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Abstract: DNA content is an important trait linked to the evolutionary routes of taxa and often
connected to speciation. In the present study, we studied C-values variation across the Cypriot
Fabeae gene pool. Several hundred plants (Vicia spp., Lens spp., Pisum spp.) were sampled across
Cyprus. Accurate estimates were established by flow cytometry and propidium iodine staining for
155 discrete populations/accessions. A ten-fold variation was detected across lineages with 1C DNA
content varying from 1.584 pg for V. cretica (ARI02420) to 13.983 pg for V. faba (ARI00187). In general,
flow cytometry was precise for the characterization of species, even though there were instances of
genome overlapping across taxa. Most analyses in the current work refer to species that have not
been characterized before by flow cytometry (or any other DNA content estimation method). Still, a
correlation to C-values previously reported in Kew Plant DNA C-values database was attempted. A
high degree of correlation except for V. dalmatica was established. The evaluation of genome size trait
in relation with the Fabeae phylogeny, revealed that Pisum and Lens genera were rather homogenous,
but an astonishing fluctuation was shown for Vicia spp. Moreover, it was established that genome
up- or down-scaling was not directly linked to speciation drivers. The genomic size measurements
presented here could deliver extra quality control for the identification and characterization of taxa in
germplasm collections, particularly in cases where species share morphological characters.

Keywords: C-value; DNA content; genetic resources; flow cytometry; legumes

1. Introduction

The inconsistency of DNA concentration within a haploid nucleus (C-value) and the
functional complexity of eukaryotic organisms has been recognized as the C-value para-
dox [1]. The fact that the DNA amount is not correlated to the complexity of an organism
or the number of required genes, despite initial theories, has been an enigma, perplexing
geneticists across the decades. Nowadays, complementary to last eras’ C0t analysis (a
technique based on reassociation kinetics of DNA fragments), next generation sequencing
(NGS) has provided solid evidence that genome augmentation is due to repetitive DNA
sequences, formerly believed to be ‘junk DNA’ [2].

Angiosperms (flowering plants) are generally accepted as ideal candidates to study
the influence of such repetitive sequences on the evolution of genomes [3] since there is
an astonishing difference across genome sizes, spanning over three orders of magnitude
(starting from approximately 0.59 Gbp/1C) in the carnivorous plant Genlisea tuberosa
Rivadavia, Gonella & A. Fleischm [4] to 148.90 Gbp/1C in Paris japonica Franchet [5]. Even
though C-values greatly fluctuate across taxonomic families, there is general uniformity
within families, tribes, or species.
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Nonetheless, this is not the case for the legume family (Leguminosae) where great
dissimilarities of genome size are reported; C-values fluctuate from approximately 400 Mbp
to more than 26,000 Mbp (per 1C) [6]. In particular, smaller genomes (0.34 pg/1C) have been
reported for Trifolium ligusticum Balb. ex Loisel. [7], while Vicia faba L. has been recognized
as having the largest genome (27.40 pg/1C) [8]. Ancestral forms of legumes (such as
Trifolium spp) are alleged to have had smaller genomes, while DNA content across the
Fabeae tribe has staggeringly increased after the divergence from common progenitors [6].
The Fabeae tribe contains economically/agronomically significant taxa for human, as
well as animal, consumption (such as Lathyrus L., Lens Mill., Pisum L. and Vicia L.). The
accumulation of available molecular data for Fabeae, such as genetic linkage maps [9–12],
genome sequencing [13–15], and diversity arrays technology (DArT) [16] has provided
valuable insights for these genetic resources. Still, a basic understanding regarding the
nature of a given genome necessitates information concerning the DNA amount and must
be considered as a critical feature in any inclusive program for comparative genomic
investigations [17]. Nonetheless, despite the fact that hundreds of different taxa have been
reported in the literature for Fabeae taxa, very few data regarding genomic size are reported
and available [18].

The first evaluation on genome size for Fabeae was reported by Rees et al. [19] for
V. sativa (1.13 pg). The genus Pisum comprises three species: P. abyssinicum (Abyssinian
pea), P. fulvum (red yellow pea), and P. sativum (garden pea), with two subspecies, wild
P. sativum subsp. biflorum and cultivated P. sativum subsp. sativum [20,21]. The genus Lens
includes seven taxa clustered in four species namely: L. ervoides, L. lamottei, L. nigricans,
L. culinaris (L. culinaris subsp. culinaris), L. odemensis (L. culinaris subsp. odemensis), L. orien-
talis (L. culinaris subsp. orientalis), and L. tomotosus (L. culinaris subsp. tomotosus) [22]. Oppo-
sitely, the Vicia genus is a multitudinous taxonomical unit [23], having extensive germplasm
resources spanning to 216 species [24]. Until present-day, 84 Vicia, 3 Pisum, and 2 Lens
species have had their nuclear DNA content assessed (https://cvalues.science.kew.org/
(accessed on 3 March 2023)), which signifies a limited amount considering the large number
of designated Fabeae taxa.

The study of the genome is a significant approach to comprehend the evolutionary
mechanisms of plant species [25]. Yet, the knowledge of Fabeae diversity has mainly
focused on chromosomal analyses and/or morphological characters [26–37]. Moreover,
most reports on Fabeae C-value have been provided by Feulgen microdensitometry. In
particular, 83 reports for Vicia spp. prime estimates (out of 86) resulted from Feulgen
densitometric analysis (https://cvalues.science.kew.org/ (accessed on 3 March 2023)).
Indeed, historically in the Kew Plant DNA C-values database, DNA content was regu-
larly assessed by means of Feulgen microdensitometry [38]. Nevertheless, this method
is quite slow, laborious, and frequently has limited precision [39]. Due to its increased
applicability, accuracy, high throughput, and speed, flow cytometry has gained attention
for genome size estimation. [40]. As a result, nowadays flow cytometry has become the
‘gold standard’ methodology employed for calculating C-values and GC content across
lineages [41,42]. Accordingly, out of the 12,273 prime estimates registered in the Kew Plant
DNA C-values database, 8643 have been calculated via flow cytometry (database accessed
in February 2023).

Cyprus is an island located between three continents, a hotspot of biodiversity and
within the center of Fabeae taxa origin/domestication [43]. Geographical isolation in
correlation to different microclimates, as well as the presence of civilization, trade, and
agriculture since antiquity, has contributed to the formation of several unique genotypes
across different local crops [44–49]. Hence, under an evolutionary prism, and in terms of
genetic resources exploration/exploitation, there is a scientific interest for characterizing
these indegenous genotypes and the Cypriot gene pool.

The aims of the current study were to provide information in the complex taxo-
nomic Fabeae tribe by delivering precise estimations of the genome size of 29 species
(155 accessions/465 plants) collected across Cyprus, the Southernmost European boarder.

https://cvalues.science.kew.org/
https://cvalues.science.kew.org/
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Multiple accessions per species were employed in order to unravel possible evolutionary
insights of genome size, and to assess inter- and intra-genome size variation. Additionally,
flow cytometry was evaluated as an analytical method for use in the Cypriot legume
germplasm classification.

2. Materials and Methods
2.1. Plant Material

For the collection of the plant material, a two-year expedition (2019–2020) was directed
across regions of Cyprus (Figure 1). Plants were marked in situ (during the flowering
period), identified following the flora of Cyprus keys [50,51], and pods from multiple
plants across 155 Fabeae populations (Vicia spp., Lens spp. and Pisum spp.) were collected
(Supplementary Table S1). Seeds were physically purified and deposited to the Cypriot
Genebank/Herbarium (Agricultural Research Institute). Subsequently, seeds were dried to
a humidity percentage of approximately 10% and stored at −20 ◦C. Taxa used as internal
flow cytometry standards [52] were provided by Prof Doležel and the Centre of Plant
Structural and Functional Genomics (Šlechtitelů 31, Holice, 779 00 Olomouc, Czechia). All
internal standards used [Solanum lycopersicon cv. Stupické polní tyčkové rané (1C = 0.98 pg),
Glycine max cv. Polanka (1C = 1.25 pg), Zea mays cv. CE-777 (1C = 2.715 pg), Pisum sativum
cv. Ctirad (1C = 4.545 pg), and Secale cereale cv. Dankovské (1C = 8.095 pg)] were designated
based on genomic size proximity to Fabeae samples but with no-overlapping 2C and/or
4C-values.
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Figure 1. Distribution of sampling sites across Cypriot regions. In total, 155 Fabeae populations
(belonging to 29 species) were collected.

2.2. Sample Preparation

Ten seeds per accession were treated by mechanical scarification and germinated in
petri dishes containing moist Whatman® cellulose filter papers. Plantlets were transferred
to pots containing a commercial peat/perlite mix and grown in walk-in cabinets at 20–25 ◦C,
under a 16 h day/8 h night photoperiod. Fresh and healthy leaf tissues were collected
from young plants (three discrete plants for each accession were used for sampling) and
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kept between humid paper towels in a fridge until chopping (within the day). A leaf area
(roughly 0.5 cm2) of samples and standards were chopped together using a sterile double-
edge razor blade for 5 to 10 s in a petri dish (placed on top of ice). Tissues were submerged
at all times in one mL of pre-chilled Lysis buffer-LB01 [15 mM Tris, 2 mM Na2EDTA, 0.5 mM
spermine tetrahydrochloride, 80 mM KCl, 20 mM NaCl, 0.1% (v/v) Tween-20, 50 µg/mL
propidium iodide (PI), 50 µg/mL RNase, and 0.1% ß-mercaptoethanol] as previously
reported [53]. Homogenates were passed through 50 µm Celltrics nylon filters (Sysmex,
Lincolnshire, IL, USA) into 1.5 mL Eppendorfs and kept at 8 ◦C for 20 min to enhance
staining. In total, 114 Vicia spp., 28 Lens spp. and 13 Pisum spp. accessions were analyzed
(Table 1).

Table 1. List of Fabeae taxa (in alphabetic order), number of analyzed accessions, DNA content
reported in Kew database, internal standards used, predicted Mbps, mean 1C-values with standard
deviations, coefficient of variance, ranges of DNA content, HSD and LSD tests. Nomenclature is
according to Hand et al., 2011 [51].

Species No. of
Accessions

DNA Content/Data
from Kew (pg/1C)

Internal
Standard 3 Mbp 4

Mean DNA
Content ± SD

(pg/1C)
%CV

Range of
DNA

Content (pg)

HSD
Test 5

LSD
Test 5

L. culinaris 18 4.21 Z. m 4260.983 4.357 ± 0.05 1.148 4.209–4.448 ij k
L. ervoides1 5 - Z. m 3391.313 3.468 ± 0.026 0.750 3.437–3.494 l n

L. nigricans1 3 - Z. m 3452.992 3.531 ± 0.015 0.425 3.521–3.548 l n
L. orientalis1 2 - Z. m 4280.706 4.377 ± 0.062 1.416 4.333–4.421 hij jk

P. fulvum 2 4.7 Z. m 4735.476 4.842 ± 0.035 0.723 4.817–4.867 g g
P. sativum subsp. biflorum 3 4.75 Z. m 4409.802 4.509 ± 0.091 2.018 4.437–4.611 hi hi
P. sativum subsp. sativum 8 4.9 Z. m 4422.272 4.522 ± 0.026 0.575 4.493–4.572 h h

V. amphicarpa L. 2 2 1.65 S. l 1617.612 1.654 ± 0.059 3.567 1.612–1.696 qr t
V. angustifolia L. 2 7 2.01 G. m 1964.662 2.009 ± 0.061 3.036 1.929–2.094 p r

V. bithynica L. 2 3 3.83 Z. m 3749.978 3.834 ± 0.035 0.913 3.808–3.874 k m
V. cassia Boiss1 6 - Z. m 4343.298 4.441 ± 0.128 2.882 4.356–4.694 hi ij

V. cretica Boiss. & Heldr.1 1 - S. l 1549.096 1.584 ± 0.007 0.442 1.577–1.591 r t
V. cypria Kotschy1 1 - P. s 5368.995 5.49 ± 0.022 0.401 5.467–5.51 f f

V. dalmatica A. Kern. 6 6.87 P. s 6720.816 6.872 ± 0.081 1.179 6.716–6.94 d d
V. ervilia L. 2 8 4.2 Z. m 4154.789 4.248 ± 0.025 0.589 4.22–4.301 j l

V. faba L. 14 13.62 S. c 13,525.042 13.829 ± 0.11 0.795 13.66–13.98 a a
V. hybrida L. 2 11 6.78 P. s 6546.110 6.693 ± 0.118 1.763 6.542–6.971 e e

V. johannis Tamamsh2 1 6.94 P. s 6782.479 6.935 ± 0.014 0.202 6.919–6.943 d d
V. lathyroides L. 2 3 2.53 G. m 2477.600 2.533 ± 0.05 1.974 2.484–2.583 n p
V. laxiflora Brot.1 2 - G. m 2762.850 2.825 ± 0.003 0.106 2.823–2.827 m o

V. lunata (Boiss. & Balansa)
Boiss.2 5 1.83 S. l 1750.033 1.789 ± 0.022 1.230 1.768–1.824 q s

V. lutea L. 2 1 7.4 P. s 7143.214 7.304 ± 0.011 0.151 7.291–7.312 c c
V. narbonensis L. 2 4 6.95 P. s 6795.878 6.949 ± 0.034 0.489 6.912–6.994 d d
V. palaestina Boiss.2 1 2.24 G. m 2191.757 2.241 ± 0.019 0.848 2.223–2.26 o q
V. parviflora Cav.1 3 - G. m 2560.078 2.618 ± 0.08 3.056 2.526–2.673 mn p
V. peregrina L. 2 6 8.97 P. s 8773.149 8.971 ± 0.069 0.769 8.862–9.038 b b

V. pubescens (DC.) Link2 6 2.79 G. m 2730.739 2.792 ± 0.062 2.221 2.667–2.831 m o
V. sativa L. subsp. sativa 17 2.25 S. l 1756.891 1.796 ± 0.063 3.508 1.726–1.999 q s
V. villosa subsp. eriocarpa

(Hausskn.) P. W. Ball 6 2.28 S. l 1782.568 1.823 ± 0.075 4.114 1.748–1.947 q s

1 First report in the Fabeae literature (according to Kew Plant C-values database https://cvalues.science.kew.org/
(accessed on 3 March 2023)); 2 First report using flow cytometry; 3 Z. m: Zea mays cv. CE-777 (2.715 pg/1C); S. l:
Solanum lycopersicon cv. Stupické polní tyčkové rané (0.98 pg/1C); G. m: Glycine max cv. Polanka (1.25 pg/1C);
S. C: Secale cereale cv. Dankovské (8.095 pg/1C); P. s: Pisum sativum cv. Ctirad (4.545 pg/1C); 4 (1 pg = 978 Mbp)
as reported in Dolezel [54]; 5 Species having identical lowercase letters were not found significantly different at
p = 0.05.

2.3. Flow Cytometry

C-values were assessed utilizing an Accuri C6 flow cytometer (Accuri Cytometers, Inc.,
Ann Arbor, MI, USA), following a previously described procedure [55]. Analysis was based
on light-scatter and fluorescence signals emitted from a 20-mW laser illumination at 488 nm.
The precision of the cytometer was established using 6-peak Spherotech fluorescent beads,
as indicated by the vender (CFlow User Guide, Accuri, Franklin Lakes, NJ, USA). Double
threshold levels were determined (80,000 on FSC-H and 1000 FL-2) to exclude irrelevant

https://cvalues.science.kew.org/
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debris from detection. Fluidics were set on slow, and measurements were accumulated
to an overall number of 3000 nuclei. The areas of nuclei were diagonally gated using an
FL3-A/FL2-A plot and peaks were displayed via a count events/FL2-A plot. For each
accession, three different measures were performed for three consecutive days. Replicates
were well reproducible having minor systematic errors. Flow files were exported and
analyzed using Modfit LT version 5.0 (Verity Software House, Topsham, ME, USA) to
identify modelled peaks and calculate C-values. The flow histograms displayed crisp
peaks, having low coefficient of variation (<5%).

2.4. C-Value Character Evolution

Fabeae sequences for internal transcribed spacers (ITS1-5.8S-ITS2) were identified
using the nucleotide database of NCBI (https://www.ncbi.nlm.nih.gov/nucleotide/ (ac-
cessed on 3 March 2023)). Twenty-seven discrete sequences were selected and downloaded
in Fasta format. Following acquisition, a multiple alignment was conducted (using the
MUSCLE algorithm/Gblocks alignment curation). For the construction of the phylogenetic
tree, a maximum likelihood approach was selected and implemented using a PhyML ap-
proach. The single dendrogram produced was visualized with TreeDyn and exported as a
nexus file. The mesquite V3.70 suite (www.mesquiteproject.org (accessed on 3 March 2023))
was employed to embed C-values as a continuous character, and to perform parsimony
analysis for linking DNA content to the Fabeae evolutionary history (using the nexus
dendrogram file as an input).

2.5. Statistical Analyses

C-value means and standard deviations were calculated for each species (across
accessions) and reported in Table 1. To perform a linear regression, residuals were used to
examine the uniformity of variance and relevant fit to a normal distribution (Supplementary
Figure S1). Differences across species, considering accessions as replicates, were analyzed
using a one-way ANOVA test and two post-hoc analyses: Tukey’s honest significant
difference (HSD) test, and least significant difference (LSD) test. Rstudio (Version 1.1.463)
and the agricolae package were employed for the analyses. Three biological replications
(nine discrete plants within the accession) were employed for the analysis for species for
which only one population was found in Cyprus.

3. Results

For the present study, several hundred Fabeae plants were collected across Cyprus
(Figure 1). For species identification and characterization, keys reported in Meikle [50] and
‘the flora of Cyprus’ site (https://www.flora-of-cyprus.eu/ (accessed on 3 March 2023))
were followed. The Cypriot Fabeae germplasm was found rich in diversity (Figure 2) and
morphological characters allowed the unambiguous identification of 29 species. Three
plants from each population/accession (totaling 455 plants) were co-analyzed by means
of flow cytometry and PI staining. Estimated C-values across taxa were calibrated to the
genome size of proper reference internal standards (Table 1). Across all cases, the 2C peak
(FL2-A axis) of each standard was detected within the 2C and 4C peak range of the Fabeae
sample, or vice versa, contributing to precise DNA content estimations (Figure 3).

The FL2-A histograms of nuclear DNA content generally displayed a single distinct
peak, matching to the G1 phase nuclei (2C-value), and a lower peak corresponding to G2
phase nuclei (4C-value). The analysis of distributions revealed that the vast majority of
nuclei were at the G0/G1 cell cycle (Figure 3A). In some instances, higher than 4C ploidy
levels were recorded and assigned to endopolyploidy cells (Figure 3B). High-resolution
histograms were generated across replicates having a 2C peak coefficient of variation
(CV) repeatably lower than 5%. Average CVs between biological replications on three
consecutive days (using the same buffer lot) was also low (approximately 1.5%), suggestive
of accurate measurements.

https://www.ncbi.nlm.nih.gov/nucleotide/
www.mesquiteproject.org
https://www.flora-of-cyprus.eu/
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The 1C genome size across 155 Fabeae accessions was estimated (on average) for three
consecutive days (Supplementary Table S1). It was determined that mean 1C genomic
size for individual taxa varied almost ten-fold, ranging from 1.584 ± 0.007 pg for V. cretica
(ARI02420) to 13.983 ± 0.046 pg for V. faba (ARI00187). The lowest CV across accessions
was detected for V. dalmatica ARI01835 (0.08), and the higher for V. sativa subsp. sativa
ARI00307 (3.82).

DNA 1C-values from discrete accessions (spanning from 1 to 17) were subsequently
used in order to calculate mean genomic size and standard deviation at the species level
(Table 1). Among species, the most homogenous genome size was recorded for V. laxiflora
having a CV of 0.106, while the greatest heterogenicity was found in V. villosa subsp.
eriocarpa that had a CV of 4.114.
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having a CV of 0.106, while the greatest heterogenicity was found in V. villosa subsp. 
eriocarpa that had a CV of 4.114. 

The residuals of a model fitting were reviewed to test for equal variances across 
accessions (Suppl Figure S1). It was established that systematic bias regarding variances 
was not evident; consequently, equal variances were assumed for post hoc analyses (HSD 
and LSD tests). The box plot of increasing genome sizes (Figure 4) depicted that within 
species DNA content variation was frequently insignificant; hence, taxa were correctly 
assigned to species. Pisum fulvum was clearly distinguished from P. sativum subsp. 
biflorum and P. sativum subsp. sativum. Still, across several species, post hoc analyses 
revealed that there is genomic size overlapping; thus, C-values cannot always be used as 

Figure 3. (A) FL2-A fluorescence histograms of Zea mays cv. CE-777 (red peaks) and Pisum sativum
subsp. sativum ARI00308 (yellow peaks) with diploid (2C) and tetraploid (4C) nuclei. (B) FL2-A
fluorescence histograms of Zea mays cv. CE-777 (yellow peaks) and Vicia lunata ARI01343 (red peaks)
PI-stained nuclei. Besides diploid (2C) and tetraploid (4C) cells, nuclei with a higher ploidy level (8C)
were also detected.

The residuals of a model fitting were reviewed to test for equal variances across
accessions (Supplementary Figure S1). It was established that systematic bias regarding
variances was not evident; consequently, equal variances were assumed for post hoc
analyses (HSD and LSD tests). The box plot of increasing genome sizes (Figure 4) depicted
that within species DNA content variation was frequently insignificant; hence, taxa were
correctly assigned to species. Pisum fulvum was clearly distinguished from P. sativum subsp.
biflorum and P. sativum subsp. sativum. Still, across several species, post hoc analyses
revealed that there is genomic size overlapping; thus, C-values cannot always be used
as stand-alone traits for species assignment. Particularly, V. dalmatica, V. johannis, and V.
narbonensis were assigned at the same genomic content group (Table 1; Figure 4). Lens
ervoides and L. nigricans were also of equal genomic size, but these were clearly demarcated
from L. culinaris that had a larger value. Also, V. laxiflora and V. pubescence were found
comparable, having an average C-value of approximately 2.8 pg/1C. Vicia lunata, V. sativa
subsp. Sativa, and V. villosa subsp. eriocarpa had similar genomic sizes (Table 1).

The current study reports novel genomic estimations of Fabeae taxa using flow cy-
tometry. Still, a correlation to previously reported C-values was attempted (Figure 5). It
was established that 1C-values presented here agree with previously published values
(obtained with flow cytometry as well as Feulgen cytophotometry). Nevertheless, we found
that the Feulgen technique tends to be equivalent when compared to PI flow cytometry
(Table 1). Despite small discrepancies, a highly significant correlation was established
across the 20 common species analyzed. Remarkably, the only substantial variance was
observed for V. dalmatica where we recorded an almost 50% greater value than previous
reports. Interestingly, V. dalmatica is a perennial plant in Cyprus and can only be found at
high altitude habitats (above 800 m).
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found merely for Vicia dalmatica (depicted as a red circle).
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A discrete parsimony optimization analysis was subsequently performed using the
mesquite software suite. The ancestral character evolution projection indicated that C-
values of Fabeae genome size followed an increasing rather than decreasing pattern. More-
over, substantial genomic augmentation mainly occurred in V. faba and V. peregrina as well
as in taxa grouped to the C-clade (Figure 6). Nonetheless, it seems that the Fabeae tribe also
had several independent ‘upsizing’ events across other lineages (A and B). Nonetheless,
genome size was not found to be associated with any phylogenetic lineage or evolution-
ary driver.
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Figure 6. Discrete parsimony optimization of C-values (Mbp) in the Cypriot Fabeae tribe analyzed
with the mesquite software. Reconstruction of ancestral states for C-values on an ITS1-5.8S-ITS2-
based phylogenetic tree. Blue and cyan branches symbolize moderately small genome DNA content
while green, orange, and red designate, respectively, medium-sized and larger genomes. NCBI
nucleotide accessions correspond to the following taxa: JX506157.1; L. culinaris, MT002742.1; L.
ervoides, JX506158.1; L. nigricans, JN966984.1; L. orientalis, KU678816.1; P. fulvum, KU678853.1; P.
sativum subsp. biflorum, AY143482.1; P. sativum subsp. sativum, HM470604.1; V. amphicarpa, KJ787206.1;
V. angustifolia, HM470596.1; V. bithynica, JX506196.1; V. cassia, JX506205.1; V. cretica, JX506208.1; V.
cypria, HM470636.1; V. dalmatica, HM470634.1; V. ervilia, MW843838.1; V. faba, HM470625.1; V. hybrida,
HM470597.1; V. johannis, HM470610.1; V. lathyroides, JX506301.1; V. parviflora, JX506244.1; V. lutea,
HM470591.1; V. narbonensis, MN736419.1; V. palaestina, HM470631.1; V. peregrina, JX506278.1; V.
pubescens, HM470602.1; V. sativa subsp. sativa, HM470615.1; V. villosa subsp. eriocarpa.

4. Discussion

Legumes include crops that are cultivated on a significant area of global arable land
(12–15%) and account for approximately 27% of the world’s primary crop production [56].
Within the leguminosae family, the Fabeae tribe is constituted by five genera, comprising
380 species which hold agricultural significance. These mainly refer to lentil (Lens culinaris),
broad bean (Vicia faba), domesticated vetches (mainly Vicia sativa and Vicia ervilia), and pea
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(Pisum sativum) [57]. Besides the current significant agronomic status, these species were
also of immense importance since antiquity and have been utilized alongside major do-
mesticated crops (barley, wheat and flax) in the fertile crescent [58]. Faba beans specifically
have been used, not only as food, but were intertwined with the archaic Mediterranean
history and tradition [59]. In the birthplace of democracy (Ancient Greece), broad beans
were used for casting votes (white beans signified a positive vote, and black/brown beans
stood for a negative vote). Even today, the expression ‘koukiá’ (meaning ‘broad beans’ in
Greek) is informally used, denoting votes. Faba beans were also used as ‘food for the dead’
in the Lemuria festival throughout the classical Roman era.

Nowadays, Fabeae taxa span virtually to a worldwide grid, but the main source of
genetic diversity is still found within Eastern Mediterranean that is considered the center
of origin/domestication for these lineages [24]. Cyprus is within the domestication region
and a geographical boundary/cut-off point for three continents (Europe, Africa and Asia).
Its position and diverse microclimatic types has established the island as a hot spot for
plant biodiversity, despite its small size [49,51].

Until the present, more than 2000 discrete plant species have been recorded in Cyprus
while the endemism rate of indigenous species reaches approximately 9% [60]. A large
proportion of Cypriot plants belongs to the Leguminosae family, but remains uncharted. In
an attempt to study the vast genetic resources of agronomically important taxa belonging
to the Fabeae tribe, we organized a collection for vetch, lentil, and pea crops wild rela-
tives/landraces. In total, we analyzed 465 plants (155 populations/29 species) by using PI
flow cytometry. An estimation of the Cypriot Fabeae genome size variety and the suitability
of the technique for Fabeae species characterization was established.

In general, two fluorochromes have been widely employed for determining C-values
in plants: DAPI and PI. DAPI is a base-specific dye (AT specific), while PI is an intercalating
fluorochrome and has been used to quantify DNA content without the bias of AT/GC base
content [61]. Hence, PI has been suggested as the optimal fluorochrome for genome size
surveys [62]. In the current study, the adaptation of the LB1 buffer/PI staining protocol
proved adequate for the analysis of the Cypriot Fabeae species, providing precise and
accurate histograms (CVs lower than 5%) similar to previous studies [25,63,64].

Across the 29 species studied, a remarkable fluctuation of genome size was noted for
Vicia spp. while Lens spp. and Pisum spp. were found rather homogeneous (Figure 4).
Vicia cretica had the smallest genome (1.584 ± 0.007 pg/1C), while V. faba DNA content
was found to be approximately ten-fold larger, reaching to a mean of 13.829 ± 0.11 pg/1C
(Table 1). This great variation in the Fabeae tribe is not unprecedented. Castiglione and
colleagues [32] reported that in terms of both chromosome complement and DNA size,
C-values in the Vicia spp. complex were clearly heterogeneous. Specifically, for species of
the Atossa and Wiggersia sections, DNA content had a 2-fold difference despite identical
chromosome numbers. In the current study, the majority of taxa could be identified via
flow cytometry by using two post-hoc statistic tests (Table 1). Nonetheless, there were cases
where DNA size overlapping occurred across lineages.

Still, the relationship among Vicia species and its classification has been controversial,
since more than 20 taxonomic revisions have been reported since Linneus [65]. For instance,
V. sativa has been regarded as an aggregate of diverse taxa [26] that was given species
rank, while six other taxa were denoted at the subspecies level within V. sativa (1. subsp.
amphicarpa (L.) Batt., 2. subsp. cordata (Wulfen ex Hoppe), Asch. & Graebner, 3. subsp.
macrocarpa (Moris) Arcang., 4. subsp. angustifolia L., 5. subsp. sativa., 6. subsp. segetalis
(Thuill.) Gaudin). Indeed, in the current study, V. sativa was found to be quite heteroge-
neous since 1C-values varied from 1.726 to 1.999 pg/1C. Nonetheless, V. amphicarpa and
V. angustifolia were clustered within different groups from V. sativa subsp. sativa (Table 1),
supporting a discrete species assignment. Another taxonomic revision [27] considers V.
narbonensis as a complex containing V. johannis, V. narbonensis, and V. bithynica. In the
current work it was established that, in terms of DNA content, V. johannis (6.935 ± 0.014
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pg/1C) and V. narbonensis (6.949 ± 0.034 pg/1C) were grouped together while V. bithynica
(3.834 ± 0.035 pg/1C) was clearly demarcated from the former.

Screening of the Kew Plant C-values database revealed that several data presented here
are novel (data for L. ervoides, L. nigricans, L. orientalis, V. cassia, V. cretica, V. cypria, V. laxiflora,
and V. parviflora), while other are reported for the first time using flow cytometry (data for
V. amphicarpa, V. angustifolia, V. bithynica, V. ervilia, V. hybrida, V. johannis, V. lathyroides, V.
lunata, V. lutea, V. narbonensis, V. palaestina, V. peregrina, and V. pubescens). A comparison
between C-values for species available in the Kew database, as well as the present study
was attempted (Figure 5). A high correlation (R2 = 0.947) was confirmed across species,
except V. dalmatica.

Several reasons can cause C-values discrepancies in genome size assessments. Notable
variances in flow cytometry protocols, the use of frozen or lyophilized tissues, differ-
ent fluorochromes, as well as different internal standards [25]. Nonetheless, we found
that all six Cypriot V. dalmatica accessions had approximately 50% more DNA content
(6.872 ± 0.081 pg/1C) compared to previous studies reporting an 1C-value ranging from
3.24 to 4.10 pg [66–68]. As a result, such discrepancies cannot be attributed to methods
variations but must be based on a diverse/discrete genetic background. Vicia dalmatica, is a
perennial Vicia species in Cyprus and can only be found in the Troodos Mountain region
(from 800 m up to 1400 m). As a result, it must sustain extreme conditions, which include
cold winter and hot and dry summer with annual temperatures commonly varying from 0
◦C to 30 ◦C. Abiotic stressors have been recently implicated in genome size fluctuation and
evolutionary trade-offs [69–72]. Recently it was also reported that genome size in plants
can influence the stress tolerance of invasive and native plants via genomic plasticity [69].
Carta and Angelino also found that plant traits are interconnected with climate seasons
and habitat in lilies and that genome size increase is controlled by climate seasonality [73].
Moreover, it was recently established that the Ogre retrotransposon Ty3/gypsy family has
a significant part in the genomic size evolution within the Fabeae tribe, causing genomic
upsizing [3].

Following C-value estimations, we also attempted to model the DNA size evolutionary
trait in correlation to phylogenetic routes, based on internal transcribed spacers. Simulated
ancestral states grounded on parsimony were depicted showing a complex evolutionary
history (Figure 6). Based on C-value character development it seems that genomic size
fluctuated independently to the evolution and diversification of the Fabeae species. The
main genomic augmentation was found in the clade of V. faba and V. peregrina that were
also genetically affiliated. In contrast, there were also instances when a genomic down-
sizing from ancestral nodal routes was evident. Independence of C-values and genetic
relationships has also been reported for Vicia spp. at the karyotypic level.

The basic numbers of Vicia chromosomes are X = 5, 6, or 7. Thus, there is an exclusive
variety and karyotypic diversity across diploid taxa (2n = 2x = 10, 2n = 2x = 12, and
2n = 2x = 14, respectively), making the genus a unique model of karyotypic evolution [74].
However, plants with different basic chromosome numbers exist even at the species level
(all basic numbers of chromosomes have been reported for V. sativa, V. amphicarpa, and V.
lathyroides) [75].

Concluding, the DNA content reported for several taxa of the Fabeae tribe of Cyprus
can be used as a reliable standard and contribution to a further depiction of the evolutionary
associations amongst these agronomically important species. Moreover, these C-values can
be a guide map of breeding efforts regarding such distinctive germplasm. Despite the fact
that Leguminosae taxa belong to one of the most widespread families, there are still several
gaps regarding our knowledge on legumes and crop wild relatives (CWRs). Specifically,
focus on local CWRs and their extraordinary genetic diversity/genome size variation
could facilitate precise and imminent decisions on plant genetic resources utilization
and preservation.
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