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Abstract: Polyphenol has been used in treatment for some health disorders due to their diverse health
promoting properties. These compounds can reduce the impacts of oxidation on the human body,
prevent the organs and cell structure against deterioration and protect their functional integrity. The
health promoting abilities are attributed to their high bioactivity imparting them high antioxidative,
antihypertensive, immunomodulatory, antimicrobial, and antiviral activity, as well as anticancer
properties. The application of polyphenols such as flavonoids, catechin, tannins, and phenolic acids
in the food industry as bio-preservative substances for foods and beverages can exert a superb
activity on the inhibition of oxidative stress via different types of mechanisms. In this review, the
detailed classification of polyphenolic compunds and their important bioactivity with special focus
on human health are addressed. Additionally, their ability to inhibit SARS-CoV-2 could be used
as alternative therapy to treat COVID patients. Inclusions of polyphenolic compounds in various
foods have demonstrated their ability to extend shelf life and they positive impacts on human health
(antioxidative, antihypertensive, immunomodulatory, antimicrobial, anticancer). Additionally, their
ability to inhibit the SARS-CoV-2 virus has been reported. Considering their natural occurrence and
GRAS status they are highly recommended in food.

Keywords: polyphenols; flavonoids; bioactivity; anti SARS-CoV-2; human health

1. Introduction

Polyphenols are naturally occurring secondary bioactive compounds derived from plant
sources, which show a wide range of bioactivity helping in promoting good health [1,2]. They
are basically phenolic rings with attached functional groups. Application of polyphenols
has received great attention in all segments from food processing to preservation and the
pharmaceutical industry [3–7]. Previous studies have also shown application of several
phenols in the formulation of traditional medicine [8,9].

Oxidative stress, hypertension, lowered immunity, microbial infections, and antimi-
crobial resistance have been reported to cause a large number of deaths globally [10].
The diverse bioactivity possessed by phenols is attributed to their structure (ring) that
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makes them capable of helping in the treatment of various diseases and disorders [11].
The COVID-19 pandemic has caused the full or partial closure of many countries due to
the rapid spread of the virus and higher mortality rate, hampering businesses with an
increase in work from home [12]. Polyphenols from natural resources are known to enhance
immunity by modulating defence mechanisms [13,14].

Considering the wide availability of the polyphenols, their detailed classification,
types, and sources are described. Recent developments relating to bioactivity of polyphe-
nols as well as their antiviral activity against SARS-CoV-2 are also reviewed. Future
prospects proposing the direction requiring research are also addressed.

2. Polyphenols
2.1. Classification

Dietary polyphenols comprise a broad category of natural compounds in the kingdom
Plantae with two phenyl rings and one or more hydroxyl (OH) groups [15]. Approxi-
mately 8000 polyphenolic compounds are currently known, and more than 4000 belong to
flavonoids only [16]. Polyphenols are a heterogeneous group of phenolic compounds [17]
with two major classes: flavonoids and phenolic acids. Flavonoids are coloured com-
pounds subdivided into flavones, flavanols, flavanones, flavonols, and isoflavones [18],
whereas phenolic acids have two subgroups, namely hydroxycinnamic and hydroxyben-
zoic acids [19]. They are found in either a non-conjugated (aglycone) or conjugated form
with glucose, organic acid, carboxylic acid, amines, lipids, etc. [18,20]. The structures of
some important polyphenols are given in Figure 1.
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2.2. Types

Phenolic compounds have many subclasses based on phenol units in the molecule,
substituent groups, and the bond type between phenol units (Figure 2). Depending on
their structure variation, polyphenols are categorized into phenolic acids, phenolic alde-
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hyde (vanillin, salicylaldehyde, syringaldehyde, etc.), flavonoids, iso-flavonoids, tannins
(hydrolyzable and condensed tannins), lignans, and lignins [21,22].
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2.2.1. Phenolic Acids

Phenolics are categorized as non-flavonoid polyphenols with several OH groups on
aromatic rings. Two distinguishing parent skeletons of phenolic acids include benzoic
acid containing seven C atoms (C6-C1), and cinnamic acid containing nine carbon atoms
(C3-C6) [23]. Hydroxybenzoic acids that contribute to the human diet are rare, thus, not sug-
gested to play a role in human health [19]. Benzoic acid derivatives are p-hydroxybenzoic
acid, protocatechuic, salicylic, gallic, and ellagic acid, as well as cinnamic acid deriva-
tives include p-coumaric, caffeic, and ferulic acid [24]. Phenolic acids are essential as
human dietary components with tremendous health benefits, including antioxidative,
anti-inflammatory, immunoregulatory, anti-allergic, anti-atherogenic, anti-microbial, car-
dioprotection, anti-cancer, and antidiabetic potential [25].
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2.2.2. Flavonoids

Flavonoids are ubiquitous polyphenols that contribute to colourful pigments in fruits,
vegetables, herbs, spices, and medicinal plants [26]. They have 15 carbons and two aro-
matic rings joined by a three-carbon bridge. Depending on the C-ring difference, they
are further divided into flavones, flavanones, isoflavones, flavonols, flavan-3-ols, and an-
thocyanidins [27]. Each subgroup has some differences due to the pattern and degree of
hydroxylation, prenylation, glycosylation, or methoxylation. Some examples of flavonoids
are quercetin, catechin, naringenin, cyanidin-glycoside, and daidzein [28,29]. They exist as
free aglycones and glycosidic conjugates [30,31] as well as various modified forms [32].

Flavone and Flavonols

Flavones comprise a three-ring skeleton with three functional groups; a C4 ketone,
a conjugated C2-C3 double bond, and various numbers depending on the flavone of
hydroxyl groups [33]. Compared to flavonols, flavones lack an OH group at the three-
position. Major flavonols are quercetin, kaempferol, myricetin, and isorhamnetin. The most
abundant flavones in plants are luteolin and apigenin [34]. Approximately 450 types of
flavonol aglycones have been reported, although quercetin, kaempferol, myricetin, and
isorhamnetin are commonly found in fruits [35].

Isoflavones

Isoflavones and their derivatives are eco physiologically active secondary metabolites
derived from the phenylpropanoid pathway [36]. They are yellow-pigmented compounds
and found in plants mostly as biologically inactive glycosides: 7-O-β-D-glycosides, 6”-O-
acetyl-7-O-β-D-glucosides, and 6”-O-malonyl-7-O-β-D-glycosides [37]. Isoflavones exist
as phytoestrogens due to their binding affinity for estrogens receptors. Isoflavones differ
from other flavonoids in the position of benzene ring B in C3 [38]. Dietary isoflavone has
been a good way to study its health benefits, i.e., healthy gut, osteoporosis prevention,
anti-inflammatory, anti-cancer, anti-obesity, and anti-diabetic potential [39].

Flavanones

Flavanones are a therapeutically important flavonoids class in all citrus fruits, in-
cluding oranges, lime, lemons, grapefruit, and grapes [40]. Hesperidin, naringenin, and
eriodictyol are some flavanones [41]. Moreover, they are widely distributed in 42 larger
plant families, including Compositae, Leguminosae, and Rutaceae. The pharmacologi-
cal potential of flavanones includes free radical scavenger, anti-inflammatory, anticancer,
cardiovascular, and antiviral [42].

Anthocyanins

They are naturally occurring pigmented components and the most important subclass
of flavonoids [43]. They are glycosylated polyhydroxy and poly methoxy derivatives of
two phenylbenzopyrylium (flavylium) salts. Pelargonidin, cyanidin, peonidin, delphinidin,
petunidin, and malvidin are some common anthocyanins [44]. They occur predominantly in
the outermost layers of berries (raspberries, cranberries, strawberries, blueberries, bilberries,
blackberries), black currants, and red and merlot grapes [41]. Anthocyanins can scavenge
free radicals by two hypothesized pathways; the first pathway is the attack hydroxyl group/s
of the B-ring. The next is the attack of oxonium ion on the C-ring. Some of them are considered
among the strongest antioxidants by adopting both pathways [43,45,46]. Additionally, they
have potential in food industries as natural dyes and replacers of synthetic dyes [47].

2.2.3. Stilbenes

Another non-flavonoid class, stilbenes, contains two phenyl moieties attached by a
2-C methylene bridge. They contain two aromatic rings, A and B, and exist in isomeric (cis
and trans), free and glycosylated forms. At m-position, ring A carries two hydroxyl groups,
whereas many positions in ring B are substituted by hydroxy and methoxy groups [48].
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Resveratrol (3,5,4′-trihydroxystilbene) is commonly stilbenes, which is produced by berries
and grapes as well as nuts [49].

2.2.4. Lignans and Lignin

Two C6-C3 units linked together between positions 8 and 8′ are called lignan, an-
other non-flavonoid compound. The positions of lignan C9 and C9′ are substituted in
different patterns, and, thus, they have different structural forms. They are divided into
subgroups such as furan, dibenzylbutane, and aryltetralin [48]. Lignans are mainly free
form in pulses, seeds, and vegetable oils as the glycosylated structures are not abun-
dant. Lignin is an aromatic biopolymer formed by phenolic oxidative coupling of p-
hydroxycinnamoyl alcohol monomers by peroxidase enzymes [50]. The most important
alcohols are 4-hydroxycinnamoyl, coniferyl, and sinapoyl.

2.2.5. Tannins

Tannins are a naturally occurring heterogeneous group of water-soluble high molec-
ular weight phenolics. They are subdivided into hydrolyzable and condensed tannins.
Hydrolyzable tannins are further categorized into gallotannins (hydrolysis yields sugar
and gallic acid) and ellagitannins (hydrolysis yields sugar, gallic and ellagic acid [51].
They exhibit free radical scavenging potential (due to hydroxyl groups), which increases
as the number of galloyl groups and molecular weight increase, and in the presence of
ano-dihydroxy structure [50].

Recently, phlorotannins, types of tannin found in the sub-cellular structure of brown algae
(accounting 25%) are gaining interest in food, feed, and drug industries [52]. They are polyphe-
nolic compounds formed by polymerization of phloroglucinol (1,3,5-trihydroxybenzene) with
a wide range of molecular sizes of between 126 and 650,000 Da. Based on linkage, phlorotan-
nins are divided into four categories, including fuhalols (ether linkage), phlorethols (ether
linkage), fucophloroethols (ether and phenyl linkage), and eckols (dibenzodioxin link-
age) [53]. Phlorotannins have shown a great deal of promise as functional compounds
with a number of bioactivities including anti-cancer, anti-diabetic, anti-inflammatory, anti-
microbial, and anti-hypertensive [54]. Additionally, these phenolic compounds have signif-
icant scavenging potential against superoxide and free radicals so they could be used as
antioxidants in the food industries. Beside these functionalities, they also serve as pancre-
atic lipase inhibitors, which have the potential to control dietary fat digestion. Hence, it can
be used for weight control purposes [55].

2.3. Sources

There is growing interest in identifying and exploring polyphenolic sources to prepare
functional beverages, extract polyphenolic compounds to fortify functional foods and
beverages, or elaborate dietary supplements [56]. They have antioxidant properties that
complement the functionality of vitamins and enzymes as a defence against oxidative stress
caused by excessive ROS production [23]. Major polyphenolic sources are tabulated in
Table 1.

3. Impacts of Polyphenols on Human Health

The polyphenols are known as secondary metabolites widely present in the plant king-
dom. Polyphenols have important health-promoting impacts according to their antioxidant,
antimicrobial, immunomodulatory, antihypertensive, anticancer, and anti-inflammatory
properties.

3.1. Antioxidant Activity

Polyphenols are considered among the phytochemical compounds, which have been
recognized as bioactive and functional compounds. They have attracted tremendous atten-
tion from food scientists, nutritionists, and consumers owing to their considerable healthful
benefits. It has been demonstrated by recent research studies that dietary polyphenols
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have several important biological properties such as antioxidant activity, which has re-
ceived great interest. The antioxidant activity of some phenolic compounds is summarized
in Table 2.

Generally, oxidative stress appears when there is weak antioxidant protection, or high
production of reactive oxygen species (ROS), including hydroxyl radicals (•OH), super-
oxide anion radicals (O2•−), and hydrogen peroxide (H2O2), during cellular respiration
and other different metabolic pathways. Such processes cause chemical reactions and
damage to cells, tissues, and several biomolecules, including DNA, proteins, lipids, and
carbohydrates [3,57,58]. Consequently, oxidative damage leads to many human chronic
diseases including atherosclerosis, inflammation, cancers, diabetes, heart attack, arthritis,
liver injury, neurological disorders, cataractogenesis, and retinal damage as well as other
several degenerative diseases [3,57,59].

Table 1. Sources of polyphenols.

Polyphenols Food Source Content Unit Reference

Total phenols Berry 85.80–1097.44 µg GAE/mL) [56]

Oat 7.6–16.8 mg GAE/g [60]

Barley 2890–3922 µg FAE/g [61]

Wheat 1650–2095 µg GAE/g [62]

Wheat 160 µmol FAE/100 g [63]

Rice 20–47.84 mg GAE/g [64]

Rye 0.984–3.369 mg GAE/g [65]

Corn 451–4899 mg/kg DW [66]

Pearl millet 2394–3137 µg GAE/g [67]

Broccoli 40–100 mg/L [68]

Kiwi 600–1000 mg/L [68]

Black carrot 311.5 mg/100 g [69]

Grape 9.95–146.32 mg/100 g [70]

Tea 152–243 mg GAE/g [71]

Tomato 1422–1564 mg/100 g [72]

Onion 1221–1483 mg/100 g [72]

Apple 905–1030 mg/100 g [72]

Phenolic acids

Caffeic acid Grape 9–138.21 mg/100 g [70]

p-coumaric acid Corn flour 18.69 µg/g [73]

Rye 0.343–1.280 mg/kg [65]

Barley 14.61–583.54 µg/g [74]

Finger millet 1.81 µg/g [75]

Ferulic acid Corn flour 155.69 µg/g [73]

Wheat 25.40 µg/g [76]

Barley 5.61–13.88 µg/g [74]

Rye 1.903–6.227 mg/kg [65]
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Table 1. Cont.

Polyphenols Food Source Content Unit Reference

Pearl millet 160 µg/g [77]

Coffee 0.09–0.14 g/kg [78]

Broccoli 1.95 µg/g [79]

Banana 0.49–0.53 g/kg [80]

Mango 0.75 g/kg [80]

Catechins Rice 0.26–3.98 mg/100 g [81]

Tea 3145.04–
13,986.41 mg/100 g [82]

Theaflavins Tea 4.07–1109.78 mg/100 g [82]

Gallic acid Rice 5.43 mg/100 g [81]

Pearl millet 120 µg/g [77]

Black rice 1.4 mg/g [83]

Barley bran 405.5 µg/g [84]

Vanillic acid Rye 1.086–3.130 mg/kg [65]

Benzoic acid Barley 8.81–528.56 µg/g [74]

3,4 dimethoxy-
benzoic

acid
Barley 18.51–110.85 µg/g [74]

Ascorbic acid Barley bran 20.44 µg/g [84]

Pearl millet 320 µg/g [77]

Dried litchi peel 225.98 mg/100 g [85]

Total flavonoids Berry 17.45–67.37 µg RE/mL [56]

Wheat 75–121 µg CE/g [62]

Barley 1968–2198 µg FAE/g [61]

Rice 3.35- 7.14 µg RE/g [64]

Rye 0.042–0.203.36 mg QE/g [65]

Pearl millet 1721–2484 µg CE/g) [67]

Grape 20.15–46.27 mg/100 g [70]

Flavonoids

Kaempferol Grape 15.31–43.80 mg/100 g [70]

Corn flour 14.58 µg/g [73]

Broccoli 3.42 µg/g [79]

Quercetin Oat 12.2–51.6 µg/g [86]

Buckwheat 3.1–6.71 µg/g [86]

Anthocyanins Berry 8.08–21.28 µgC3GE/mL [56]

Black carrot 837.9 mg/100 g [87]

Rice 0.26–256.5 mg/100 g [81]

Corn 307–321 mg/kg DW [66]

Black wheat 185.8 mg/kg [48]

Pigmented
maize 23 to 252 µg/g [88]
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In this regard, the use of natural antioxidant compounds derived from plant-based
food, such as dietary plant polyphenols, can contribute to the defense of the human body
against oxidative stress and its adverse effects. These phytochemical compounds play an
important protective role against different diseases and they are considered among the
most significant natural antioxidants used in the human diet [89].

The phenolic compounds are considered active antioxidant compounds that can treat
and prevent several degenerative diseases through ROS scavenging capacity and the regu-
lation of the activity of various oxidase species in the organism [58]. It has been reported
that the ingestion of dietary polyphenols as natural antioxidants can prevent mortality and
morbidity caused by the degenerative diseases as well as contribute to the prevention of
lipid oxidation in foods, such as fish and seafood [2,90]. Moreover, previous studies have
demonstrated that the consumption of some food products enriched with oxidized lipids
lead to an increase in the concentration of toxic malonic aldehyde and hydroperoxides
in the digestive system, particularly in the stomach. However, the consumption of food
products containing a considerable quantity of polyphenol can decrease or inhibit the
accumulation of such toxic substances.

The polyphenols are characterised by their capacity to convert the relative free radical
products to other non-reactive species in a more stable way [91]. They have also been
demonstrated to have the capacity to regulate redox-dependent cellular signalling in living
organisms [92]. The considerable antioxidant activity of phenolic compounds is due to
the structure of phenolic hydroxyl in which the electrons possess a conjugation impact
and the capacity of the hydrogen ion’s binding is reduced [58]. Consequently, there is a
neutralization of the free radicals and reactive oxygen species (ROS) [58]. Actually, the
antioxidant properties of these bioactive compounds are extremely related to the position
and number of the phenolic hydroxyl groups [93].

Therefore, the phenolic compounds can eliminate the production of free radicals.
Besides, these phytochemical compounds have a direct radical scavenger activity for the
chain of reactions of lipid peroxidation (chain breakers). Through this process, there is a
transfer of an electron to the free radicals and then the radicals become more stable by their
neutralisation [23]. Thereby, the chain reaction will be stopped [23].

Besides, the polyphenols compounds have also been characterised by their metal
chelating activity, which has a considerable role in the protection against the deterioration
of DNA in the living cells [94]. The antioxidant mechanism of the phenolic compounds
occurs by their ability to entrap the metal ions (for instance Fe2+ and Cu2+), which can
be involved in the Fenton reaction in the existence of hydrogen peroxide. Thus, these
bioactive compounds reduce and avoid the transition of metal chelation and then can
prevent the oxidation by the inhibition of the production of free radicals. Consequently, the
polyphenols can obtain stable compounds by their antioxidant activity [94,95].

In addition, in accordance with previous in vitro research studies, it has been demon-
strated that these bioactive compounds are characterised by their cancer-preventing ability
by the inhibition of the accumulation of reactive oxygen species (ROS) in human organ-
isms [58]. Moreover, previously in-vivo research studies have mentioned that these phy-
tochemical substances can raise the level of superoxide dismutase (SOD), the glutathione
peroxidase (GSH-Px), and the serum catalase (CAT), and can then inhibit the generation
of malondialdehyde (MDA) [58]. Thus, the polyphenols can lead to the regulation of the
oxidoreductase systems, and, hence, they can enhance the antioxidant capacity of the
organisms [58].
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Table 2. Antioxidant activity of some phenolic compounds.

Sources Compounds Concentrations Assays Main Findings Reference

Vaccinium corymbosum L.
(Blueberry fruits)

Anthocyanins
Phenolic acids

Flavonols
200 g/day

Ferric reducing antioxidant
potential (FRAP). Total

radical-trapping antioxidant
parameter (TRAP). Total

antioxidant capacity (TAC)
assays.

The ingestion of blueberry fruits enriched with
phenolic compounds contributes to the inducing of an

important increase of endogenous plasmatic
antioxidant protection.

[96]

Thymus lotocephalus

Caffeic acids
Rosmarinic acids

Apigenin
Luteolin

- 2%
- 94.7%
- 1.7%
- 1.6%

Trolox equivalent antioxidant
capacity (TEAC) assay. Oxygen

radical absorbance capacity
(ORAC) assay. Fe2+ chelation

assay. Lipid peroxidation assay.

The phenolic compounds found in Thymus lotocephalus
are characterized by efficient antioxidant activities.
The use of different antioxidant assays (ORAC and

TEAC assays) can neutralize free radicals by leading
to the production of complexes with Fe2+ and then the
protection of mousse brains against lipid peroxidation

induced by Fe2+.

[97]

Artemisia campestris L. Condensed tannin
Other phenolic compounds

- 0.48 mg EC/gDW
- 36.05 mg GAE/g DW

DPPH radical scavenging activity.
Total antioxidant capacity by

phosphomolybdenum.

The Artemisia campestris enriched with phenolic
compounds have demonstrated their excellent

antioxidant activity, with radical-scavenging activity
(85.48%). Further, the polyphenol compounds
exhibited a strong total antioxidant capacity

(55.75 mg AAE/g DW).

[91]

Thymelaea hirsuta L. Condensed tannin
Other phenolic compounds

- 9.45 mg EC/gDW
- 44.23 mg GAE/g DW

DPPH radical scavenging activity.
Total antioxidant capacity by

phosphomolybdenum.

The phenolic compounds and condensed tannin
found in the plant of Thymelaea hirsuta exhibited an

important antioxidant activity, which was
demonstrated by their highest DPPH

radical-scavenging activity (85.8%) and their excellent
total antioxidant capacity (57.54 mg AAE/g DW).

[91]

Ipomoea batatas [L.] Lam (leaves
harvested at BBCH stage 51 of

development).

Phenolic acids:√
chlorogenic acid;√
neochlorogenic acid;√
caffeoylquinic acid.

Flavonoids:√
Quercetin

5026.8 mg/100 g−1 DM

Ferric-Reducing/antioxidant
power assay (FRAP).

ABTS assay.
DPPH assay.

The results of this study have demonstrated that
important correlations existed between the level of
polyphenol compounds and antioxidant properties

determined by means of ABTS, DPPH, and
FRAP assays.

[98]

Ugni molinae Tannins
Flavonoids

Phenolic acids
10 mg/mL

DPPH assay.
TBARS assay.

TEAC-CUPRAC

The results of this study reported that the plant extract
enriched with phenolic compounds was characterized
by a considerable in vitro antioxidant activity via the

DPPH assay.
The consumption of leaves of Ugni molinae contribute
to the decrease of TBARS and the increase of plasma

antioxidant capacity (TEAC-CUPRAC).

[99]
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However, the flavonoids represent a large class of low-molecular weight polyphenol
compounds. This group can inhibit the nitric oxide synthase, which is responsible for the
production of nitric oxide components. These latter can be considered as free radicals or
react with other free radicals and then produce peroxynitrite species [95]. Furthermore,
the flavonoids compounds, including luteolin and quercetin, can inhibit the xanthine
oxidases—they intervene in the oxidative injury due to its reaction with molecular oxygen
and then liberate the superoxide components. Generally, the phenolic compounds can
induce antioxidant enzymes, for instance SOD, catalase, and glutathione peroxidase that
break the superoxide anions, hydrogen peroxides, and hydroperoxides and then inhibit the
generation of some enzymes, including the xanthine oxidases [23].

Nevertheless, the potential antioxidant activity of phenolic compounds is directly
dependant on the category of the plant species used, the harvesting time, the growing
conditions, the storage conditions as well as the type of the solvent used in the processes of
extraction [91,100].

The polyphenols can exhibit antioxidant effects by various mechanism pathways to
scavenge and inhibit the production of ROS [101]. Actually, previous studies have reported
that polyphenol can react with the ROS by the donation of hydrogen atoms or electrons to
the unpaired electrons to free radicals, and then generate the stability of phenolic oxygen
radicals [58,101]. Consequently, these bioactive compounds can eliminate the free radical
products [58]. Generally, the polyphenols, such as the tocopherols and flavonoids, are
considered as considerable primary antioxidant compounds. Their aromatic amines can
inhibit the autoxidation by the mechanisms of the electron transfer [101].

Furthermore, the polyphenols that are non-enzymatic antioxidants, for instance phe-
nolic acids, ascorbic acids, simple phenols, and tocopherols, intervene to reduce the pro-
oxidative reaction through the elimination of transition metal ions contaminants, scavenge
the alkoxy and peroxy radicals, and generate the quenching of the oxygen in the singlet
form [101].

3.2. Antihypertensive Activity

Hypertension often has no symptoms even although it is one of the main risk factors
for cardiovascular diseases in the world. These disorders are considered among the most
severe worldwide public health threats since they are the leading cause of death [102,103].
Although the causes of hypertension are not well known, aging can be a risk factor because
most people with hypertension are 60 years old or older, and it is a major risk factor for
heart disorders, myocardial infarction [102]. In fact, hypertension can exert a great effect on
morbidity and mortality via the generation of various complications. Consequently, the
prevention and treatment of hypertension have become essential for inhibiting their devas-
tating complications. Dietary adjustment is considered an important regulation method
for the modulation of hypertension. Moreover, the principal efficient non-pharmacological
interventions are represented by weight loss, intensification of physical activities, reduction
of sodium, diet, and supplementation of potassium [103]. The antihypertensive activities
of some phenolics are reported in Table 3.



Plants 2023, 12, 1217 11 of 30

Table 3. The antihypertensive properties of some phenolic compounds.

Source Compound Assays Used for the Evaluation
of Hypertensive Main Findings Reference

Purified compounds.
Bitter orange, lemon, cocoa,

and grapefruit.

- Apigenin
- Diosmin
- Other flavonoids

- Angiotensin-converting enzyme activity.
- Vascular function.

The results of this research work demonstrated that the
flavonoids used in this study have excellent

antihypertensive effects and can be used as functional
food agents due to their therapeutic role for arterial

hypertension.

[104]

Purified flavonoid compound - Quercetin
- Baroreflex sensitivity (BRS).
- Heart rate (HR).
- Arterial pressure (MAP).

The treatment of spontaneously hypertensive rats
(SHR) with quercetin can decrease their hypertension
and then enhance the BHR through the inhibition of

oxidative stress.

[105]

Spanish red wines

- Kaempferol
- Rutin
- Myricetin

- Vasodilatory properties.
- Aortic rings.

The findings of this research study demonstrated that
there is an excellent correlation between the level of
polyphenol compounds (especially the kaempferol)

and the vasodilatory impact, which contribute to the
prevention of hypertension and cardiovascular disease.

[106]

Purified flavonoid compound - Rutin
- Cardiovascular functional modifications.
- Two-kidney one-clip (2K1C) method.
- Estimation of plasma renin content.

The antihypertensive impact of rutin as a bioactive
compound can contribute to the regulation of
hypertension due to its ability to scavenge free

radicals, inhibit lipid peroxidation, and inhibit the
plasma renin inhibitory effect.

[107]

Phoenix sylvestris (L.)
- Flavonoids
- Tannins. - Angiotensin-converting enzyme assay. The phenolic compounds exhibited an excellent

antihypertensive activity via ACE inhibition. [108]
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However, in order to treat hypertension, several synthetic and chemical drugs have
been used and are recommended by the Word Health Organization (WHO), such as β recep-
tor blockers, angiotensin II receptor antagonists (ARBs), calcium antagonists, angiotensin-
transferase inhibitors, and diuretics [109]. In fact, the antihypertensive impact of these
drugs is effective; however, they have several contractive and negative effects, such as
vertigo, ankle swelling, sodium and water retention, cough as well as elevated blood
lipids [109,110]. Moreover, the use of these drugs cannot alleviate the symptoms of hyper-
tension and cannot be utilized for a long time to treat this arterial disease.

The development of novel and non-toxic drugs as an alternative to synthetic ones
for the prevention and treatment of hypertension becomes more indispensable. In this
context, several research studies regarding the natural and phytochemical compounds have
been established to discover promising therapy for hypertension disease. Accordingly,
polyphenol compounds as secondary metabolites offer an opportunity to treat this disease.
It has been reported that phenolic compounds, including phenolic acids, have several
biological potentials and can act as antihypertensive agents.

Furthermore, the polyphenols as bioactive compounds are mainly found in different
aromatic and medicinal plants as well as in many foods, such as tea, soybeans, fruits, and
vegetables, which are characterized by their preservative impact on the development of
hypertension and cardiovascular diseases [111].

Nevertheless, it has been reported that endothelial dysfunction is one of the hallmarks
of hypertension disease. Thus, the endothelial dysfunction is characterized by the associ-
ation of the endothelium-dependent vasodilatation with oxidative damage. In fact, this
dysfunction is detected before the modifications in the structure or texture of the arterial
walls and consequently this impairment in the function contributes to the beginning and
the generation of cardiovascular diseases [112]. Previous studies have demonstrated that
phenolic compounds and their derivatives can exert an advantageous impact on the vascu-
lar endothelial functions by some mechanisms, such as the normalization of the angiotensin
system, the augmentation of the level of nitric oxide (NO), endothelium dependent hy-
perpolarization (EDH), and the prevention of oxidative stress through the inhibition of
the appearance of pro-oxidant enzymes. For instance, the COXs and the NADPH oxidase
can contribute to the improvement of endothelial function and the prevention of vascular
longevity and, thus, to the protection against hypertension [112].

Furthermore, the polyphenols can induce anti-hypertensive activities via other mecha-
nisms, including the activation of the AMPK pathways through the LKB1, the inhibition
of the phosphorylation of the protein mammalian target of rapamycin (mTOR) and p70
ribosomal protein S6 kinase (p70S6k) as well as the increase of SIRT1 activation [113].
Moreover, the phenolic compounds can participate in the decrease of hypertension via the
activation of the mTORC2-Rictor survival pathway as well as reduction of the expression
of the mTOR signaling proteins [113].

Additionally, the role of polyphenols present in different sources (black currant, beet
root, pomegranate, everlasting flower) in the prevention of endothelial dysfunction has
been elucidated in several studies [114–117]. The polyphenols could prevent activation of
the angiotensin system, enhance endothelial relaxation by regulating EDH, oxidative stress,
and inflammatory response to improve the angiotensin system producing the vasodilation
effect [112,114,116,118].

Furthermore, according to several experimental results, it has been reported that the
proanthocyanidins as an important group of phenolic compounds have a vasorelaxant
effect because of the considerable role of nitric oxide (NO). In fact, the polyphenols can
protect the human umbilical vein endothelial cells and then contribute to the prevention of
hypertension and its complications [119].

It has been reported in previous in vivo research studies that polyphenols and their
derivatives have an important antihypertensive effect because of their contribution to the
reduction of systolic blood pressure detected in the spontaneously hypertensive rats [120,121].
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In addition, these bioactive compounds, which are found generally in herbal medicine,
have been used clinically due to their advantages in the treatment of hypertension and
being characterised by the reduction of the prevalence of complications related to metabolic
abnormalities [109]. Moreover, it has been proved by scientific research that the flavonoids,
which are considered the main active phenolic compounds in several medicinal plants, have
considerable effect on the improvement of cardiovascular functions, and the prevention
and the treatment of hypertension [122]. Therefore, the principal classes of flavonoids char-
acterised by their antihypertensive impact are luteolin, chrystin, linarin, and apigenin [109].
It has been demonstrated that anthocyanin, as an important class of polyphenols, has
a vasodilation activity. Their mechanism has been represented by the regulation of the
activity of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs), inhibition of
angiotensin-converting enzyme (ACE) activity, and the thromboxane pathway and the reg-
ulation of arterial blood pressure [109]. Moreover, quercetin, as a phenolic compound, can
contribute to the reduction of the spontaneous hypertension impact by the enhancement of
vasodilatation and blood viscosity [122].

Furthermore, polyphenols have an effective antihypertensive effect through several
mechanisms of action. The antihypertensive treatment with polyphenols is manifested
by the improvement of endothelial function as well as the relaxation of vascular tissues
that appear through ACE inhibition and the nitric oxide-cyclic guanosine monophosphate
(NO- cGMP) pathway [102]. Thus, the phenolic compounds can stimulate the endothelium-
dependent vasodilation, and inhibit the synthesis of the vasoconstrictorendothelin-1
(ET-1) [102]. It has been shown that polyphenols can also contribute to the reduction
of the activity of metalloproteinases, which have an important role in vascular dysfunction
and the generation of many categories of cardiovascular diseases, including hyperten-
sion [102,123].

3.3. Immunomodulatory Activity

The immune system plays a vital role in well-being by increasing immune response
and providing protection [124]. Polyphenols have well demonstrated immunomodulatory
effects as they regulate the immune cells, macrophages, cytokines, signalling pathways and
influence dendritic cells and lymphocytes (B and T), suppress T cell activation and natural
killer cells, and suppress tumour-associated macrophages (Figure 3) [125–130]. High
immunomodulatory impacts were associated with high antioxidative properties [6]. The
negative impacts of synthetic drugs and the quest for natural alternatives for therapy has led
to an increased demand for multi target action of phenols for enhancing immunity [127,130].

Cytokines and inflammation are the mechanisms used by the body to maintain home-
ostasis by eliminating harmful stimuli. Cytokine are known to mediate immunity by
acting as pro-inflammatory (IL-2, IL-8, TNFα, IL-6, IL-8, IFN-

1 
 

ɣ ) and anti-inflammatory
(IL-4, IL-10, TGFβ) agents [129]. Moreover, different signalling pathways such as nu-
clear factor kappa-light-chain-enhancer of activated B cells (NFκB), mitogen-activated
protein kinase (MAPK), and arachidonic acid signalling pathway have been reviewed as
related to innate and adaptive immunity [129,131]. Polyphenols have been discussed exten-
sively to impact cytokines, managing inflammation and modulating immunity [129,131].
Polyphenols have been reported to exhibit anti-inflammatory activity through different
mechanisms such as by inhibiting pro-inflammatory molecules (TNF-α, IL-1β, IL-6, IL-8,
iNOS, TLR2, TLR4), downregulating PKC-NFκB pathways inhibiting the production of
pro-inflammatory molecules, and inducing production of Nrf2 signalling [132–136]. Fur-
thermore, polyphenols are reviewed by Shakoor and others [137] to modulate the immune
system by acting on dendritic cells (initiating immunity), macrophages (maintaining ratio
between pro and anti-inflammatory activity), natural killer cells, T and B cells, and by T
cell differentiation and regulation of inflammation.
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Polyphenol-rich cranberry juice reduced the risk of infections by improved prolifera-
tion (

1 
 

Ɣ δ-T) of cells, usually taken for reporting the improvement on immune function [138].
Improvements in urinary tract infection for patients using cranberry juice have been re-
ported [11]. Another study showed that resveratrol was abundant in grapes and berries and
regulated macrophages known for their ability to activate the immune system (TLR) against
infection [139]. Bilberries rich in polyphenols were evaluated for their anti-inflammatory
properties [140]. Diet supplementation with 400 g of fresh bilberries decreased the con-
centration of IL-2, IL-6, LPS, and CRP. The decrease in all cases was characterized by
pro-inflammatory activities of bilberries decreasing inflammation.

Resveratrol was also known to irreversibly inhibit the production of cytokine (IFN-

1 
 

ɣ ,
IL-2, TNF-α) and signalling pathway (NF-κB) [141]. Resveratrol analogues inhibited the
inflammatory response by inhibiting enzymes and pathways reducing cytokine mediated
inflammation and improving immunity [142]. Curcumin has been reported to modulate
inflammatory cytokines, inhibit enzymes (cyclooxygenase and lipoxygenase) responsible
for inflammation, and lower the rate of signalling pathways [129]. The ability of cur-
cumin analogue as an anti-inflammatory agent to inhibit NF-κB was evaluated by Olivera
et al. [143]. Curcumin analogue (EF31) inhibited NF-κB ability to bind with DNA, nuclear
translocation and induction, reducing pro-inflammatory effects.

Tea, a major source of the polyphenolic compound catechins (epicatechin-EC, epi-
catechin gallate-ECG, epigallocatechin-EGC, and epigallocatechin gallate-EGCG), was
evaluated for its ability to produce inflammatory cytokines [144]. EGC and EGCG (10 and
20 µM) inhibited the pro-inflammatory cytokines (IL-1β). On the contrary ECG, EGC, and
EGCG (10 µM) increased the production of anti-inflammatory cytokines (IL-10). ECG, EGC,
and EGCG have anti-inflammatory action when evaluated as ratio of IL-1β against IL-10.
Cocoa polyphenol significantly reduced pro-inflammatory cytokines in activated THP-1
cells. Significant reductions in pro-inflammatory cytokines were also observed [145]. Tea
catechin exhibited in vivo cytotoxic activity against natural killer cells [11].
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Polyphenols present in pomegranate peel were evaluated for their anti-inflammatory
activity through suppression of mitogen activated protein kinases (MAPKs) by Du et al. [146].
Findings highlighted strong anti-inflammatory activity of polyphenols from pomegranate
peel and significant inhibition of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) was
observed. The anti-inflammatory impacts were attributed to inhibition of MAPK signalling
pathways mediated through inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) expression.

The phenolic compounds can modulate the immune functions via different mecha-
nism pathways, including the inhibition proliferation of mononuclear cells from peripheral
blood stimulated by mitogens. In addition, polyphenols can induce an immunomodula-
tory activity through the reduction of the molecule co-stimulatory, the prevention of the
activation of MAPK, and also the translocation of nuclear factor-κB (NF-κB) [147]. These
bioactive compounds can participate in the regulation of the activities of various transcrip-
tion agents, for instance activator protein-1 (AP-1), NF-κB, signal transducer and activator
of transcription (STAT) [147].

3.4. Antimicrobial Activity

Microorganisms are of critical concern for humans, as they are responsible for causing
several infections and are accountable for several deaths in severe cases [148]. However,
the usage of antimicrobials from synthetic sources and their excess usage have led to
development of resistance against antimicrobials responsible for increased incidence and
virulent strains [148,149]. Hence, the quest for alternate naturally occurring compounds
showing antimicrobial activity has gained immense importance [150]. Polyphenols have
gained specific importance due to their diverse mode of action against a large microbial
populations, which is why they have an antimicrobial effect, and at the same time they ben-
efit favourable microorganisms [149,151]. The antimicrobial activity of some polyphenols
is tabulated in Table 4 and illustrated in Figure 4.
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well as level of oxidation [148,149,152]. Novel extraction and encapsulation technologies
have been reviewed to enhance the antimicrobial activity of polyphenols [92,153,154].

Furthermore, polyphenols can generate antimicrobial activity so these bioactive com-
pounds provoke an alteration of the permeability of the microbial cells, leading to the
destruction of the cellular composition [101]. Moreover, the hydroxyl group (OH−) that
characterises the phenolic compounds has a considerable role in the death of bacterial
cells. Hence, the interaction of bacterial cell wall with “OH−” of polyphenols can produce
the destabilization of proton interchange, reduce the gradient through the cytoplasmic
membrane of bacterial cells, and decrease the ATP pool, and, thus, generate the death of
microbial cells [101].

Phenolics from Japanese apricot (umeboshi) were evaluated for antimicrobial property
against Enterobacteria [155]. Phenolics exhibited higher antimicrobial activity against
evaluated strains but at relatively higher concentration (1250–5000 µg/mL). The chemical
analysis revealed the presence of hydroxycinnamic acids and chlorogenic acid derivatives.
Salvia leriifolia extracts were evaluated for antimicrobial activity [156]. The higher phenolic
composition is related to high antimicrobial activity. The highest inhibition was observed
for Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli (MIC-80, 110 and
120 mg/mL), respectively. Higher phenol present (TPC- 178 mg GAE/100 g) in Pistacia
atlantica subsp. kurdica hulls essential oil (178 mg GAE/100 g) was attributed to the antimi-
crobial activity of essential oils derived from Pistacia atlantica subsp. kurdica hulls [157].
Higher control was observed in Gram positive bacteria over Gram negative bacteria due to
their low susceptibility to polyphenols.

Table 4. Antimicrobial activity of phenolic compounds.

Source Compound Main Findings Reference

Turmeric powder Polyphenol
Grinding, i.e., reducing the particle size

increased the antimicrobial activity. Polyphenol
content also improved efficiency.

[158]

Matricariaaurea Phenols

Gram positive bacteria were inhibited
(MIC—0.4–12.5 mg/mL) and gram negative

bacteria were found resistant
(MIC—25–50 mg/mL).

[159]

Grape seed extract and pine
bark extract

Gallic acid, vanillic acid,
caffeic acid, ferullic acid

Inhibited E. coli, Salmonella, L. monocytogenes,
and A. hydrophila. [160]

Grapefruit seed extract Naringin
Effective inhibition of pathogenic indicator

organism was observed at lower concentration
in comparison with positive control.

[161]

Rumextingitanus leaves extract Total phenolics and flavonoids
Ethyl acetate extract inhibited gram positive

(MIC—0.312–10 mg/mL) and pathogenic
microorganisms.

[162]

American cranberry
(Vacciniummacrocarpon) fruit

pomace

Polyphenols
(34%)—-catechins,

procatechuic acid, chlorogenic
acid, epicatechin,

trans-cinnamic acid

Extract (2–8 mg/mL) exhibited significant
inhibition of 12 strains of Listeria strains. In meat,

a model protein rich matrix had impact on
antibacterial activity.

[163]

Arugula (Erucasativa) seeds
extract Flavonoids Methanol extract inhibited S. aureus and

B. Cereus (MIC- 80 µg/mL). [164]

Olive leaf extract
Luteolin-7-o-Glucoside,
Luteolin-4-o-Glucoside,

Oleuropein, and Vabascoside

Complete inhibition of L. monocytogenes and
S. entertidis and E. coli (95%) was obtained using

62.5 mg/mL extract. Biofilm formation of
L. monocytogenes and S. entertidis was also

inhibited.

[165]

Clove essential oil Phenols

Encapsulation masked the strong odor of clove
limiting application. In vitro inhibition of

S. aureus, E. coli, and S. Typhimurium. High total
phenolic composition (9.07 GAE mg/g).

[154]
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Wine industry by-products (skins, stems, seeds, and skins) were evaluated for their
antimicrobial potential due to the abundance in phenolic content (TPC- skin-360.2 µg/mg,
seeds-363 µg/mg, stem-226.8 µg/mg) [166]. Results highlighted a direct relation between
phenols and antimicrobial activity, and a significant reduction in the antibiotic resistant
strains was reported. The highest antimicrobial activity was observed against L. monocyto-
genes (seeds), E. faecium (seeds), and K. Pneumonia (skins). Different plant parts of Moringa
oleifera (leaf, root, flower, bark, and seed) extract (methanolic, ethanolic, ethyl acetate, water,
and acetone) were evaluated for their antimicrobial potential [167]. Amongst the plant
parts evaluated, moringa leaf (112 mg/g) and extract of ethyl acetate (200 mg/g) and
aqueous (69 mg/g) extract had the highest levels of total phenolics and total flavonoid
content, respectively. Myricetin was found in highest concentration, followed by quercetin,
responsible for the antimicrobial activity. Ethanolic extract from leaves exhibited the high-
est inhibition of P. aeruginosa and E. carotovora. Similarly, a recent study highlighted the
antimicrobial activity of ethanolic extracts from Centellaasiatica on six evaluated indica-
tor organisms [168]. MIC ranged from 62.5–125 (25% ethanolic extract) to 7.81–125 (50%
ethanolic extract). The results were related to higher total phenolic (69.54 mg GAE/g) and
flavonoid (13.90 mg QE/g) composition present in the ethanolic extract.

Phenolic extracts (flavonoid) from Lavandula stoechas were evaluated against pathogenic
microorganisms [169]. The phenolic extract exhibited antimicrobial activity against all eval-
uated strains (E. coli, K. pneumonia, S. aureus, E. cloacae, A. baumanii, P. aeruginosa). The
minimum inhibitory concentration ranged from 10 to 40 mg/mL.

Furthermore, due to high antimicrobial activity and diverse mechanisms, polyphenols
are under wide application to treat several infectious diseases. A recent study by De
Angelis and others in 2021 [170] reported the antiviral impact of polydatin (precursor
of resveratrol) against influenza virus. The application significantly lowered MTT assay
on vero E6 cells at a concentration of 80 and 100 µg/mL. Similarly, application inhibited
replication of the virus for the 24 h duration observed and viral titre from supernatant of
infected treated cells [170]. Moreover, several reviews focused on the specialized ability of
polyphenols to protect against human diseases from noncommunicable, viral diseases to
oral microorganisms are recently reported [171–176].

3.5. Anticancer Activity

Nowadays, cancer is one of the major chronic diseases occurring in the modern
world [177]. Cancer generation is mainly associated with the uncontrollable development
of tumor cells. Thus, this disease has received considerable attentions worldwide. The
WHO has reported that many people around the world are affected by this disease every
year [178]. In fact, global statistics indicate that there were about 14.1 million new cases
of cancer and about 8.2 million deaths worldwide in 2012 [177]. As a result, cancer has
remained the disease most frequently responsible for the deaths of many people around
the world.

The results of epidemiologic studies have suggested that the etiology of cancer is
principally attributed to the variations in lifestyles, ever-increasing urbanization, the pre-
dominant diet, and successive changes in environmental conditions [177,178].

Although the traditional treatment of cancer, such as chemotherapy, radiotherapy,
immunotherapy, and surgery have a considerable impact on the therapy of this chronic
disorder, the generation of cases of toxicities, the apparition of drug resistances, and the
high costs of therapy represent the main problems to treat cancer patients [179]. Therefore,
it is important to develop effective and non-toxic antitumor drugs derived from natural
product resources, which have become an area of research. Anticancer activity of some
polyphenols is tabulated in Table 5.

Plant polyphenols are one of the most widespread bioactive compounds. They are
characterised by high structural varieties which, in turn, generate several ranges of bio-
logical properties, including anticancer effectiveness [177]. Recently, polyphenols have
received considerable attention for cancer treatments because they have fewer side effects
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and low toxicity. In this context, epidemiological, preclinical, and clinical research have
shown that the daily consumption of polyphenols has a strong correlation with the pre-
vention of different types of cancer [179]. Several data indicate that polyphenols have
numerous target actions, and they can transmit multiple cell signaling pathways to exert
their anticancer effects against different types of cancers. In fact, many investigations have
revealed that polyphenols can exercise their anticancer impacts by regulating numerous
cell signaling pathways.

Moreover, these compounds regulate the activity of certain enzymes and other useful
proteins [180]. The phenolic compounds can, thus, affect the carcinogenesis process through
several mechanisms, making their use appropriate to treat different varieties of cancer [177].
Nevertheless, the principal obstacles to successful treatment based on these bioactive
compounds are their metabolic modifications, weak membrane permeability, low systemic
bioavailability, physiological fluctuation, and oxidative damage [181,182]. Therefore, the
bioavailability of polyphenol compounds has been identified as the proportions of the
substance reaching the circular system and distributed in numerous tissues [4]. In fact,
several studies on enhancement of polyphenol bioavailability are ongoing to overcome
difficulties in reaching their therapeutic concentrations in target tissues [177]. Moreover, the
bioavailability and biotransformation appear to be the two causal characteristics that affect
the effectiveness of polyphenols. Based on the dimensions, polyphenols can be absorbed
by small and/or unimpeded intestinal interfaces [4]. Thus, it has been suggested that
polyphenols are common in conjugated form in plasma. However, it has been demonstrated
that conjugation with proteins in the oral cavity and the acid pH of the stomach does not
alter the stability and biological activity of polyphenols.

However, the anti-cancer characteristics demonstrated are primarily attributed to
their anti-inflammatory, cell cycle-stopping, anti-metastatic, anti-angiogenic, autophagic,
anti-proliferative, and apoptotic effects [178]. Nevertheless, the regular consumption and
utilization of dietary phytochemicals, which are generally present in plant-based foods
(such as vegetables, fruits, tea, and cereals) and used as food additives, may be a promising
significant approach in the prevention of cancer disease [178,183,184]. Thus, many research
studies have demonstrated that the dietary polyphenols have an important role in the
prevention of cancer.

Resveratrol (stilbenes), anthocyanins, curcumin, and epigallocatechin-3-gallate (EGCG)
are considered as polyphenols compounds, which are secreted and produced in response
to environmental stimulators such as stress. These compounds are characterised by their
protective efficiencies in some cancer models by various signaling pathways [42,185,186].

Moreover, phenolic molecules are considered the main health-protective bio-compounds,
such as proanthocyanidins, flavonoids, and hydroxycinnamates, which possess anticancer
properties and, thus, reveal their potential therapeutic and chemo-preventive effects [187].

Furthermore, several preclinical studies have investigated the anticancer effects of
resveratrol and have demonstrated that this compound has a considerable prevention
impacts against different types of cancers including digestive tract, breast, skin, lung, and
prostate cancers [4]. Moreover, previous research has reported that the synergic impacts
of the polyphenol compounds of catechin, resveratrol, and quercetin are more important
than their individual effect on the inhibition of breast cancer cell progression, cell cycle
proliferation, and primary mammary tumors [188].
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Table 5. The anticancer properties of some phenolic compounds.

Sources Compounds Assays Main Findings Reference

- Green tea - Epigallocatechin-3-gallate (EGCG)
- In vitro assay: B16-F3m melanoma cells.
- In vivo assay: injection of B16-F3m melanoma

cells into Balb/c mice.

In vitro: EGCG can inhibit the migration of B16-F3m
cells as well as their invasion. Moreover, there is

inhibition by the EGCG of the homotypic cell
aggregation and also the activity of MMP-9 (matrix

metalloproteinase-9) as well as the tyrosine
phosphorylation of focal adhesion kinase (FAK).

In vivo: EGCG can decrease lung metastases in mice
bearing B16-F3m melanomas but it can increase the

survival rate of melanoma-bearing mice.

[189]

- Derris eriocarpa - Flavonoids: Alpinumisoflavone (AIF)
- In vitro assay: SK-MEL-1 and A375 human

melanoma cells.
- In vivo assay: AIF was used to treat

xenograft mice by intragastric administration.

In vitro: the use of AIF can contribute to the inhibition
of the migration, invasion, and proliferation of tumors.
In vivo: the AIF participates in the inhibition of mRNA
expressions of MMP-2, MMP-9 as well as the inhibition

of lung metastasis.

[190]

- Purified flavonoid compound
- Flavonoids√

Apigenin√
Quercetin

- In vitro assay: The use of B16-BL6 murine
melanoma metastatic cells.

- In vivo assay: the injection of phenolic com-
pounds to B57BL/6N mice and the evaluation
of their potential activity on the inhibition of
melanoma lung metastasis.

In vitro: the use of phenolic compounds, apigenin
and/or quercetin, can inhibit the TNF-α-induced
VCAM-1 expression and decrease the adhesion of

melanoma cells
to lung sections.

In vivo: inhibition of lung metastasis and the
melanoma cell adhesion to vascular lung endothelium.

[191]

- Rhizome of Curcuma longa L. - Curcumin

- In vitro assay:

B16-F10 murine melanoma metastatic cells.
- In vivo assay: the injection of curcumin into

C57BL6 mice.

In vitro: the treatment with curcumin can increase the
tumor-suppressor genes tissue inhibitor

metalloproteinase (TIMP-2) as well as the expression of
E-cadherin and nonmetastatic gene 23 (Nm23).

Moreover, this bioactive compound can contribute to
the decrease of the binding of the treated cells to

4 extracellular matrix (ECM) proteins. Furthermore,
there is a reduction of the binding to vitronectin,

fibronectin, and collagen IV.
Moreover, decrease in the expression of α5β1 and α (v)

β3 integrin receptors.
In vivo: the curcumin can contribute to the decrease

of lung metastasis.

[192]

- Camellia sinensis - Catechin nanoformulation
- In vitro assay: WM266-4 human melanoma cells.
- In vivo assay: the xenotransplant of WM266 hu-

man cancer cells in zebrafish embryos.

- In vitro: decrease of the proliferation of cells as
well as their mobility and the increase of cell
death and cell doubling time.

- In vivo: inhibition of tumor neo-angiogenesis.
[193]
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In contrast, it has been revealed that polyphenol compounds can contribute to the
treatment of cancer disease by various biological processes. Therefore, the cancer preven-
tion and regulation by these bioactive compounds have targeted the expression of genes,
cell cycle proliferation, development, migration, and progression of cells. In addition, the
cytoprotective and anticancer properties of the polyphenol substances can be generally
attributed to their pro-oxidant and antioxidant attributes [4,194]. In this regard, the an-
ticancer activity of polyphenols can be manifested by various mechanisms. Thus, these
bioactive compounds have demonstrated important anticancer properties due to their role
in the scavenging of ROS and other free radicals, which is manifested by the transfer of the
electrons to the oxidants. Consequently, the strong antioxidant activities of polyphenols
lead to a decrease of the mutation and damage of DNA, which can cause genetic diseases
and cancer. Thus, the polyphenols lead to the generation of suppression of the cell cycle,
apoptosis, down-regulation of proliferation of cells via different modulations of many
signaling pathways, such as phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt),
epidermal development factor receptor/mitogen activated protein kinase (EGFR/MAPK),
anti-inflammatory factors, and nuclear factor kappa-light-chain-enhancer of stimulated B
cells (NF-kB) [4].

Polyphenols can exhibit anti-cancer effects via other different mechanism pathways,
for instance the perforin-granzyme apoptotic pathway, mitochondrial-mediated apoptosis
by over generation of ROS, and the death receptor pathway [195–197]. Moreover, the
phenolic compounds can induce the regulation of metabolism, development of the cell
cycle, and the inhibition of tumor expression through the p53 mechanism pathway [186].
Furthermore, these compounds can stop the replication of DNA, the transcription of RNA,
and repair the damage of DNA of the cancer cells [198–200].

4. Antiviral Activity of Polyphenols against COVID-19

The COVID-19 pandemic was caused by SARS-CoV-2, with 386,548,962 confirmed
cases of infection and 5,705,754 deaths reported by January 2022 [201]. The envelope/structural
protein protection around the coronavirus makes antiviral action difficult. Further, the
mutation in SARS-CoV-2 (omicron) has become a variant of concern due to increased
transmissibility and ability to escape the immune system, and has posed a risk of another
community spread [202]. Considering the replication occurring in viruses, the therapy
targeting virus receptors and improving immunity are required [203]. Owing to the spread
of the pandemic, the role of nutraceuticals and functional foods has gained special impor-
tance [204]. The well-known ability of polyphenols to enhance immunity has gained special
attention in this pandemic and several studies have highlighted the ability of phenols
against SARS-CoV-2 [171,204,205].

Bahun et al. [206] reported SARS-CoV-2 inhibition (in-vitro) by plant polyphenols.
Amongst the evaluated quercetin (23.4 µM), resveratrol (16.9 µM), epigallocatechin gallate
(13.9 µM), curcumin (11.9 µM), and ellagic acid (11.8 µM) exhibited the highest inhibition
levels (IC50). The inhibitions were linked to polyphenols’ stable binding with active site for-
mation of hydrogen bonds, forming hydrophobic interactions. Polyphenols could strongly
bind with SARS-CoV-2 receptors, preventing entry in the host, PLpro/3CLpro substrate,
regulate ACE 2 expression and functioning, and inhibit protease [171,203,207–210].

Phenolic compounds were evaluated for their SARS-CoV-2 inhibitory activity by Xiao
et al. [211]. Amongst the evaluated compounds, myricetin exhibited the highest inhibition
of SARS-CoV-2 (IC50- 3.684 µM). The higher level of viral inhibition was attributed to
binding with 2 Mpro and forming hydrogen bonds. Additionally, myricetin effectively
reduces inflammation in lungs [211]. In-vitro inhibition of SARS-CoV-2 cells by resver-
atrol (4.48 µM) was reported [212]. The effect was attributed to the generation of nitric
oxide, which further helps in relieving inflammation. Naturally occurring polyphenols
kamferol (−7.4 kcal/mol), quercetin (−8.5 kcal/mol), and fisetin (−8.5 kcal/mol) showed
binding and interaction affinity with spike protein [213]. Flavonoids inhibited 3CL pro-
teases/enzymatic activity of SARS-CoV-2. Herbacetin (−9.263), rhoifolin (−9.565), and
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pectolinarin (−8.054) exhibited binding affinities confirming the inhibition of enzymes
enhancing the antiviral activity.

5. Conclusions and Future Prospect

The toxicity and the undesirable side impacts of synthetic and chemical molecules
and the resistance of some microbial species to chemical drugs lead several scientific
researchers to discover other alternative sources of bioactive compounds. Thus, there is
an increasing demand for products of natural origin such as the polyphenol compounds,
which constitute a single group of phytochemicals present in vegetables, fruits, herbs, and
other natural sources.

The current review has shown that the phenolic compounds constitute a highly multi-
functional and diversified group of bioactive compounds with numerous beneficial impacts
in many areas. In fact, these compounds have been associated with human health. In this
regard, there is a growing interest in their potential application in food industries as well as
in therapeutic and pharmacological sectors. Their activity is supported by their functional
groups, which are capable of accepting the negative load of a free radical. This review
has also summarized the positives effects and biological activities of polyphenols and
their significance for human health due to antioxidant, antimicrobial, anti-hypertensive,
anticancer, immunomodulatory, and antiviral properties. Therefore, the application of
polyphenols, such as flavonoids, catechin, tannins, phenolic acids, etc., in the food industry
as bio-preservative substances for foods and beverages can lead to a superb activity on
the inhibition of oxidative stress by different types of mechanisms. Additionally, these
compounds can reduce the lipid oxidation in the human body, prevent the organs and cell
structure against deterioration, and protect their functional integrity, since the polyphenols
have strong antioxidant properties.

Moreover, the antioxidant features of polyphenols can contribute to the preservation
and protection of human health against diverse diseases, in which oxidative damages
are involved as a contributing and casual factor. There are a several investigation studies
regarding the health benefits of polyphenol on hypertensive and cardiovascular diseases.
In this context, these investigations have included lipoprotein oxidation, which is related to
hypertension through endothelial dysfunction and then contribute to cardiovascular disease
production. Furthermore, the antioxidant properties of polyphenols can decrease the
generation of ROS and the reduction of inducible nitric oxide synthase (iNOS) expression.
Consequently, these properties contribute to the inhibition of DNA damage, metastasis
blockage, inhibition of cell cycle progression, and stimulation of apoptosis of malignant
cells. All of these make polyphenols promising compounds that can be used for the
treatment and prevention of cancer diseases. Thus, polyphenols have superb anticancer
and antitumor properties because of their immunomodulatory effects on different type of
cancer cells. Thus, they can regulate the production of chemokine and cytokine as well as
activate the immune cells.

Additionally, this review has reported that polyphenol compounds have important
antimicrobial properties and are characterised by their potential to substitute synthetic
chemical antibiotics. Further, bioactive compounds derived from polyphenols can be
applied as a good antiviral agent.

Despite the data relating to the properties of polyphenols, further efforts are needed to
discover their exact mechanism of action, antagonism, synergism, and other interrelations
among them, and how their appropriateness can be applied. Furthermore, clinical trials of
these compounds are essential in order to develop efficient and safe alternatives to protect
human health.
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