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Abstract: The current methods of classifying plant disease images are mainly affected by the training
phase and the characteristics of the target dataset. Collecting plant samples during different leaf life
cycle infection stages is time-consuming. However, these samples may have multiple symptoms that
share the same features but with different densities. The manual labelling of such samples demands
exhaustive labour work that may contain errors and corrupt the training phase. Furthermore, the
labelling and the annotation consider the dominant disease and neglect the minor disease, leading
to misclassification. This paper proposes a fully automated leaf disease diagnosis framework that
extracts the region of interest based on a modified colour process, according to which syndrome
is self-clustered using an extended Gaussian kernel density estimation and the probability of the
nearest shared neighbourhood. Each group of symptoms is presented to the classifier independently.
The objective is to cluster symptoms using a nonparametric method, decrease the classification error,
and reduce the need for a large-scale dataset to train the classifier. To evaluate the efficiency of
the proposed framework, coffee leaf datasets were selected to assess the framework performance
due to a wide variety of feature demonstrations at different levels of infections. Several kernels
with their appropriate bandwidth selector were compared. The best probabilities were achieved by
the proposed extended Gaussian kernel, which connects the neighbouring lesions in one symptom
cluster, where there is no need for any influencing set that guides toward the correct cluster. Clusters
are presented with an equal priority to a ResNet50 classifier, so misclassification is reduced with an
accuracy of up to 98%.

Keywords: kernel density estimation; shared neighbourhood; overlapping diseases; map generation;
lesions fragmentation

1. Introduction

Biotic infections can weaken plants and expose them to diseases affecting agricultural
production. Signs of these diseases may appear on leaf tissue, and they include notice-
able modifications in the colour and shape of the leaves of a plant as it responds to a
specific pathogen. Some symptoms look symmetric at different stages of infection, with
the possibility of overlapping symptoms appearing on the same leaf. So, the wide variety
of symptom characteristics in qualitative and quantitative terms makes it very challeng-
ing to collect such samples. It is considered time-consuming and requires experts in the
field of agriculture. Thus, more than the collected samples may be needed for training a
classifier [1–3].

On the other hand, disease detection and identification applications depend on man-
ual data annotation. Symptom datasets are created and labelled manually due to their
irregular shapes, which is considered labour intensive and may contain errors or lack of
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information; hence, only dominant symptoms are annotated and labelled, rather than
the other existing minor symptoms. These factors are misleading to the learning process
and cause imbalanced class problems. Improving these systems may require automated
labelling or region of interest (R.O.I.) segmentation. Therefore, the infected regions in
leaf sample images tend to be segmented into individual lesions. However, although this
solution has benefits for augmentation and generalisation [2] in the case of rare plants
or rare types of overlapping infections, some limitations persist [4,5]. For example, the
sensitivity of the automated determination to R.O.I. in images is due to some observations
in the background that interfere with leaf boundaries with similar characteristics such as
soil and the brown infected regions, and the effect of lights and shadows [6–8]. In addition
to time complexity, there are concerns about determining the best locations of the centroids
and how they are represented within a chosen clustering algorithm, which investigates
density or gradient estimation to find differences among observations. These concerns
have prompted current attempts to hybridise unsupervised models with specific statistical
measures [9,10] or artificial intelligence algorithms to enhance their detection phase.

Concerning the classification phase, studies that applied shallow classifiers confirmed
no prior knowledge to determine the best combination of analytical measures and tools
needed for lesion determination and disease diagnosis [8,11,12]. Studies applying deep
classifiers can eliminate the need for trial-and-error methods until an appropriate approach
is found to solve inherent problems with the shallow classifiers. However, deep classifiers
still face challenges in implementing the deep layers responsible for the best representation
of features [13–15]. Features stimulate the classifier and detect symptoms of multiple
diseases [16] in cases with mild symptoms [17]. Developing new architectures aims to
deploy applications that decrease the computational latency issue with fewer parameters
than standard models so that the model can accommodate the target classes taking into
consideration an adequate and balanced number of features to train the classifier [2,18,19].
These factors lead to pre- or post-processing to increase accuracy [20–23], which focuses on
the characteristics of the individual lesion in a single leaf [2,18].

In this paper, firstly, we investigate methods that treat R.O.I. independently before
classification. Secondly, we explain in detail the proposed framework used in our exper-
iments, which depends mainly on segmenting the R.O.I. and then clustering symptoms
that simultaneously appear on a leaf. The performance of these stages is evaluated using
a whole leaf dataset that combines rare and varied symptom characteristics, leading us
to choose the coffee leaf dataset as a case study [2]. Thirdly, since overlapped infections
are rare, collecting such samples in balanced quantities is challenging. This framework is
expected to classify individual symptoms better than a whole infected leaf. The classifica-
tion stage is based on a coffee symptoms dataset. A simple hybrid method is proposed to
analyse the behaviour of lesions in the R.O.I. by analysing the distribution of classes. We
extract dominant and minor lesions scattered in a leaf sample to validate the idea. Then,
we cluster lesions with similar characteristics based on their local densities.

The contributions of this paper are presented as follows:

• The proposed framework is new in the domain of imbalanced data classification,
which simultaneously treats major and minor classes by giving them the same priority.

• An effective and quick extraction operation finds symptoms to maintain only regions
of infection; the number of classes is validated using the D.B.I.

• A new clustering strategy is adopted to investigate an existing region of infection and
that categorises lesions as belonging to single or multiple symptoms.

• The proposed method does not need to predetermine any parameter, which makes it
fully automated and flexible. Furthermore, there is no need for an influence dataset to
categorise observations.

• The proposed model is simple. Unlike previous models, it allows the self-clustering of
overlapped lesions to be classified individually, reducing or preventing misclassification.
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2. Related Work

Attempts have been made to achieve equality in training datasets to avoid cases where
some classes are more dominant than others [24]. Therefore, a balanced dataset is one of
the main reasons a classifier can recognise exact features. These problems exist in many
applications, such as diagnostic systems in medical fields and health science [25]. A class
that appears in enough samples to train a classifier is called a dominant class, while a
class that appears in rare instances is called a minority class. The lack of features means
occasional classes in samples or minor samples in a dataset. This causes a classifier to
ignore the impact of the minority and diagnose the majority. However, a classifier in these
cases records high accuracy. If 99% of samples belong to the dominant class, a classifier
can correctly diagnose 99% of patients. In this case, a researcher assumes the proposed
classification model performs satisfactorily. However, it still neglects the existence of the
1% of the minor class. So, a measure of an imbalanced ratio has been considered [26,27],
which estimates whether the classes in a dataset are balanced or not by taking the average
of majority classes to minority classes. If the result exceeds one, the set is imbalanced.

There are several types of imbalanced datasets with different imbalanced ratios [28],
including minor class samples, overlapping class samples with interfered features, and
minor class examples with various features.

Previously proposed methods attempted to achieve balance among observations by
resampling classes of a target dataset. Samples were then provided to the learning stage.
The goal was to train classifiers with balanced datasets and to prevent misclassification.
Some recent methods have been proposed to solve this issue by keeping high-density sam-
ples as significant observations, generating similar samples, and avoiding redundancy [26].
However, researchers did not consider that low-density samples may refer to rare or new
observations. Up-sampling techniques are based on randomly duplicating minor classes.
In this case, overfitting problems can be encountered. At the same time, down-sampling
methods can lead to information loss problems due to the random omitting of dominant
classes [29]. So, relying on randomisation and generalisation affects the significance of
features and their existence in the region of interest (R.O.I.). This is why researchers tend to
decrease the error of the local generalisation; to avoid unsatisfactory results, a predeter-
mined distance is chosen based on features’ dimensions within a generalised limit to select
the nearest instances to the training dataset [30].

Other adaptive methodologies had a different orientation that relied mainly on
analysing the R.O.I., such as ensemble methods [31] and data pre-processing or hybridisa-
tion methods [32]. In addition to dimensionality reduction techniques such as principal
component analysis [33], t-distributed stochastic neighbour embedding [34], canonical
correlation analysis [35], and the affinity propagation algorithm [36], the objective is to
reduce the dominant class effect and avoid ignorance of any information that refers to rare
classes [37]. However, the interference of features makes classes similar, so these methods
can only differentiate features if there is clarity in variance among the feature projections of
an overlapped R.O.I. Finally, texture analysis methods are strongly sensitive to noise and
depend on the clarity of the R.O.I. Any enhancement or structuring method may change
the characteristics of the R.O.I. [12,38].

This paper focuses on solving overlapping observation detection problems based on
pre-processing methods such as density estimation, clustering, outlier detection, and regres-
sion analysis, which are employed to present adequate features for the classification phase.

Clustering-based spatial and density methods include analysing the behaviour and
interfered features of extracted regions of interest to differentiate them by determining
their gradients [39] and locating the nearest neighbours [40] of observation according to
a k-distance. For example, Minkowski distance measures are used to obtain geometric
characteristics represented by the centre and radius of a granule to determine its size
and location. These characteristics are attained and abstracted from minor and dominant
classes [41]. However, the radius threshold value varies as the target dataset varies.
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Sorting the classes according to a hyperplane that depicts relative relationships among
points concerning the influence of space surrounding each point can estimate whether it
is a target or an outlier [42]. All these methods are strongly affected by many factors: the
number of extracted classes and their belonging clusters [43], the local density estimation
and the local reachability among connected points, boundaries that separate clusters [44],
and local outliers [45]. These parameters vary with the variety of target datasets [46].
So, manually initialising them is considered unhelpful and time-consuming. When the
local reachability density factor is a small value, it leads to more confident detection of
outlier points. This means it can be affected by the variety of the target dataset and become
sensitive to a distant point. However, the local outlier factor is used to measure the degree
of outlines of each observation. Nevertheless, it is still sensitive to the spherical distance of
nearest neighbours [47–49].

One unique solution proposed using adaptive kernel density estimation (KDE) to
measure the feature distribution of the observed point and then comparing the resulting
probability of that particular point to its nearest neighbours, shared neighbours, and reverse
neighbours. It then analysed the fluctuation of that point compared to other points in an
R.O.I. by using the average density fluctuation [50,51] to evaluate the outliner indication
from that point. This method leads us to propose a new framework that estimates without
the need for an influence dataset to depict variety distribution to overcome the problem of
predetermining the extent of variability.

3. Methodology

The main stages of the proposed framework are conducted as follows. A leaf is
subtracted as foreground from a surrounding environment as background [38]. We then
extract the whole R.O.I. (combining several lesions), which can contain single or multiple
symptoms. It is extracted from the leaf using a modified colour process [38,39]. The number
of classes in the R.O.I. is validated using the D.B.I. [43] to ensure no healthy class exists.
To determine the existing symptoms, there is a need to fragment lesions in the R.O.I. into
sub-images. The local density of each lesion is computed independently so we can find
its nearest neighbours according to the kernel probability value that connects it with the
other existing lesions. A high probability value refers to the high similarity among lesions.
Then symptoms are classified via a ResNet mode. More details are presented to explain the
stages of this framework in the following sections.

3.1. Dataset

Our methodology uses a dataset with imbalanced instances of various features. This
led us to choose the coffee leaf dataset [2], which contains 303 samples of overlapped
symptoms and more than 2700 individual symptom samples. In addition to the RoCoLe
coffee leaf dataset [52], it includes a single symptom in a leaf with a labelled infection stage,
which is used as a reinforcement set to test the proposed clustering phase and to train the
classifier in later stages. More details are presented in Table 1.

Table 1. R.O.I. datasets.

Dataset Biotic Stress No. R.O.I. Images

Coffee dataset Miner 593
Rust 991

Phoma 504
Cercospora 378

Healthy 272
Miners and Phoma 1

Rust and Phoma 2
Brown spot and Cercospora 7

Miners and Cercospora 15
Miners and Rust 112

Rust and Cercospora 166
Total 3041

RoCoLe dataset Rust 602
Healthy 300

Total 902
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It is challenging to differentiate the characteristics of coffee leaf symptoms; they can
have similar textures, scattered lesions, shapeless lesions, and, at certain stages, more than
one colour gradient. For example, Rust and Cercospora have mixed gradients (yellow and
brown). Furthermore, they appear in a single leaf at different stages of infection. Obtaining
enough samples with such variety to train a classifier is time-consuming and demanding.

3.2. Proposed Framework

Our method suggests handling sparsity caused by overlapped symptoms with multi-
ple classes/features. Therefore, the existence of multiple classes may refer to the presence
of single or various symptoms. In the case of early infection, symptoms appear with one
class. At later stages, some symptoms appear with interfering classes. As seen in Figure 1,
the Rust sample shows a sign with multiple classes (yellow and brown gradients). These
main stages of the framework are presented in Figure 2.
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3.2.1. Stage1_ROI Extraction

At this stage, the leaf is estimated to be subtracted from a complex background
according to a previously proposed method based on the graph cut and Gaussian mixture
model [38]. The injured regions (R.O.I.) are obtained from the leaf by removing the healthy
regions as presented in Algorithm 1.

Algorithm 1: R.O.I. Extraction.

Input: Coloured image of a leaf sample.
Output: Two matrices of modified green pixels (M.G.P.) and modified red pixels (M.R.P.).
Step 1: Process a modified colour-based detection method (M.C.D.) to check leaf pixels in an image. The red and green pixel
values (R.P.V. and G.P.V.) are subtracted from the greyscale image value (G.I.V.):

Modified red pixels (M.R.P.) = R.P.V.− G.I.V. (1)

Modified green pixels (M.G.P.) = G.P.V.− G.I.V. (2)

Step 2: Keep pixels with yellow and brown gradient only, which are responsible for determining symptoms regions.
Equations (3) and (4) validate that:

Red pixel (R.P.) = M.R.P.− G.P.V.
2

+
B.P.V.

2
(3)

M.R.P. =
{

0, else
p(i, j), R.P.(i, j) ≥ threshold

(4)

Equation (1) determines pixels with yellow gradients, while Equation (2) specifies
pixels with brown colour. However, it is challenging to differentiate yellow from light
green in a leaf sample; images are affected by factors such as image-capturing conditions
and lighting effects. Furthermore, healthy regions become less bright in the advanced
disease life cycle than other leaves with other infection stages. Even the yellow scale varies
according to an infection level. Therefore, there is no predefined colourful spectrum to
confine green and yellow gradations for all the leaf samples with single/multiple infections.

Additional equations solve this problem. Equation (3) determines the range of yellow
and light green gradients, and Equation (4) is responsible for refining these gradations by
estimating the threshold value. The threshold should be larger than the R.P. matrix’s most
repeated values. Hence, repeated values represent the healthy regions. Pixels with values
larger than the repeated values represent infected regions (generally, yellow gradients
are higher than green values). Figure 3 shows an example. In the Modified Red Pixel
(M.R.P.) image, the obtained yellow regions contain some light green pixels, representing
the regions affected by lighting conditions, where the main vein appeared as part of the
R.O.I. There was a need to validate the number of extracted classes to solve this problem.
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3.2.2. Stage2_Class Determination and Validation

At this stage, the number of classes is verified using the D.B.I. It is the ratio of the sum
that differentiates classes. This method is addressed to validate the number of obtained
classes, as presented in Algorithm 2. In this phase, the R.O.I. is represented by the unhealthy
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regions. According to the target dataset, one class in the R.O.I. refers to one type of infection.
In this case, Equation (6) returns a value of one. On the other hand, two classes in the R.O.I.
can refer to overlapped symptoms or a single symptom at an advanced stage of infection.
In this case, the D.B.I. returns a value of two.

Algorithm 2: Class Verification.

Input: M.G.P. and M.R.P. matrices.
Output: D.B.I. value to confirm the number of existing classes and ROI_img, the R.O.I. generated map.
Step 1: Calculate the centres of classes, where Ci is the mean of pixels obtained from Equation (2), and Cj is the mean of
pixels obtained from Equation (4).
Step 2: Calculate the distances of points to their class centres

(
Wi + Wj ) using the Euclidean distance function:

D =

√√√√ n,m

∑
i,j =1

Wi + Wj (5)

Wi represents the average distance of all points in class Ci to their cluster centres, and Wj represents the average distance of
all points in class Ci to the centre of class Cj.
Step 3: Compute the D.B.I., where Cij represents the distance between the centres of classes Ci and Cj.

DBI(k) =
1
k ∑k

i =1 max
Wi + Wj

Cij
(6)

Step 4: Judge the convergence; if DBI ≥ 3 then :

• Increment the threshold value in Equation (4).
• Update the M.R.P. matrix.
• Repeat Steps 1,2,3.

Otherwise: continue to Step 5.
Step 5: Merge the M.G.P. and M.R.P. matrices to integrate both brown and yellow gradients in one R.O.I. image (ROI_img).

Sometimes, the validation process in Equation (6) may not refer to the optimal num-
ber of classes in the R.O.I. due to the appearance of light green pixels (healthy regions).
Therefore, the D.B.I. may exceed the value of two, meaning there is a third class with a
different ratio that needs to be omitted to reduce the index value. The threshold value in
Equation (4) is altered until we obtain an optimal M.R.P. matrix, which is responsible for
yellow gradients. In Figure 3, two extracted features are shown in the R.P. image (yellow
regions) and the M.G.P. image (brown regions). However, the returned D.B.I. value exceeds
two due to the healthy region accompanying the yellow regions. Therefore, the M.R.P.
should be altered by changing the threshold value of Equation (4). If we find more than
one value higher than the most repeated values and they appear with an equal amount,
the M.R.P. matrix is altered several times until the D.B.I. becomes less than or equal to two.
Figure 3 shows the results of the updated M.R.P. before and after obtaining the optimal
threshold value.

3.2.3. Stage3_Lesion Fragmentation

The main idea of this stage is to locate and fragment all lesions in the regions of interest,
as presented in Algorithm 3. Each lesion is kept in a sub-image to independently analyse
its characteristics; the number of detected lesions in a leaf is determined by locating the
boundaries of each lesion. This depends on pixel intensities, continuities, and directions.

A lesion is a group of connected points. By detecting the first point in a lesion, we keep
tracing the connected points until discontinuity occurs in all eight directions, as in Figure 4.
This means all points in this lesion are selected to be saved in a sub-image indexed by the
number of detected lesions. We then search for a new k lesion until all the lesions in the
R.O.I. are visited and determined.
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Algorithm 3: Lesion Determination and Fragmentation.

Input: updated ROI_img.
Output: ROI_generated map, K lesions sub-images.
Step 1: Unify colours by changing all yellow gradients to (R:255, G:255, B:0) and all brown gradients to (R:255, G:0, B:0).
Step 2: Detect points of ROI_img and trace continuities of successive pixels in the eight directions:

While i < ROI_img (height) Do:
While j < ROI_img (width) Do:

If ROI_img (i, j) > 0:

At each of the following directions (i, j + x), (i, j − x), (i − y, j − x), (i − y, j),
(i − y, j + x), (i + y, j − x), (i + x, j), (i + y, j + x) assign the value of the
detected point to its correspondent location in sub-image k.

x and y are temporary counters initialised to the location of a current
point; they increment by one to visit the next point, until they obtain a
zero-pixel value, then jump to the next direction.

Else continue searching for a new point until each point in this matrix is visited once.
End

End
Step 2: Initialise K according to the number of extracted lesions.
Step 3: For each lesion in the R.O.I., ensure that each point in that lesion is selected:

N(i, j) =
i + x

∑
m = i − x

j + y

∑
n= j − y

D(m, n) (7)

where (i, j) is the location of a current point and (x, y) is the location of the farthest point in a lesion dimension. This
equation supposes that each point in the map within these dimensions should have a corresponding point in the lesion
sub-image. Otherwise, we assign the actual value of that pixel to the lesion sub-image. This step ensures that all the points
in that lesion are integrated. Taking into account the noise and holes according to an acceptable spatial distance threshold ε
compared to the surrounding points within the lesion:

N(Lk) = {L k ∈ ROI |d
(

px,y, pi,j

)
≤ ε

}
(8)

where Lk is a lesion with k index that belongs to an R.O.I. of a leaf sample.
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Before fragmenting lesions, a map is generated according to the validated R.O.I. image,
as in Figure 2. The objective of developing the map is to create a reference image of locations
and feature/class distribution in the R.O.I. This map unifies colour gradients (one colour
refers to all the existing yellow gradients, and another refers to brown gradients). In this
way, we can quickly determine classes and their distributions in each lesion.

To validate the detected lesions, Equations (8) and (9) check whether all the points
have been selected by comparing the current lesion sub-image with the generated map.

3.2.4. Stage4_Symptom Determination and Classification

In this stage, the obtained lesions are analysed for clustering. We addressed an
extended KDE to define relations among lesions and presented it in Algorithm 4. The local
density of each lesion in a leaf is measured, and then lesions with a similar probability are
clustered together. The KDE is applied to nonparametric problems; when observations of
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a target dataset appear with unlabelled proportions of outlines, the KDE estimates every
point that does not belong to a selected bandwidth as an outlier. For our chosen dataset, the
R.O.I. combines overlapped diseases. When the minor symptom is considered an outlier,
the primary symptom is considered a standard observation. This method is harnessed to
estimate lesions with similar probabilities as neighbours are grouped in the same cluster.
Lesions related to the dominant symptom (first cluster) are assumed to appear with closer
density distributions than those of the minor sign (second cluster), which are considered
outliers.

Algorithm 4: Symptom Determination and Classification.

Input: Map_ image.
Output: Clusters of images.
Step 1: Initialise K according to the number of extracted lesions.
Step 2: For each lesion in the R.O.I.:

Calculate the average distance for points characterised as yellow in the map separately from brown points
using the Euclidean distance measure.

Step 3: Find the nearest neighbours to a current lesion according to the similarity of characteristics based on the adaptive
weighted Gaussian kernel function:

ρ (pi) =
n

∑
j =1

wj

hd
j

K
( pi − pj

hj

)
(9)

Wj =
a −∑ n

j =1 Euclidean
(

pi,pj

)
a

(10)

where pi is the average distance of a current lesion, pj is the average distance of the estimated neighbour, k is the Gaussian
kernel and wj represents the weight computed by measuring the Euclidean distance between two lesions.

K
( pi − pj

hj

)
=

1
2π

exp

(
−‖pi − pj‖2

2× hd
j

)
(11)

The h value is adapted to handle bandwidth estimation and accommodates each spot in a leaf.

hi = α[dk_max + dk_min + δ− dk(pi)] (12)

The parameters dk_maxand dk _min are the maximum and minimum distances of yellow and then brown points
for each lesion in a single leaf sample.
Step 4: Sort the obtained probabilities in ascending order, then arrange lesions into two main groups, where a group
represents a symptom; points that share equal or similar probabilities are categorised as neighbours in one group.
Step 5: Classify each group independently using ResNet50 classifier.

4. Results and Analyses

This section discusses the obtained results and compares similar previous studies in
the field. All the proposed framework experiments and comparisons are performed via
Intel(R) Core(T.M.) i7-4710HQ CPU, 8G memory and the Windows 10 Pro operating system.
The Anaconda platform is used with the Python 3.7 programming language.

4.1. Parameter Settings

Clustering overlapped symptoms with different rates, including interfered features
with no prior knowledge, is considered a nonparametric problem; the parameters have no
fixed values. Values change concerning a leaf sample, so parameters would be determined
by the number of existing lesions in a leaf and their attributes. An adaptive width and
weight are used in Equations (11) and (13) to avoid under-smoothing, over-smoothing, and
negative kernels that result from the disparity between the farthest and nearest point in
the R.O.I.

The ρ parameter represents the probability of similarity/difference. It is calculated by
setting the weight and width among the current and existing spots in a leaf sample until all
the k spots are visited. According to the literature [50], the value a is the largest Euclidean
distance among points and is used to normalise results. In our proposed method, it is set to
the average distances of extracted lesions to avoid negative kernels.

However, some parameters are considered default parameters; the value α is a scaling
factor that ensures distance smoothness among lesions. According to the literature, the
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value of α ranges from 0 to 1, regardless of whether the data is synthetic or real. The value
of the δ parameter guarantees that the width will never be zero; δ is recommended to be a
small positive value, which we predetermined to be 0.01. However, the value of δ does not
change the result but prevents the kernel width from being zero.

4.2. Experimental Results

In Table 2, there are eight leaf examples (five examples have different overlapped
diseases, and the others have a single type of symptom but with overlapped features and
at different infection levels). Two features have been extracted from stage 2 (yellow and
brown) in the first leaf example. Nine fragments (lesions) have been obtained from stage
3. Stage 4 presents two lesions; hence, relevant lesions in each group of symptoms share
similar probabilities of a specific class (feature).

Table 2. Lesions’ neighbourhood-relation-based KDE and similarity in characteristics.

Symptoms Leaf
Image D.B.I. Generated

Map
No. Detected

Lesions No. Groups

Rust and
Cercospora
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Table 2. Cont.

Symptoms Leaf
Image D.B.I. Generated

Map
No. Detected

Lesions No. Groups
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Cercospora
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Figure 5 shows lesion’s average distances of brown and yellow points of leaf 1. Figure 
6 shows that the highest 𝜌 value for yellow density (1.7) is obtained between lesion 1 and 
lesion 6, which means lesion 6 is the nearest neighbour to lesion 1. They are added to-
gether in the same cluster {1,6}. Lesions (6_8) share the same probability value; hence, le-
sion 6 is the common neighbour between lesion 1 and lesion 8. That makes lesion 8 join to 
the same cluster {1,6,8}, namely, symptom 1. Then, lesion 7 is added to group symptom 1 
due to the common neighbour lesion 6, becoming symptom 1 = {1,6,7,8}. The process is 
continued until all the lesions are sub-grouped. Successively, lesions (2_9), lesions (2_3), 
and lesions (2_5) are grouped in symptom 2 due to the shared neighbour lesion 2. Finally, 
lesion 4 is joined to symptom 2 using lesion 5 lesions (4_5). Symptom 2 = {2,3,4,5} 
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The density estimation probabilities are measured for all the existing lesions in a leaf.
These probabilities are sorted in ascending order, and lesions with close probabilities are
sorted as neighbours in the same group, namely, symptom 1. Hence, they share the same
characteristic (the highest probabilities). The remaining lesions with lower probabilities are
combined with the second group, namely, symptom 2.

Figure 5 shows lesion’s average distances of brown and yellow points of leaf 1. Figure 6
shows that the highest ρ value for yellow density (1.7) is obtained between lesion 1 and
lesion 6, which means lesion 6 is the nearest neighbour to lesion 1. They are added together
in the same cluster {1,6}. Lesions (6_8) share the same probability value; hence, lesion 6 is
the common neighbour between lesion 1 and lesion 8. That makes lesion 8 join to the same
cluster {1,6,8}, namely, symptom 1. Then, lesion 7 is added to group symptom 1 due to the
common neighbour lesion 6, becoming symptom 1 = {1,6,7,8}. The process is continued
until all the lesions are sub-grouped. Successively, lesions (2_9), lesions (2_3), and lesions
(2_5) are grouped in symptom 2 due to the shared neighbour lesion 2. Finally, lesion 4 is
joined to symptom 2 using lesion 5 lesions (4_5). Symptom 2 = {2,3,4,5}.
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Figure 5. Leaf 1, the difference among lesions’ distances.

The second example in Table 2 is Leaf 2, which contains two symptoms and two
extracted classes. Figure 7 shows each lesion’s average distances of brown and yellow
points. Figure 8 shows that lesions (2_3), lesions (3_4), and lesions (2_4) have a typical
neighbourhood, and their average probability of density estimation (ρ value for yellow
pixels ≥ 0.12). They are combined in symptom 1 = {2,3,4}. At the same time, lesion 1 is the
farthest in this neighbourhood. Due to the low probability values that connect lesion 1 with
the lesions {2,3,4}, lesion 1 belongs to group symptom 2.
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Figure 6. Leaf 1, variety in local density estimation among lesions in a leaf sample.

Plants 2023, 12, x FOR PEER REVIEW 14 of 25 
 

 

 

Figure 5. Leaf 1, the difference among lesions’ distances. 

 

Figure 6. Leaf 1, variety in local density estimation among lesions in a leaf sample. 

The second example in Table 2 is Leaf 2, which contains two symptoms and two ex-

tracted classes. Figure 7 shows each lesion’s average distances of brown and yellow points. 

Figure 8 shows that lesions (2_3), lesions (3_4), and lesions (2_4) have a typical neighbour-

hood, and their average probability of density estimation (𝜌  value for yellow pixels ≥ 

0.12). They are combined in symptom 1 = {2,3,4}. At the same time, lesion 1 is the farthest 

in this neighbourhood. Due to the low probability values that connect lesion 1 with the 

lesions {2,3,4}, lesion 1 belongs to group symptom 2. 

 

Figure 7. Leaf 2, the difference among lesions’ distances. 

1 2 3 4 5 6 7 8 9

Brown Average Distance 1.95 1.23 2.19 1.53 1.78 2.7 3.54 3.32 1.74

Yellow Average Distance 0.12 1.43 1.66 0.98 1.19 0.18 0.36 0.09 1.45

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v

er
a

g
e 

D
en

si
ti

es

Lesion Index

3_8 3_6 1_3 2_8 8_9 3_7 2_6 6_9 1_2 1_9 5_8 7_9 2_7 5_6 1_5 1_7 4_8 5_7 4_6 1_4 3_4 4_7 2_4 3_5 4_9 7_8 5_9 2_5 2_3 3_9 4_5 1_8 6_7 6_8 2_9 1_6

Yellow Densities 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.5 0.6 0.7 1 1 1 1.4 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.7 1.7 1.7

Brown Densities 0.3 0.4 0.5 0.1 0.2 0.3 0.2 0.3 0.4 0.5 0.2 0.2 0.1 0.4 0.5 0.2 0.2 0.2 0.3 0.4 0.4 0.1 0.4 0.4 0.5 0.5 0.5 0.4 0.3 0.4 0.5 0.3 0.4 0.4 0.4 0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
ro

b
a

b
il

it
y

 E
st

im
a

ti
o

n
 o

f 
L

es
io

n
1

Lesions Connections

1 2 3 4

Brown Average Distance 2.18 2.25 1.42 2.19

Yellow Average Distance 9.76 4.24 3.33 0.2

0

2

4

6

8

10

12

14

A
v

er
a

g
e 

D
is

ta
n

ce
s

Lesion Index

Figure 7. Leaf 2, the difference among lesions’ distances.
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Figure 8. Leaf 2, variety in local density estimation among lesions in a leaf sample.

The third leaf sample has two overlapped symptoms and two features. One of the
symptoms appears with one feature (brown gradients only), while the second symptom
appears with mixed features (brown and yellow gradients). Figure 9 shows the average
distances of all lesions of this leaf. Figure 10 shows that lesion 5 is the farthest one in the
group (symptom 2). In contrast, the other lesions have similar probabilities (more significant
than the average of the probabilities) and are clustered into the group (symptom 1).
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Figure 9. Leaf 3, the difference among lesions’ distances.
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Figure 10. Leaf 3, variety in local density estimation among lesions in a leaf sample.

In the fourth leaf example, a lesion with mixed features is the first observation. In
contrast, all the remaining lesions have a single feature (brown gradients). As shown in
Figure 11 the average distances of these lesions. Figure 12 shows the probabilities of lesions
(3_4), lesions (2_4), and lesions (2_3) are higher than the average of the probabilities. That
places lesions {2,3,4} in the same group (symptom 1). In contrast, lesion 1 is the farthest
lesion due to its low connectivity estimation to others.
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Figure 11. Leaf 4, the difference among lesions’ distances.
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Figure 12. Leaf 4, variety in local density estimation among lesions in a leaf sample.

The fifth example combines only two lesions with mixed features (yellow and brown
gradient pixels). Figure 13 shows variance in average distances of both lesions. The
obtained probability density estimation of lesion 1 to lesion 2 is very low (ρ for yellow
density = 0.06), as shown in Figure 14. There are no other lesions with which to compare.
According to the target datasets, the least similarity estimations exceed the value of 0.1,
weighting the possibility of two different symptoms.
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Figure 13. Leaf 5, the difference among lesions’ distances.
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Figure 14. Leaf 5, variety in local density estimation among lesions in a leaf sample.

The sixth leaf sample has several close lesions of mixed features, as shown in the
generated map and Figure 15 shows the average distances of these lesions. However, all
these lesions belong to a single symptom. According to Figure 16, lesions (2_4), lesions (1_2),
and lesions (3_4) have a shared neighbourhood, and the estimations are higher than the
average. Therefore, all lesions {1,2,3,4} are grouped before reaching the average value = 0.1.
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Figure 15. Leaf 6, the difference among lesions’ distances.
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Figure 16. Leaf 6, variety in local density estimation among lesions in a leaf sample.

The seventh sample has a single advanced infection level with mixed features. All
lesions are connected with an average probability estimation of density distribution (ρ value
for yellow densities ≥ 0.13) and belong to the same symptom group. The obtained sub-
images contained more than one lesion due to their tiny size; however, they are scattered
along the leaf but are very close to each other. Results are shown in Figures 17 and 18.
Finally, the last leaf has the same characteristics as sample 7, except it has a different level
of infection. As shown in Figures 19 and 20.
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Figure 17. Leaf 7, the difference among lesions’ distances.
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Figure 18. Leaf 7, variety in local density estimation among lesions in a leaf sample.
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Figure 19. Leaf 8, the difference among lesions’ distances.
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Figure 20. Leaf 8, the difference among lesions’ distances.

4.3. Classification Results

In the classification phase, Residual Networks (ResNet50) was chosen due to the deep
layers in its architecture that increase its efficacy in feature detection.

In Table 3, we compared our method to similar previous methods; the classifiers are
trained using the same available coffee leaf datasets where leaves are infected with biotic
stresses. They proposed to segment R.O.I. first and then classify the dominant symptom
neglecting any minor observations that lead to misclassification.
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Table 3. The obtained results for coffee symptoms classification using different architectures com-
pared to the proposed method.

Model Accuracy

Multi-task CNN [53] 95.63%
ResNet50 [53] 97.07%

PSPNet + ResNet [54] 94.17%
TripletNet (ResNet50 as Backbone) [55] 95.82%

Extended KDE + ResNet50 98%

4.4. Extended KDE Analysis

It is challenging to guarantee the distances among lesions of the same symptom due to
the overlapped classes; interference causes similar average distances, and taking their total
average increases ambiguity, so the generated map image with unified colours is created to
measure the average of yellow distance and the average of brown distance separately for
each lesion by determining the minimum and maximum distances for both gradients.

As mentioned in Section 2, the basic methods of nearest neighbours depend mainly
on the distance threshold and the value of k. In the case of imbalanced datasets, however,
these parameters are affected by the dominant symptom (the variety in features’ distri-
butions in the R.O.I.). Therefore, it is difficult to determine the threshold–neighbourhood
extent and the border among symptoms. Distances are very close and vary, as shown
in Figures 5, 7, 9, 11, 13, 15, 17 and 19. To solve the problem of border symptom sepa-
ration, Stage 4 gathers lesions according to their average distances and then smooths
them using a modified kernel density estimation. The farthest/nearest spots from a cur-
rent location are selected based on their probabilities of density estimation, as shown in
Figures 6, 8, 10, 12, 14, 16, 18 and 20. Points with high-density estimates are grouped as
neighbours in one cluster. They are more likely to be similar in their density distribution
than lesions of another cluster.

4.5. Analytical Comparison with Other Kernels Methods

The chosen density estimation method is compared with the radial bias function kernel
(R.B.K.), Adaptive_RBK [48], and Epanechnikov Kernel [56]. Different density bandwidth
selectors are tried to reduce the cluster density estimation error.

• RBK:

K
(
Xi, Xj

)
= exp

(
−
‖Xi − Xj‖2

2δ2

)
, (13)

where ‖Xi − Xj‖2 is the Euclidean distance between two lesions. The kernel value varies
in the limit (0 and 1). The recommended bandwidth estimator selection (h) is the global
alignment kernel [57]:

δ = median
(
‖Xi − Xj‖2

)
×
√

N (14)

For an adaptive R.B.K. [48], more parameters are added for the bandwidth selector, to
be implemented as follows:

δ = median
(
‖Xi − Xj‖2

)
× ln K

ln N × β
(15)

where K is the number of lesions in a leaf, β is an iterative parameter, and N is the number
of points in a lesion.

• Epanechnikov kernel:

K
(
Xi, Xj

)
=

3
4h

(
1−

(
‖Xi − Xj‖2

h2

))
(16)
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where the probability [58] of kernel extent is:

K Epanechnikov =

{
3
4

(
1− |x|2

)
if |x| < 1

0 elsewhere
(17)

The recommended bandwidth estimator selection (h) is Scott’s rule of thumb [59]:

h ≈ 1.06× σ̂n
1
5 (18)

As it is fixed for all the lesions, σ̂ is the standard deviation of the R.O.I., and n is the
number of R.O.I. points.

As clarified in Figure 21, the proposed kernels for comparison are applied for the
same overlapped cases successively selected in Table 2. The radial basis function kernel has
almost the exact probabilities as the adaptive Gaussian kernel. In contrast, the other types
of kernels have slight differences. For more detail, the confusion matrix has been chosen to
show the best kernel method.

Plants 2023, 12, x FOR PEER REVIEW 21 of 25 
 

 

 

 
Figure 21. Probability density estimation according to the proposed adaptive Gaussian kernel, ra-
dial bias function kernel, adaptive radial bias function kernel, and Epanechnikov kernel methods. 

The confusion matrix results shown in Figure 22, where there are some advanced 
cases of single infection with overlapped features (especially Rust and Cercospora), can 
be explained as follows. At certain levels of disease, the features look similar, and the ker-
nels suggest the existence of two clusters (the probabilities indicate that there are two 
symptoms). However, the lesions should be categorised as belonging to a single cluster 
(single symptom). The adaptive Gaussian kernel shows the minimum categorisation error 
compared to other kernels. 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

3_8 1_3 8_9 2_6 1_2 5_8 2_7 1_5 4_8 4_6 3_4 2_4 4_9 5_9 2_3 4_5 6_7 2_9

D
en

si
ty

 e
st

im
at

io
n

s

Lesions Connections

Adaptive_GK RBK Adaptive_RBK Epanechnikov

0

0.5

1

1.5

2

2.5

3

3.5

4

1_4 1_3 1_2 2_4 3_4 2_3

D
en

si
ty

 E
st

im
at

io
n

s

Lesions Connections

Adaptive_Gk RBK AdaptiveRBK Epanechnikov

0

1

2

3

4

5

6

7

8

9

1_2 1_3 1_4 2_3 2_4 3_4

D
en

si
ty

 E
st

im
at

io
n

s

Lesions Connections

Adaptive_GK RBK Adaptive_RBK Epanechnikov

0

1

2

3

4

5

6

7

8

1_5 5_6 2_5 4_5 3_5 1_3 3_6 2_3 3_4 1_2 1_4 2_6 4_6 1_6 2_4

D
en

si
ty

 E
st

im
at

io
n

s

Lesions Connections

Adaptive_Gk RBK Adaptive_RBK Epanechnikov

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1_2

D
en

si
ty

 E
st

im
at

io
ns

lesions Connections

Adaptive_GK RBK adaptiveRBK Epanechnikov

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

2_3 3_4 3_5 3_6 1_3 1_4 1_6 1_2 1_5 2_4 2_5 2_6 4_5 4_6 5_6

D
en

si
it

y 
Es

ti
m

at
io

n
s

Lesions Connections

Adaptive_Gk RBK Adaptive_BRK Epanechnikov

0
1
2
3
4
5
6
7
8
9

2_3 2_6 2_5 1_6 2_4 1_3 4_6 1_2 1_5 3_4 4_5 5_6 1_4 3_5 3_6

D
en

si
ty

 E
st

im
at

io
ns

Lesions Connections

Adaptive_GK RBK Adaptive_BRK Epanechnikov

0

0.5

1

1.5

2

2.5

3

3_5 1_5 1_4 4_5 1_3 2_5 2_3 3_4 1_2 2_4

D
en

si
ty

 E
st

im
at

io
ns

Lesions Connections

Adaptive_Gk RBK Adaptive_RBK Epanechnikov

Figure 21. Probability density estimation according to the proposed adaptive Gaussian kernel, radial
bias function kernel, adaptive radial bias function kernel, and Epanechnikov kernel methods.
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The confusion matrix results shown in Figure 22, where there are some advanced
cases of single infection with overlapped features (especially Rust and Cercospora), can
be explained as follows. At certain levels of disease, the features look similar, and the
kernels suggest the existence of two clusters (the probabilities indicate that there are two
symptoms). However, the lesions should be categorised as belonging to a single cluster
(single symptom). The adaptive Gaussian kernel shows the minimum categorisation error
compared to other kernels.

Plants 2023, 12, x FOR PEER REVIEW 22 of 25 
 

 

  
Adaptive Gaussian Kernel Radial Basis Kernel 

  
Adaptive Radial Basis Kernel Epanechnikov Kernel 

Figure 22. Confusion matrix of the used kernels. 

However, there are other bandwidth estimators, such as Silverman’s rule of thumb, 
where we obtained ambiguous results. Hence, Scott’s rule of thumb is more suitable for 
the normal distribution. Furthermore, the balloon estimator needs more parameters to be 
predefined for each leaf, such as the centre and length of the spherical space for the target 
cluster, which made it unfavourable to be used in the proposed method. 

5. Discussion 
In this section, we present the current issues that led to the proposed framework of a 

fully automated diagnosis system for leaf plant diseases, as follows: 
• There is a need to extract the R.O.I. method without losing region properties. The 

modified colour process is proposed to assume that the darkest gradients refer to the 
brown injured regions and the lightest gradients refer to the yellow injured regions. 

• The best analytical technique to analyse variety in syndrome is self-clustering based 
on an extended Gaussian kernel density estimation method. This method avoids 
overfitting and over-generalising problems that result from resampling observations 
to provide a balanced dataset. Furthermore, it avoids over-smoothing that results 
from undesirable bandwidth selectors. Hence, the bandwidth is adaptive to the R.O.I. 
of each leaf. 

• Most classification models are developed to detect prevalent diseases in a leaf. The 
solution is proposed to improve the classification of leaf disease diagnosis by making 
it able to characterise multiple infections in the same leaf by clustering symptoms 

Figure 22. Confusion matrix of the used kernels.

However, there are other bandwidth estimators, such as Silverman’s rule of thumb,
where we obtained ambiguous results. Hence, Scott’s rule of thumb is more suitable for
the normal distribution. Furthermore, the balloon estimator needs more parameters to be
predefined for each leaf, such as the centre and length of the spherical space for the target
cluster, which made it unfavourable to be used in the proposed method.

5. Discussion

In this section, we present the current issues that led to the proposed framework of a
fully automated diagnosis system for leaf plant diseases, as follows:

• There is a need to extract the R.O.I. method without losing region properties. The
modified colour process is proposed to assume that the darkest gradients refer to the
brown injured regions and the lightest gradients refer to the yellow injured regions.
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• The best analytical technique to analyse variety in syndrome is self-clustering based
on an extended Gaussian kernel density estimation method. This method avoids
overfitting and over-generalising problems that result from resampling observations
to provide a balanced dataset. Furthermore, it avoids over-smoothing that results from
undesirable bandwidth selectors. Hence, the bandwidth is adaptive to the R.O.I. of
each leaf.

• Most classification models are developed to detect prevalent diseases in a leaf. The
solution is proposed to improve the classification of leaf disease diagnosis by making
it able to characterise multiple infections in the same leaf by clustering symptoms
and then training a classifier using a balanced symptoms dataset. So, each cluster is
classified independently, reducing the classification error percentage.

6. Conclusions and Future Work

Imbalanced observations are a common challenge in the field of machine learning
and data analysis, especially in the context of classification tasks. The coffee leaf dataset
is an excellent example of such a scenario, where one or more classes in the dataset are
underrepresented compared to the others. This can lead to a bias in the learning process, as
the algorithm may tend to favour the majority class over the minority class [60].

It is important to remember that these techniques should not be applied blindly but
with a thorough understanding of the dataset and the problem. The choice of technique will
depend on the dataset’s specific characteristics and the classification task’s requirements.
Emphasising the attributes of the minority class individually through techniques such as
resampling, weighting, or a combination of both can help to mitigate the effects of class
imbalance and prevent the model from favouring one class over the other.

It was challenging to determine the probabilities of a cluster, but the proposed method
proved its efficacy in specifying similarity among related lesions. Moreover, compared to
other kernel methods, probability determination was more straightforward. The obtained
probability value is either 0 or 1, which means lesions with zero probability belong to
the same cluster; otherwise, they belong to the other cluster. However, these kernels
failed to categorise cases of single advanced infection, treating lesions as belonging to two
different clusters.

The proposed method relies mainly on R.O.I. fragmentation into individual lesions,
where each lesion is treated as a point that may belong to one of the existing clusters in a
leaf. However, some sporadic cases were found with overlapped symptoms in a single
manually fragmented lesion. Therefore, we recommend lesion analysis as an autonomous
R.O.I. in future work to avoid this issue.
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