potential association between bacterial functional groups and soil physico-
chemical properties. Like previous research [50], lower soil nutrient availability and pH in
this study strengthened the pathways of amino acid, carbohydrate, and lipid metabolism
(Figure 4). In infertile soil, we conclude that bacterial metabolic function was mainly
associated with nutrient metabolism, especially carbohydrate metabolism, for resource
acquisition [51]. Moreover, bacteria can secrete a variety of enzymes for strong degradation
of complex and diverse resources by changing the potential “amino acid metabolism”
function [51]. We also found that bacterial groups involved in genetic information pro-
cessing showed positive relationships with soil nutrient availability and pH (Figure 4),
and the overall functional prediction suggested that in common with bacterial structure,
bacterial functions tend to be driven by soil physicochemical properties rather than by
plant composition.

4. Material and Methods
4.1. Study Area

Natural Masson pine forests are widely distributed in southern China, covering 5.5 mil-
lion ha, comprising about 4.5% of the national total area of natural arbor forest [52]. The
study was conducted in Zhejiang province, southeastern China, characterized by a monsoon
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climate, with local mean annual temperatures of 16.2–17.2 ◦C, and mean annual precipita-
tions of 1515–2047 mm (China Meteorological Data Service Centre, http://data.cma.cn/
(accessed on 10 June 2022)). The forest sites were located from 27◦32′58′′ to 29◦33′51′′N
latitude, 118◦41′22′′ to 119◦46′55′′E longitude (Figure 5a and Table S11). Basic location,
elevation, plant community traits, and soil properties of three locations (Chun’an, Suichang,
and Taishun County) are described in Table 1.
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Figure 5. The location, sampling design, and ordination of the bacteria, fungi, and woody plant
by principal coordinate analysis (PCoA) at plot level. (a) The locations of the 44 study plots in
Zhejiang province, China. (b) Five, 10 m × 10 m quadrats (red color) were investigated at each plot.
(c) Both soil microbiomes and woody plants are separable by three locations. PCoA was based on the
Bray–Curtis distance matrices. Samples are shaped according to site locations and colored according
to the importance value of Masson pine (PIV).

4.2. Plant Community Investigation

Forty-four Masson pine forest plots (30 m × 30 m each) were established in 2020
and 2021. All plots were located at least 100 m away from the edge of non-forest land.
The study sites had been previously subjected to similar management practices. These
forests developed from secondary succession of cleared evergreen broad-leaved forests
following logging in the 1950s. Now, Masson pine is a common species in these plots. At
each plot, a GPS global positioning system was used to measure the longitude and latitude
information. A total of five 10 m × 10 m quadrats (one at the center and four in each plot
corner) were used for plant and soil investigation. After investigating at the quadrat level,
the five replicates were averaged to obtain plot-level estimates of plant and soil microbial
communities, and soil physicochemical properties, for each 30 m× 30 m plot (Figure 5b,c).

http://data.cma.cn/
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The number, diameter, and species for all free-standing woody plants with diameter at
breast height (i.e., 1.3 m above the ground) ≥1 cm were measured to calculate plant density,
basal area, and frequency information. The Shannon–Wiener index and species richness
were calculated to estimate species alpha diversity [53,54]:

Shannon–Wiener Index (H) H = −
s

∑
i=1

Pi ln Pi

where s is the total species number of the community, and Pi is the relative importance
value of species i.

Importance value (IV) was calculated to estimate the relative dominance property of
each species [55]:

IV =
relative density + relative basal area + relative frequency

3
.

4.3. Dominance of Plant Functional Groups

The mycorrhizal type of each woody plant species was assigned based on the mor-
phological criteria according to published information [56,57]. When mycorrhizal type
was not available at the plant species level, these plants were categorized according to the
mycorrhizal type of other species within the same genus [58]. In total, we had 20 ectomy-
corrhizal woody plant species and 124 woody plant species of other mycorrhizal types
(including arbuscular mycorrhizal, ericoid mycorrhizal, and non-mycorrhizal type) from
44 plots (Table S12), with 20.3% of species mycorrhizal type being categorized based on
genus level. The dominance of ECM plant species (EMIV) was calculated by summing the
importance values for all ECM species in a quadrat. Additionally, we quantified leaf habit
(evergreen or deciduous) and growth form (tree or shrub) to explore the compositional
divergence among plots. The relative dominance of evergreen species (EIV) was calculated
by summing the importance values for all evergreen species (including trees and shrubs) in
a quadrat. The relative dominance of tree species (TIV) was calculated by summing the
importance values for all tree species (without including shrub species) in a quadrat. The
sum of the importance values of all woody plant species (including trees and shrubs) in a
quadrat was 100%.

4.4. Soil Sampling and Physicochemical Analyses

Soil samples were collected in May 2020 in Chun’an and Suichang County, and June
2021 in Taishun County. One 100-cm3 core was randomly collected at the center of each
quadrat for the measurement of soil bulk density and maximum water holding capacity
(MWHC). Three 0–10 cm deep soil cores were randomly collected around the center of each
quadrat after removing the litter layer, mixing and passing through a sieve (2-mm mesh
size) to form one soil sample. A total of 220 soil samples (5 quadrat samples × 44 plots)
were collected. Each sieved sample was separated into three subsamples. One part was
stored at−80 ◦C for DNA extraction and sequencing. The second part was stored at 4 ◦C for
measurement of extractable soil ammonium and nitrate nitrogen (N) within 72 h. The third
part was air-dried for the measurement of other soil chemical properties. All laboratory
analyses were completed within two months of field sampling.

A total of nine soil physicochemical variables were measured in this study. Soil bulk
density (g cm−3) and maximum water holding capacity (MWHC, g kg−1) were measured
using the cutting ring method (LY/T 1215–1999) [59]. Soil pH was measured using a
pH meter (SevenEasy S20K, Mettler Toledo, Greifensee, Switzerland), with water and
soil in a 2.5:1 ratio by mass. Soil carbon (Soil C, mg g−1) and N concentrations (Soil N,
mg g−1) were determined with an elemental analyzer (Vario MACRO Cube, Elementar,
Langenselbold, Germany) after grinding and passing through a sieve (0.15-mm mesh
size). Soil ammonium N (NH4

+−N, mg kg−1) and nitrate N (NO3
−−N, mg kg−1) were

quantified using continuous flow analyzer (San++, Skalar, Breda, Holland) after KCl
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(2 mol/L) extraction. Soil phosphorus (Soil P, mg g−1) was digested with sulfuric acid-
perchloric acid after grinding and passing through a sieve (0.15-mm mesh size). Soil
available P (mg kg−1) was extracted with ammonium fluoride and hydrochloric acid [60].
Soil P and available P were both quantified by inductively coupled plasma optical emission
spectrometry (Optima 8300, PerkinElmer, Waltham, MA, USA).

4.5. DNA Extraction and Sequencing

Soil DNA was extracted from samples using the TGuide S96 Magnetic Soil /Stool
DNA Kit (Tiangen Biotech (Beijing) Co., Ltd., Beijing, China), following the manufacturer’s
protocol. The DNA concentration of the samples was measured using the Qubit dsDNA
HS Assay Kit and Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher Scientific, Hillsboro,
ON, USA). For bacteria, the V3-V4 region of 16S rRNA gene was targeted with primer pair
338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-
3′) [61,62], with the expected amplicon size of 450bp. For fungi, the internal transcribed
spacer 1 (ITS1) region of rRNA gene was amplified using primers ITS1F (5′-CTTGGTCATTT
AGAGGAAGTAA-3′) and ITS2R (5′-GCTGCGTTCTTCATCGATGC-3′) [62,63], with the
expected amplicon size of 400 bp. PCR amplification was performed for both the 16S
rRNA gene and the ITS1 region, with reactions containing 5–50 ng DNA template, 0.3 µL
(10 µM) of each primer, 5 µL KOD FX Neo Buffer, 2 µL (2 mM each) dNTP, 0.2 µL KOD
FX Neo, and up to 10 µL ddH2O. For the V3-V4 region of 16S rRNA gene, thermal cycling
conditions were as follows: an initial denaturation at 95 ◦C for 5 min, followed by 25 cycles
of denaturation at 95 ◦C for 30 s, annealing at 50 ◦C for 30 s, and extension at 72 ◦C for 40 s,
and a final step at 72 ◦C for 7 min. Thermal cycling conditions of ITS1 gene were as follows:
an initial denaturation at 95 ◦C for 5 min, followed by 25 cycles of denaturation at 95 ◦C
for 1 min, annealing at 50 ◦C for 30 s, and extension at 72 ◦C for 1 min, and a final step
at 72 ◦C for 7 min. All PCR amplicons were purified with Agencourt AMPure XP Beads
(Beckman Coulter, Indianapolis, IN, USA) and quantified using the Qubit dsDNA HS Assay
Kit and Qubit 4.0 Fluorometer (Invitrogen, Thermo Fisher Scientific, Hillsboro, ON, USA).
High-throughput sequencing of rRNA genes of bacteria and fungi were analyzed using
the Illumina NovaSeq 6000 PE250 platform (Illumina, Santiago, CA, USA) at Biomarker
Technologies Corporation, Beijing, China.

4.6. Bioinformatics

Raw data were primarily filtered by Trimmomatic v0.33 [64]. Identification and
removal of primer sequences was processed by Cutadapt v1.9.1 [65]. The remaining high-
quality sequences were processed using QIIME 2 (v. 2020.6) [66], in which the reads were
processed and applied to DADA2 pipeline for the assignment of amplicon sequence variants
(ASVs) [67]. The sequences were classified to ASVs by naive Bayesian classifier-based
method, with 0.005% conservative threshold for ASV filtration [68]. Species annotation
was processed with classify-sklearn in QIIME2 software. To determine the taxonomic
classification of each ASV of bacteria and fungi, we searched, respectively, the databases
of SILVA 138.1 [69] and UNITE 8.0 [70]. ASVs that were not classified into bacteria or
fungi were removed. Before downstream analysis, bacterial samples were rarefied to
15,182 sequences per sample, with one sample below this threshold that was removed from
analysis. Fungal samples were rarefied to 41,023 sequences per sample, with two samples
below this threshold that were removed from analysis. Both community composition and
diversity analyses were carried out on ASV tables. Ecological functions of the soil bacteria
and fungi were assigned, respectively, by PICRUSt2 v2.3.0 [71] and FungalTraits v0.0.3 [72].

4.7. Statistical Analyses

All statistical analyses and visualizations were performed in the R software envi-
ronment (v4.2.1, R Development Core Team). Alpha diversity indices (Chao1 richness,
Shannon diversity, and Pielou evenness) of bacteria and fungi were calculated from each
of the 220 (44 plots × 5 quadrats) samples. All information from five replicate quadrats
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were averaged to obtain 30 m× 30 m plot-level estimates of plant communities, soil mi-
crobial communities, and soil physicochemical properties. Principal coordinate analysis
(PCoA) based on the Bray–Curtis distance matrices was conducted using the vegan package
v2.6-2 [73] to visualize the variation in plant, bacterial, and fungal community structure.
During the following statistical analyses, z-score transformation was used to standardize
the environmental data, with an overall mean of 0 and standard deviation of 1. For varia-
tion partitioning analysis and principal component analysis which require low collinearity
on environmental data, variance inflation factor (VIF) was analyzed to remove collinear
variables within a multiple regression until all remaining VIFs were below 4 [74,75]. Be-
cause there were significant differences in plant community and soil properties among
three locations (Figure 5c and Table 1), random effects from plot location were taken into
account on partial Mantel test and linear mixed effect model. In the following analyses
(i.e., random forest model, Pearson correlation, structural equation model, and principal
component analysis), all environmental data and microbial diversity data within each loca-
tion were z-score transformed separately, and all microbial compositional data on phylum
taxa and functional groups within each location were centered log-ratio transformed in
order to remove location effects, and meanwhile to meet the assumption of normality and
homogeneity of variance for the following analysis of Pearson correlation and structural
equation model.

To test the first prediction, we used the partial Mantel test to reveal the effects of
woody plant composition and diversity, and soil properties on microbial community com-
position, while controlling for the effect of plot geography. We used variation partitioning
analysis and Monte Carlo permutation tests (999 permutations) to determine the relative
importance and significance of geography (i.e., longitude and latitude), plant commu-
nity (i.e., PIV, EMIV, TIV, EIV, plant basal area, plant density, plant PCoA1, plant PCoA2,
and Shannon diversity), and soil properties (i.e., soil pH, bulk density, MWHC, soil N,
C/N ratio, soil P, NH4

+ − N, NO3
− − N, and available P) on the variation in microbial

community composition. Partial Mantel tests and variation partitioning analysis were
conducted using the vegan package v2.6-2 [56]. Percentage increases in the mean squared
error (MSE) of variables in a random forest model were used to estimate the importance of
plant composition and soil physicochemical factors to microbial composition and diver-
sity [76]. Random forest model was performed using the randomForest package v4.6-14
and rfPermute package v2.5.

To test the second prediction, Pearson correlation was performed using the Hmisc
package v4.6-0 and psych package v2.1.9 to check the relationship between environmental
factors and soil microbial diversity. A linear mixed effect model was performed using the
lmerTest package v.3.1-3.to conduct the analyses of variances for soil microbial diversity
(Shannon diversity), with plant community and soil property as fixed factors, and plot
location as a random factor. The influence of plot location on the linkage between key
environmental factors (such as plant composition and soil acidity) and soil microbial diver-
sity was ruled out during the selection of optimum linear mixed effect model. Structural
equation modeling was also performed using the piecewiseSEM package v4.0.5 to estimate
the synthetic effect pathways of plant composition on microbial diversity.

To test the third prediction, the relative abundance of bacteria and fungi was assigned
at the phylum and functional levels. A principal component analysis (PCA) was performed
on 14 environmental variables to reduce the number of environmental variables, and
the first 2 principal components (PC1 and PC2) explained 35.5% of the total variance
(Table S13). The PC1 axis was associated with high dominance of trees without including
shrubs and high dominance of ECM plant species. The PC2 axis was associated with low
soil nutrient availability and lower pH value. We used Pearson correlation analysis to check
the relationship between environmental variables and the relative abundance of phyla as
well as functional groups of bacteria and fungi.
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5. Conclusions

Plant–microbe interactions are complex and poorly understood at the community
level. Our results suggest that soil bacteria and fungi in Masson pine forests are influenced
mainly by woody plant species composition, rather than by woody plant species diver-
sity. The relative dominance of tree species and of ECM woody plant species explained
microbial community variation better than simply pine dominance. Bacterial diversity
was indirectly affected by woody plant composition via altered soil pH, while fungal
diversity was directly associated with plant composition. According to results derived
using a functional prediction approach, the relative abundance of functional groups of
bacteria and fungi was mainly associated with soil available nutrients and plant community
composition, respectively. Bacterial functional groups involved in carbohydrate and amino
acid metabolism seem to be increased in soil environments with low available nutrients,
while saprotrophic and pathogenic fungal groups were negatively driven by increases in
tree dominance. Taken together, our results indicate more important effects of the species
identity and functional traits of woody plants than those of general plant species diversity
on soil microbial diversity. Because of the high proportion of unexplained variability in
this field study, further research should focus on more definitive demonstration of how
plant community composition affects soil microbiomes, and the interaction between pine
dominance and site-specific effects should be taken into consideration in plant–microbe
interactions of pine forests.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12091750/s1. Figure S1: Pearson correlations between
environmental variables and soil bacterial and fungal alpha diversity; Figure S2: Pearson correlations
between environmental factors and the relative abundance of bacterial phylum taxa (a) and fungal
phylum taxa (b); Table S1: Results of linear mixed-effects models for plant Shannon diversity using
Masson pine dominance (PIV, importance value of Masson pine), ECM plant species dominance
(EMIV, sum of importance values of ectomycorrhizal woody species), evergreen species dominance
(EIV, sum of importance values of all evergreen woody species) and tree species dominance (TIV,
sum of importance values of tree species) as fixed factors; Table S2: Results of linear mixed-effects
models for plant PCoA1 using Masson pine dominance (PIV), ECM plant species dominance (EMIV),
evergreen species dominance (EIV) and tree species dominance (TIV) as fixed factors; Table S3:
Results of linear mixed-effects models for plant PCoA2 using Masson pine dominance (PIV), ECM
plant species dominance (EMIV), evergreen species dominance (EIV) and tree species dominance
(TIV) as fixed factors; Table S4: Relative abundance of bacterial phylum and functional taxa in
all samples; Table S5: Relative abundance of fungal phylum and functional taxa in all samples;
Table S6: Results of the partial Mantel test showing differences in Bray-Curtis distances of the soil
microbial communities due to woody plant community and soil properties; Table S7: Results of
linear mixed-effects models for soil bacterial diversity (Shannon diversity) using plant community
traits and soil properties as fixed factors separately; Table S8: Results of linear mixed-effects models
for soil fungal diversity (Shannon diversity) using plant community traits and soil properties as
fixed factors separately; Table S9: Results of linear mixed-effects models for soil pH using Masson
pine dominance (PIV), ECM woody species dominance (EMIV), plant PCoA1, plant PCoA2 and
plant Shannon diversity as fixed factors; Table S10: Results of linear mixed-effects models for soil
maximum water holding capacity (MWHC) using Masson pine dominance (PIV), ECM plant species
dominance (EMIV), plant PCoA1, plant PCoA2 and plant Shannon diversity as fixed factors; Table S11:
Characteristics of the geographic location and woody plant community of the 44 Masson pine forest
plots in southeastern China; Table S12: Mycorrhizal type, leaf habit and growth form of woody plants
appeared in 44 plots; Table S13: The first two axes values of Principal component analysis (PC1 and
PC2) for 14 environmental factors.
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