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Abstract: Accurate understanding of spatial distribution and variability of soil total nitrogen (TN) 

is critical for the site-specific nitrogen management. Based on 4337 newly obtained soil observations 

and 33 covariates, this study applied the random forest (RF) algorithm and modified regression 

kriging (RF combined with residual kriging: RFK, hereafter) model to spatially predict and map 

topsoil TN content in agricultural areas of Henan Province, central China. According to the RFK 

prediction, topsoil TN content ranged from 0.52 to 1.81 g kg−1, and the farmland with the topsoil TN 

contents of 1.00–1.23 g kg−1 and 0.80–1.23 g kg−1 accounted for 48.2% and 81.2% of the total farmland 

area, respectively. Spatially, the topsoil TN in the study area was generally higher in the west and 

lower in the east. By using the Boruta variable selection algorithm, soil organic ma�er (SOM) and 

available potassium contents in topsoil, nitrogen deposition, average annual precipitation, livestock 

discharges, and topsoil pH were identified as the main factors driving the spatial distribution and 

variation of soil TN in the study area. The RF and RFK models used showed the expected perfor-

mance and achieved acceptable TN prediction accuracy. In comparison, RFK performed slightly 

be�er than the RF model. The R2 and RMSE achieved by the RFK model were improved by 4.5% 

and 4.5%, respectively, compared with that by the RF model. However, the results suggest that RFK 

was inferior to the RF model in quantifying prediction uncertainty and thus may have a slight dis-

advantage in model reliability. 

Keywords: topsoil; total nitrogen; random forest; modified regression kriging; digital soil mapping; 

Henan province; China 

 

1. Introduction 

Soil total nitrogen (TN) is one of the most important indicators of soil productivity 

and the biogeochemical cycle, and plays an essential role in agroecosystem functioning 

and climate change mitigation [1–4]. Low soil TN content suggests that nitrogen may be-

come a crucial limiting factor for primary productivity in agroecosystems, while excessive 

soil TN content implies the risk of agricultural non-point source pollution and greenhouse 

gas emissions [5–10]. Spatially predicting the distribution and variability of soil TN and 

determining its main controlling factors are of great significance for understanding the 

carbon–nitrogen cycle in agroecosystems, implementing site-specific nitrogen manage-

ment, and maintaining nitrogen dynamic balance at regional, landscape, and field scales, 

which help improve soil quality, increase food production, prevent agricultural non-point 

source pollution, and reduce greenhouse gas emissions [7,11–13]. 
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It is well known that soil TN content, especially in arable soils, is not only affected by 

natural factors such as topography, parent material, climate, and biology, but also by an-

thropic activities such as fertilization, irrigation, crop rotation, tillage, and straw manage-

ment, etc. The heterogeneity in time and space of the above mentioned factors leads to 

great variability of soil TN, making it one of the most challenging soil properties to predict 

and manage [11,14,15]. The technical approach most commonly used to address the spa-

tial distribution and variation of soil TN content is digital soil mapping (DSM) [16–19], 

which overcomes the disadvantages of costly and time-consuming conventional mapping, 

especially on a large regional scale [20]. The DSM technology is based on the soil–land-

scape model, which is a map of soil properties by fi�ing quantitative relationships be-

tween measured soil properties and environmental covariates, and applying spatial anal-

ysis and mathematical methods to predict the spatial distribution of soils [21]. Over the 

past two decades, machine learning (ML) algorithms have increasingly been used as DSM 

tools for soil spatial prediction, largely due to the increased availability of open access 

data and the dramatic growth in computer power [22–24]. Briefly, for regions with sparse 

sample point information, machine learning can predict soil properties (e.g., soil TN) for 

the whole region by learning the relationship between environmental and target variables 

[25], without prior statistical assumptions [26–28]. Among ML models, the tree-based al-

gorithms represented by random forest (RF) have shown the best performance and gained 

the most popularity in predicting soil properties [29–33]. 

However, the ML approaches, including RF, only quantitatively fit the complex and 

nonlinear deterministic relationships between soil observations and environmental co-

variates, ignore the spatial autocorrelation of soil observations, thus leading to the limita-

tion of their prediction performance [34–36]. To address this shortcoming of ML ap-

proaches, Keskin and Grunwald [26] proposed the novel modified regression kriging (RK) 

methods, a hybrid model called the regression kriging type C, and investigated the deter-

ministic component of soil variation using ML algorithms, which dealt with the stochastic 

part of variation by kriging interpolation of ML prediction residuals [34,37]. In most stud-

ies, these modified RK hybrid models significantly outperformed the corresponding 

standalone ML counterparts [32,38–40]. However, in a few cases, the prediction accuracy 

achieved by the hybrid models were no be�er or even worse than that achieved by ML 

algorithms [34,41–43]. So far, there is still no reasonable explanation for this conflicting 

conclusion. 

The RF algorithm, a representative ML technique, and its hybrid model counterpart 

(RF combing with residual kriging: RFK, hereafter) were selected to spatially predict the 

topsoil TN in the agricultural area of Henan Province, central China. The objectives for 

this study were to (1) determine the spatial distribution, variability, and controlling factors 

of topsoil TN, (2) compare prediction performance of the RF and RFK models and analyze 

the differences in their performance, and (3) find their difference in quantitatively evalu-

ating prediction uncertainty. 

2. Results 

2.1. Descriptive Statistics of Soil Total Nitrogen Observations 

Summary statistics of the topsoil TN contents observed in the agricultural areas of 

the study area are presented in Table 1. The observed topsoil TN content ranged from 0.16 

to 2.11 g kg−1, with a mean of 1.06 g kg−1. The coefficient of variation (CV) of the entire 

sample set was 27.00%, indicative of a moderate variability. Smaller kurtosis and skew-

ness values indicate that the dataset was close to a normal distribution with a slight right 

(positive) skewness. There was no significant difference in the statistical characteristics of 

the entire set, calibration set, and validation set, indicating that all were well representa-

tive.  
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Table 1. Descriptive statistics of topsoil TN observations in the study area. 

 
Simple size 

(n) 

Mean 

(g kg−1) 

Maximum 

(g kg−1) 

Minimum 

(g kg−1) 

SD 1 

(g kg−1) 

CV 2 

(%) 
Kurtosis Skewness 

Entire set 4337 1.06 2.11 0.16 0.28 27.00 0.64 0.36 

Calibration set 3470 1.06 2.09 0.16 0.28 27.00 0.63 0.36 

Validation set 867 1.06 2.11 0.19 0.28 27.00 0.69 0.34 
1 standard deviation; 2 coefficient of variation. 

2.2. Relative Importance of Covariates 

Boruta’s quantitative evaluation showed that, except for aspect in the topographic 

a�ribute category, the relative importance of all the remaining 32 covariates was greater 

than the maximum value of the shadow variables (maximum Z-score), that is, they had 

an important influence on the spatial prediction of topsoil TN in the study area, and were 

involved in modeling as predictors. As shown in Figure 1, in addition to soil organic mat-

ter (SOM), which ranked first in the relative importance list by absolute dominance, the 

covariates associated with soil nitrogen sources (e.g., application of livestock manure and 

N- fertilizer, atmospheric N-deposition), soil nutrient-holding capacity (e.g., available K 

and P contents), and the climatic covariates closely related to soil water availability (e.g., 

evaporation, precipitation, and relative humidity) ranked higher (Figure 1). 

 

Figure 1. Relative importance of covariates. 
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2.3. Spatial Distribution and Variability of Topsoil TN 

Based on the covariate set established by the variable selection using the Boruta al-

gorithm, the spatial distribution of topsoil TN content predicted by the RF model was 

shown in Figure 2b. As tested, the residues from the RF prediction had spatial autocorre-

lation (Moran’s I = ﹣0.06，Z-score = ﹣7.06, p < 0.01) and matched the normal distribution 

(K-S test p > 0.05). The optimal semi-variance model parameters are shown in Table 2. The 

results showed that the best-fi�ing model for the RF residuals was an exponential model. 

The nugget and sill values were 0.0018 and 0.0447, respectively. The nugget effect was 

4.02%, indicating that the RF residuals exhibited strong spatial dependence. Then, the spa-

tial distribution of topsoil TN residues was estimated by OK interpolation. The final TN 

prediction by the RFK model was generated by adding the deterministic component from 

the RF model with the residual interpolation (Figure 2e). According to the RFK prediction, 

the topsoil TN content in the study area ranged from 0.52 to 1.81 g kg−1, with a mean of 

1.06 g kg−1. Compared with the TN observations in the calibration set, the distribution 

range of predicted TN content was significantly narrowed, reflecting the apparent 

smoothing effect of the RFK prediction. The agricultural lands with topsoil TN content of 

1.00–1.23 g kg−1 were the most widely distributed in the study area, accounting for 48.2% 

of the total agricultural area, followed by the lands with TN content of 0.80–1.00 g kg−1, 

covering 33.0% of the total agricultural area. The agricultural lands with topsoil TN > 1.37 

g kg−1 were mainly distributed in the mountainous areas of western Henan Province, 

while the lands with topsoil TN contents ≤ 0.48 g kg−1 were concentrated in the Huang–

Huai–Hai plain within the study area. Spatially, the topsoil TN in the study area showed 

considerable spatial variability. 

 

Figure 2. Lower limit (a), mean (b) and upper limit (c) of topsoil TN predicted by RF; lower limit 

(d), mean (e) and upper limit (f) of topsoil TN predicted by RFK. 
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Table 2. The optimal semi-variance model parameters for residuals from RF. 

Variogram Model Nugget Sill Nugget/Sill (%) R2 RSS 1 Range (km) 

RF residuals Exponential 0.0018 0.0447 4.02 0.345 9.325 × 10-4 2670 
1 residual sum of squares. 

2.4. Comparison of Model Performance 

The independent validation showed that in predicting topsoil TN content in the 

study area (Figure 3), the R2 achieved by the RF and RFK models was 0.44 and 0.46, and 

the RMSE was 0.22 and 0.21, respectively. The RFK model outperformed the RF model in 

terms of predictive performance. Based on the calculation of the CI width, the uncertainty 

of topsoil TN predictions were quantitatively evaluated by counting the percentage of 

topsoil TN observations that fell within the specified 90% CI, according to the technical 

specifications of GlobalSoilMap [44,45] (Table 3). Approximately 92.4% of the topsoil TN 

observations in the validation set fell into the 90% CI of the RF model, demonstrating an 

acceptable reliability of the predictions. In comparison, the CI coverage probability of RFK 

model was higher than that of the RF model, and the percentage of soil observations in 

the validation set falling into 90% CI was 98.2%, significantly deviating from the theoreti-

cal range, indicating that the uncertainty of model prediction was overestimated. 

 

Figure 3. Predictive performance comparison between RF and RFK models. 

Table 3. Percentages of topsoil TN observations in the validation set falling inside and outside the 

prescribed 90% CI. 

 
Inside 

Outside 

 < 5% > 95% 

RF 92.40 3.60 4.00 

RFK 98.21 0.49 1.30 

3. Discussion 

3.1. Covariate Contributions 

The relative importance of the covariates derived from the variable selection algo-

rithm refers to the relative influence of the covariates on the spatial prediction of the target 

soil variables. If the model prediction was reliable, then the relative importance of the co-

variates largely implied the ability of the covariates to drive the spatial distribution and 

variation of the target soil variables. Therefore, although the RF used in this study was not 

an explanatory model, it could reveal the driving factors of spatial distribution and varia-

tion of topsoil TN content in the study area from the relative importance of covariates 

involved in modeling. 
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As expected, SOM content dominated the spatially explicit estimation of the topsoil 

TN in the study area, which was consistent with most other studies [12,16,46–48]. The 

statistics of soil observations in the calibration set showed that the content of SOM and 

topsoil TN was positively correlated at the p < 0.01 level (Figure 4), which indicated that 

most topsoil TN existed in organic form, and perhaps some inorganic nitrogen was ad-

sorbed on the SOM functional groups. The relative importance of available potassium 

content in topsoil ranked second among all covariates, which may be due to two causes. 

First, the widespread use of compound fertilizer containing N, P, K elements increased 

the possibility of the coexistence of available nitrogen and available potassium. Secondly, 

and most importantly, there was a close correlation between available potassium and TN 

content. If the topsoil TN content in the calibration set is divided into seven grades ac-

cording to the legend grading standard in Figure 2, and the sca�erplot of topsoil TN 

against available potassium is made according to the average content of each grade, then 

there is an almost perfect linear correlation between them (Figure 5a). This was most likely 

a�ributed to the fact that the available potassium in soil was mainly adsorbed to organic 

colloid in the form of exchangeable cations. Such a perfect correlation also existed between 

SOM and topsoil TN (Figure 5b), and available potassium (Figure 5c). 

 

Figure 4. Pearson correlations between topsoil TN and covariates, * and ** denote significance levels 

of p < 0.05 and p < 0.01, respectively. 
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Figure 5. Sca�erplots of topsoil TN against available potassium (a) and SOM (b), of topsoil SOM 

against available potassium (c), according to the average content of each grade. 

Both forms of N deposition ranked third and seventh, respectively in the relative im-

portance of covariates, indicating that they played a very important role in the topsoil TN 

prediction, which has rarely been reported in other soil TN estimation studies conducted 

in China [18,33,47,48]. In fact, few studies have included N deposition as a covariate for 

soil TN prediction, possibly because the intensity of N deposition has shown a dramatic 

decline in most parts of the country over the past two decades. Nevertheless, at least in 

this study area, N deposition seemed to remain an important source of soil nitrogen, and 

had a significant contribution to topsoil TN content. The relative importance of average 

annual precipitation ranked fourth among the covariates, and had a significantly positive 

correlation with topsoil TN at the p < 0.05 level in the calibration set (Figure 4), which was 

consistent with the identification of influencing factors of soil TN in other studies [33,48–

50]. We believe that precipitation, together with evaporation, has a dual impact on soil 

TN: one was to affect SOM accumulation and thus TN content; the other was to alter soil 

water availability to drive nitrogen behavior, such as leaching and volatilizing. 

Two covariates characterizing the potential nitrogen output of the local livestock in-

dustry, namely the pig equivalent per unit area and the risk index of livestock manure 

pollution, were also relatively high in the relative importance ranking, among which the 

risk index of livestock manure pollution was significantly and positively correlated with 

the topsoil TN content at the p < 0.05 level. In previous studies of soil TN prediction, al-

most none included the livestock-related data layer as a covariate, possibly due to the 

small size of the livestock industry in these study areas. In Henan province, however, the 

comprehensive production capacity of animal husbandry has been continuously en-

hanced over the past decade. In 2021, the output value of animal husbandry in the prov-

ince ranked the second in the country, accounting for 28.7% of the total agricultural output 

value of the province. The impact of livestock waste discharge on soil nitrogen should not 

be ignored. 

Topsoil pH also ranked in the top 10 covariates, and was significantly negatively cor-

related with topsoil TN at the p < 0.01 level. This correlation has also been found by pre-

vious studies [47]. Many studies have shown that the entry of exogenous nitrogen, such 

as N fertilizer application and N deposition, could increase the SOM and soil TN contents 

while leading to the decrease in soil pH [47,51–54]. 

3.2. Prediction Accuracy 

As mentioned above, soil TN is one of the most difficult soil a�ributes to be spatially 

predicted due to the high diversity and great spatial–temporal variability of influencing 
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factors. Given that the study area covered 167,000 km2, the performance of the RF and RFK 

models used in this study and the achieved accuracy of topsoil TN prediction were in line 

with expectations. Under the conditions of comparable soil sample density, covariate 

availability, and landscape complexity, the smaller the geographical scope of the study 

area, the be�er the prediction performance of the model used. Liu et al. [55] successfully 

predicted soil TN content using a multiple linear regression (MLR) model in a small wa-

tershed of 4.2 km2 in Shandong Province, China, and achieved a prediction R2 of 0.69. In 

the study conducted by Wadoux et al. [56] in the metropolitan territory of France covering 

about 540,000 km2, based on the soil observations from the LUCAS dataset, the topsoil TN 

prediction using the RF model just obtained an R2 of 0.20, while the RMSE was as high as 

1.52. In Zhejiang Province (located in East China and with a total area of 104,300 km2), 

Deng et al. [47] used the RF model to spatially predict topsoil TN content and achieved an 

R2 of 0.65. The density of the soil observations in Deng et al.’s study was about seven times 

that of our soil observations. We believed that the much higher soil observation density 

might be one of the key reasons for the significantly higher R2. However, the prediction 

RMSE achieved by Deng et al.’s study was 0.45, much higher than the 0.22 obtained in this 

study. Considering the differences in topsoil TN levels between the two study areas, the 

normalized RMSE (NRMSE) was calculated by dividing the RMSE by the mean of the TN 

observations. It was found that the NRMSE of topsoil TN prediction in Zhejiang study 

area was 0.25, while that in our study area was 0.20. It seems that increasing the sample 

observations could significantly promote the model capacity to explain the spatial varia-

tion of topsoil TN, but it might not effectively reduce the prediction deviation. 

In terms of R2 and RMSE, the accuracy of the RFK model was be�er than the RF model 

for topsoil TN prediction in the study area. The R2 and RMSE obtained by the RFK model 

improved by 4.5% and 4.5%, respectively, compared with those obtained by the RF model. 

The superiority of RFK over the RF model is visually demonstrated by the plots of pre-

dicted against measured values of the topsoil TN contents (Figure 3). As shown in Figure 

3, although both models display a similar pa�ern, RFK sca�er is less tight around the 1:1 

line, and overestimated lower and underestimated higher TN content values to a lesser 

extent than RF. This finding was close to the studies conducted by Takoutsing and Heu-

velink [37]. 

Many studies have reported that the RK model and its modified visions were supe-

rior to competitors to varying degrees in spatially predicting soil TN [18,48,57,58]. In com-

parison, the performance advantage of RFK over RF in this study was smaller than in most 

previous studies. First, the relatively large study area increased the terrain diversity, land-

scape complexity and the soil heterogeneity, leading to the decrease in effective control 

scope of the spatial autocorrelation of soil TN [26,59]. Therefore, the existing soil observa-

tions were not enough to predict the spatial stochastic variation of soil TN well. With the 

same calibration dataset, using the OK model to predict the topsoil TN in this study area, 

the achieved R2 was only 0.21, but the RMSE was as high as 0.25. Obviously, the perfor-

mance of OK was inferior to the RF and RFK models. Second, the model structure and the 

used covariates largely influenced the residual spatial autocorrelation of deterministic 

prediction. The RF used in this study was a tree-based ML model populated with all rele-

vant variables, which usually leaves no or weak residual spatial autocorrelation [26]. Thus, 

the substantial superiority of RFK performance could not achieved by OK of the residuals 

from the RF model. 

3.3. Prediction Uncertainty 

One of the main advantages of the DSM approach is that it allows for quantitative 

analysis of prediction uncertainties. Based on the statistical results of the validation sam-

ple points (Table 3), the CI of RF (92.40%) is closer to the theoretical value of 90% compared 

to RFK (CI of 98.21%), indicating that RF outperforms RFRK in terms of quantitative esti-

mation of spatial prediction uncertainty. Similarly, Takoutsing and Heuvelink [37] found 
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in a recent study at the landscape scale that regression kriging (RK) was be�er at predict-

ing a variety of soil properties by achieving lower RMSE values, but worse at quantifying 

prediction uncertainty than the RF model. In this study, the results showed that the per-

formance of the RK and RF models did not change in terms of both prediction accuracy 

and quantification of prediction uncertainty when the trend term in the RK was fi�ed with 

the RF model instead of the regression model. 

4. Materials and Methods 

4.1. Study Area 

Henan province (31°23′–36°22′ N and 110°21′–116°39′ E) is located in the middle and 

lower reaches of the Yellow River in central China (Figure 6), covering a total land area of 

167,000 square kilometers, of which 7.51 million hectares are arable land. Henan Province 

is generally high in the west and low in the east, with an altitude range of 23.2–2413.8 m. 

The province has a variety of landforms, among which mountains and hills account for 

44.3% and plains and basins account for 55.7% of the total land area. Most of the province 

is in the warm temperate zone, belongs to a continental monsoon climate with a transition 

from the northern subtropical zone to the warm temperate zone, and features four distinct 

seasons and simultaneous rain and heat. The average annual temperature of the province 

from south to north is 10.5–16.7 °C, the average annual precipitation is 464.2–1193.2 mm, 

the most rainfall is from June to August, the average annual sunshine is 1285.7–2292.9 h, 

and the annual frost-free period is 208.7–290.2 days, which is suitable for a wide range of 

crops. The cropping system in Henan Province mainly adopts a winter wheat–summer 

maize (northern region) and a rice–winter wheat (southern region) crop rotation. As a 

major agricultural province, grain production in Henan Province plays an important role 

in China’s food security strategy. In 2022, the grain output of the province reached 67.89 

billion kg, ranking the second in China, and exceeding 50 billion kg for 16 consecutive 

years and 65 billion kg for the sixth consecutive year. According to the Chinese Soil Tax-

onomy, the types of major agricultural soils in Henan Province consist of several subor-

ders of Cambosols (WRB: Vertic Cambisols, Calcaric Cambisols), Argosols (WRB: Calcic 

Luvisols, Haplic Luvisols) and Primosols (WRB: Fluvic Cambisols, Calcaric Fluvisols), 

and Stagnic Anthrosols (WRB: Hydragric Anthrosols). 

 

Figure 6. Geographical location of the study area and spatial distribution of the soil sampling sites. 
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4.2. Soil Sampling and Measurement 

For the purpose of monitoring cultivated land quality and promoting formulated fer-

tilization, a total of 4337 topsoil samples were collected in the agricultural areas of Henan 

Province from 2017 to 2019. Taking the data layers of topography, land use and soil type 

as the basic strata, the soil sample sites were generated through a stratified random strat-

egy and located using a global positioning system (GPS). At each location, the topsoil sam-

ple was taken at a depth of 0–20 cm, which weighed about 1 kg and was composed of the 

subsamples gathered from the corners and center of a 20×20 m quadrat. All the soil sam-

ples were carefully packed into co�on bags, labeled, and transported to the laboratory. 

After air-drying at room temperature for three weeks, the soil samples were removed from 

plant roots, li�er, stones, and alien items, and sieved with a 0.25 mm mesh of stainless 

steel. The soil TN content was measured using an automatic Kjeldahl analyzer and the 

laboratory operations followed the relevant technical regulations in Agricultural Industry 

Standards of the People’s Republic of China No. NY/T1121. 

The soil samples (n = 4337) were split into calibration (n = 3470, 80%) and validation 

(n = 867, 20%) sets using the createDataPartition function in the caret package [60] in R 

4.0.3 [61]. The calibration set was used to train the RF and RFK models, while the valida-

tion set was prepared for independent validation. The spatial distribution of soil sampling 

sites in calibration and validation sets is shown in Figure 1. 

4.3. Covariates and Variable Selection 

A total of 33 covariates that had pedogenetic associations with soil nitrogen or ex-

planatory capacity for soil nitrogen behavior were collected and prepared as potential 

predictors of topsoil TN content. These 33 covariates could be roughly regarded as six 

categories, namely, nitrogen sources, soil properties, topographic a�ributes, climate char-

acteristics, organism features, and management practices. Nitrogen fertilizer use, atmos-

pheric nitrogen deposition, the pig equivalent per unit area, and straw returning to field 

were classified into the category of nitrogen sources. Soil property category included or-

ganic ma�er, available phosphorus and available potassium contents in topsoil, soil type, 

soil parent material, soil profile morphology, topsoil pH, topsoil texture, topsoil clay con-

tent, soil temperature regime, and soil moisture regime. Terrain a�ribute category mainly 

comprised elevation, slope and aspect. The climate characteristics category included av-

erage annual temperature, average annual precipitation, average annual evaporation, rel-

ative humidity, average annual sunshine, and annual cumulative temperature. The organ-

ism features included the normalized difference vegetation index (NDVI), net primary 

productivity index (NPP), and crop yield. The management practices category was com-

posed of land use, cropping system, irrigation condition, drainage capability, and risk in-

dex of manure pollution. The brief descriptions of 33 covariates and their sources were 

listed in Table 4. To achieve the uniformity of spatial reference and resolution, all covari-

ates were converted to WGS1984_UTM_49N projection coordinates and resampled to 

1000 m resolution in ArcGIS 10.7. 

Table 4. Brief description of the covariates in different categories. 

Categories Covariates Data Source 
Resolu-

tion/Scale 

Nitrogen 

sources 

Nitrogen fertilizer 

use 
Field investigation during the soil sampling campaign 30 m 

 
Nitrogen wet depo-

sition 

National Science and Technology Infrastructure 

(h�p://rs.cern.ac.cn/index.jsp) 
1000 m 

 
Nitrogen dry depo-

sition 

National Science and Technology Infrastructure 

(h�p://rs.cern.ac.cn/index.jsp) 
10,000 m 
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Categories Covariates Data Source 
Resolu-

tion/Scale 

 
The pig equivalent 

per unit area 
Field investigation during the soil sampling campaign 30 m 

 
Straw returning to 

field 
Field investigation during the soil sampling campaign 30 m 

Soil properties 

Soil organic ma�er 

Available phospho-

rus 

Henan Provincial Database for Cropland Quality Evaluation 

Henan Provincial Database for Cropland Quality Evaluation 

1:200,000 

1:200,000 

 Available potassium Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Topsoil pH Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Soil type Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Soil parent material Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 
Soil profile mor-

phology 
Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Topsoil texture Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 
Soil temperature re-

gime 
Soil Series of China, Volume Henan, 2019 1:200,000 

 
Soil moisture re-

gime 
Soil Series of China, Volume Henan, 2019 1:200,000 

 Clay content Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

Terrain a�rib-

utes 
Elevation 

ASTER GDEM V3 30 m DEM (h�p://www. tuxingis.com/re-

source/aster_v3.html) 
30 m 

 Slope Derived from ASTER GDEM V3 30 m DEM 30 m 

 Aspect Derived from ASTER GDEM V3 30 m DEM 30 m 

Climate char-

acteristics 

Average annual 

temperature 

National Meteorological Science Data Center 

(h�p://data.cma.cn/data/cdcdetail/dataCod e/A.0029.0005.html) 
30 m 

 
Average annual pre-

cipitation 

National Meteorological Science Data Center 

(h�p://data.cma.cn/data/cdcdetail/dataCod e/A.0029.0005.html) 
30 m 

 
Average annual 

evaporation 

National Meteorological Science Data Center 

(h�p://data.cma.cn/data/cdcdetail/dataCod e/A.0029.0005.html) 
30 m 

 Relative humidity 
National Meteorological Science Data Center 

(h�p://data.cma.cn/data/cdcdetail/dataCod e/A.0029.0005.html) 
30 m 

 
Average annual 

sunshine 

National Meteorological Science Data Center 

(h�p://data.cma.cn/data/cdcdetail/dataCod e/A.0029.0005.html) 
30 m 

 
Annual cumulative 

temperature 

National Meteorological Science Data Center 

(h�p://data.cma.cn/data/cdcdetail/dataCod e/A.0029.0005.html) 
30 m 

Organism fea-

tures 
NDVI 

China Resource and Environmental Science and Data Centre 

(h�p://www.resdc.cn.) 
1000 m 

 NPP 
China Resource and Environmental Science and Data Centre 

(h�p://www.resdc.cn.) 
1000 m 

 Crop yield Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

Management 

practices 
Land use Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Cropping system Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Irrigation condition Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 Drainage capability Henan Provincial Database for Cropland Quality Evaluation 1:200,000 

 

Risk index of live-

stock manure pollu-

tion 

Field investigation during the soil sampling campaign 30 m 
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For the vast majority of ML models, the prediction accuracy does not entirely depend 

on the number of covariates involved in modeling. Redundant, irrelevant covariates usu-

ally have a negative impact on the model performance. Variable selection, or feature se-

lection, thus becomes an important aspect of model building and helps in building pre-

dictive models free from correlated variables, biases, and unwanted noise [34,62]. In this 

study, Boruta, an algorithm as a wrapper around RF, was chosen to conduct variable se-

lection and valuation of covariate relative importance on the R statistical computing and 

analysis platform [63]. 

4.4. Predictive Models 

The RF algorithm is a typical bagging algorithm (bootstrap aggregation) in ensemble 

learning [64]. It contains a number of decision trees and uses bootstrap resampling meth-

ods to perform put-back sampling of the dataset to train each decision tree in the model. 

Finally, the results of each tree are integrated. To generate a predictive model, the RF al-

gorithm needs two user-defined parameters to be set, namely the number of trees to grow 

in the forest (ntree) and the number of covariates selected at each split (mtry). Many cases 

have demonstrated that 150 trees were sufficient to generate stable outcomes [65,66]. In 

the present study, we fixed ntree = 200. By default, we se�led mtry to the rounded down 

square root of the total number of covariates. This study carried out the RF modeling using 

the randomForest package [67] in R 4.0.3 and the final prediction of topsoil TN content 

was presented as the average value of all the tree predictions generated based on a boot-

strap sample of the calibration set. 

The residuals from the RF model were obtained by subtracting the predicted TN con-

tent from the measured TN content at the same site. Then, ordinary kriging (OK) was used 

to obtain the spatial distribution of the RF residuals, and finally the interpolated results of 

the RF residuals were added to the RF prediction results to obtain the RFK prediction 

results. TN prediction from the hybrid model RFK can be described as follows: 

ŶRFK(s) = ŶRF(s)+έOK(s) (1)

where ŶRFK(s) is the predicted TN by the hybrid model RFK at the locations, ŶRF(s) is the 

predicted TN by the RF model, and έOK(s) is the residual estimation by ordinary kriging 

(OK) interpolation. It should be emphasized that before fi�ing the semi-variance function, 

Spatial autocorrelation of RF residuals using the global Moran’s I index test according to 

the requirements of ordinary kriging for data. If there is spatial autocorrelation and the 

residuals of RF conform to a normal distribution, OK interpolation can be used. If there is 

no spatial autocorrelation, the predicted topsoil TN by RF will be the output result. In the 

present study, spatial autocorrelation analysis, semi-variance analysis, and OK interpola-

tion of RF residuals were all implemented in the ArcGIS 10.7 environment [18,68]. 

4.5. Evaluation of Model Performance 

An independent validation approach was applied to assess performance of the pre-

diction models in spatially predicting topsoil TN. Two commonly used assessment met-

rics, namely, the root mean square error (RMSE) and the coefficient of determination (R2), 

were chosen to compare the accuracy of topsoil TN prediction by the RF and RFK models. 

RMSE = �
1

n
 �(�� − ��)

2

�

���

 (2)

R2 = 1－
∑ (��－ ��)

2�
���

∑ (��－ �)2�
���

 (3)

where n is the validation sample size, �� and �� represent the observed and predicted val-

ues, respectively, of topsoil TN content by a given method at the ith locations, and � is the 
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average of the observed values of topsoil TN for the validation samples. Of the metrics 

used, RMSE summarizes the magnitude of the residuals, and a smaller RMSE indicates a 

higher accuracy of model prediction, while R2 indicates the proportion of the topsoil TN 

variance explained by the covariate set. 

RMSE and R2 can evaluate the accuracy of a model, but they lack the ability to quan-

tify the uncertainty of the model. In this study, the 5% and 95% quantiles of the quantile 

regression forest (QRF) [69] prediction were regarded as the lower and upper limits of the 

90% confidence interval (CI) width of the RF model, respectively. Assuming that the 

kriging interpolation of deterministic residuals followed the normal distribution, the up-

per and lower limits of 90% CI of the residual kriging was calculated at µ ± 1.645σ, where 

µ and σ were the mean and standard deviation of the predicted residuals, respectively 

[44]. Then, the 90% CI width of RFK model can be jointly determined by the upper and 

lower limits of 90% CI of RF model and kriging interpolation. Finally, we calculated the 

percentage of topsoil TN observations that fell at 90% CI to evaluate the ability of RF and 

RFK to quantify the uncertainty in spatial predictions of total soil nitrogen. 

5. Conclusions 

Under the combined effect of SOM, available potassium contents, nitrogen deposi-

tion, average annual precipitation, livestock discharges and topsoil pH, the TN content of 

agricultural soils in central China ranged from 0.52 to 1.81 g kg−1. The agricultural land 

with topsoil TN content between 1.00 g kg−1 and 1.23 g kg−1 was the most widely distrib-

uted, accounting for approximately half of the total agricultural land area. The spatial var-

iability of topsoil TN in the study area was significant, and was overall high in the west 

and low in the east. Accurately predicting the spatial distribution of soil TN on a regional 

scale and understanding the drivers of soil TN provides the basis and technical support 

for site-specific nitrogen management and dynamic change control. In terms of R2 and 

RMSE achieved, RFK slightly outperformed the RF model. However, RFK was inferior to 

the RF model in quantifying prediction uncertainty. Overall, model performance evalua-

tion should not be limited to the commonly used accuracy metrics, but should also con-

sider the uncertainty of the quantitative prediction results. 
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