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Abstract: This work was carried out to observe the combined impact of exogenous applications of
Gibberellic acid (GA3) and Silicon (Si) on Brassica juncea under salt (NaCl) stress. Application of GA3

and Si enhanced the antioxidant enzyme activities of (APX, CAT, GR, SOD) in B. juncea seedlings
under NaCl toxicity. The exogenous Si application decreased Na+ uptake and enhanced the K+ and
Ca2+ in salt stressed B. juncea. Moreover, chlorophyll-a (Chl-a), Chlorophyll-b (Chl-b), total chlorophyll
(T-Chl), carotenoids and relative water content (RWC) in the leaves declined under salt stress, which
were ameorialated after GA3 and Si supplementation individually and in combination. Further, the
introduction of Si to NaCl treated B. juncea help in alleviating the negative effects of NaCl toxicity on
biomass and biochemical activities. The levels of hydrogen peroxide (H2O2) increase significantly
with NaCl treatments, subsequently resulting in enhanced peroxidation of membrane lipids (MDA)
and electrolyte leakage (EL). The reduced levels of H2O2 and enhanced antioxidantactivities in Si
and GA3 supplemented plants demonstrated the stress mitigating efficiency. In conclusion, it was
observed that Si and GA3 application alleviated NaCl toxicity in B. juncea plants through enhanced
production of different osmolytes and an antioxidant defence mechanism.

Keywords: gibberellic acid; silicon; salinity; stress; B. juncea; antioxidants

1. Introduction

Salinity is one of the most severe abiotic stress factors limiting plant growth and yield
by hampering photosynthetic and metabolic activities [1,2]. Plants’ exposure to higher
concentration of salts in agricultural soils are an issue of significant concern, particularly
in arid and semi-arid climatic regions [3]. According to reports, about 45 to 800 million
hectares [1] of the worlds irrigated land area is salt affected [3–5]. To fulfil the food demands
of increasing populations, the productivity of land resources need to be improved, which
can be achieved through the use of less suitable or marginal soils, such as those with a
high concentration of salts, deficient in available nutrients, low water holding capacity
and slightly polluted soils into cultivation [2]. Soil salinity adversely affects food crop
production [1] in terms of both quality and quantity by high osmotic potential and the
toxicity of different metal ions [6,7]. Increased soil salinity causes a significant decrease
in different aspects of biomasses including root and shoot fresh weights [8]. In saline
environments, plant flora is exposed to two different problems. In the first instance, the
concentration of higher salts in soils lowers the osmotic potential of the soil solution,
leading to a reduction in water uptake in plants, and secondly improved translocation of
Na+ and Cl− ions causes the interruption of essential mineral nutrients uptake [9], imputes
plant toxicity and results in the lowering of agricultural productivity [10].
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To advance THE plant productivity raised in marginal soils, the role of silicon (Si) can
no longer be neglected. Being the second most abundant element in the earth’s crust and
being associated with improving the salinity stress in plants by increasing salt resistance,
a decrease in the translocation of toxic elements thereby increases biomass yield [11]. Si
plays a prominent role in the uptake, distribution and functionality of different macro
and micronutrients. Among macro nutrients nitrogen (N), phosphorous (P), potassium
(K), calcium (Ca) and magnesium (Mg) are influenced in different ways [11,12]. In the
family of micronutrients, boron (B) and manganese (Mn) are highly influenced by means of
Si. Furthermore, Si also influences the uptake of elements such as iron (Fe), Aluminium
(Al) and Zinc (Zn) [13,14]. The application of Si has been demonstrated to be a beneficial
element for the growth and development of various plants and it also alleviates various
stresses, including nutrient imbalance in crop plants [11–14].

Among the class of different growth regulators, Gibberellic acid (GA3) is known to
induce many important physiological responses in different plant species [5,15,16]. In
maintains the growth retardation of plants due to the excessive concentration of salts
and advanced effectiveness of the exogenic application of GA3 on various physiological,
biochemical and morphological events. It can be inferred that the exogenous introduction
of GA3 is suitable to alleviate salt stress with its effectiveness being more prominent in
salt tolerant species [5,17]. GA3 mitigates salt stress by partially increasing plant metabolic
processes. GA3 also helps in the stimulation of different enzymatic and non-enzymatic
antioxidants and the accumulation of osmolytes in plants [18]. The application of exogenous
GA3 proliferates plant development by leading to the intensification of amino acid synthesis
of hydrolytic enzymes as a prerequisite for the breakdown of endospermic starch when
plant seeds renovate development at the seed propagation stage [5]. The aim of the
present work is to study the role of combined GA3 and Si in mitigating NaCl toxicity in
mustard through the modulation of biochemical pathways and the activities of enzymatic
antioxidants.

2. Results
2.1. Growth and Biomass Yield

During the present investigation, the NaCl treatment decreased the length of the
shoots, roots and DW by 48.9%, 47.86% and 49.56%, respectively, in comparison to the
control. However, GA3 and Si individually as well as in combination positively affected
plant growth. When treated individually with GA3 and Si, the shoot length, root length
and DW increased slightly and did not show any significant difference, while the length of
the shoots and DW increased by 13.04% and 14.72%, respectively, after combined treatment
with GA3 and Si over the non-treated (control) plants. Moreover, in comparison to the
salt treated B. juncea plants, GA3 and Si ameliorated the salt stress by enhancing the shoot,
root length and DW slightly over NaCl treatment. However, no significant effect was
observed individually on the following parameters when treated individually with GA3
and Si. Nevertheless, the combined treatment of GA3 and Si improved the root length,
shoot length and DW by 62.07%, 55.78% and 62.26%, respectively, in NaCl-treated plants
(Table 1).
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Table 1. Result of gibberellic acid (GA3) and silicon (Si) application on shoot length, root length and
dry weight of B. juncea cultivated under NaCl salt stress.

Treatments Shoot Length (cm) Root Length (cm) Dry Weight (g Plant−1)

0 45.32 ± 1.05 b 18.74 ± 0.44 a 12.77 ± 0.3 b

GA3 47.11 ± 1.22 ab 19.11 ± 0.5 a 13.24 ± 0.35 ab

Si 48.42 ± 1.22 ab 19.87 ± 0.5 a 13.89 ± 0.35 ab

GA3 + Si 51.23 ± 1.3 a 20.45 ± 0.51 a 14.65 ± 0.37 a

NaCl (200 mM) 23.15 ± 0.63 e 9.77 ± 0.25 d 6.44 ± 0.18 e

200 mM NaCl +GA3 30.55 ± 0.63 d 12.83 ± 0.26 c 8.23 ± 0.18 d

200 mM NaCl +Si 31.62 ± 0.66 d 13.77 ± 0.28 c 8.89 ± 0.19 d

200 mM NaCl + GA3 + Si 37.52 ± 0.84 c 15.22 ± 0.34 b 10.45 ± 0.24 c

Mean in the column that shares a letter with the other entries is not significantly different at p ≤ 0.05
(Bonferroni Test).

2.2. Photosynthetic Pigments

In the present study, control plants treated with GA3 and Si individually and in
combination increased Chl a, Chl b, total Chl and the contents of carotenoid slightly
(Table 2). Upon treatment with 200 mM NaCl, we observed a decrease of about 52.66%,
32.39%, 46.67% and 26.53% in Chl a, Chl b, total chlorophyll and carotenoids contents,
respectively, in B. juncea plants in comparison to the control. GA3 application ameliorated
salt (NaCl) stress in B. juncea by increasing Chl a, Chl b, Total Chl and carotenoids by 11.23%,
14.58%, 20.31% and 25%, respectively. Likewise, Si application also increased the Chl a, Chl
b, Total Chl and carotenoids by 40%, 22.19%, 33.59% and 33.33%, respectively. Nevertheless,
when the NaCl-stressed plants were treated with GA3 and Si in combination the Chl. a,
Chl.b, Total Chl and carotenoids increased by 49.43%, 37.5%. 55.46% and 50%, respectively,
and the resultant difference was found to be statistically significant (Table 2).

Table 2. Impact of gibberellic acid (GA3) and silicon (Si) application on pigments of B. juncea
cultivated under NaCl stress.

Treatments Chl. a (mg g−1 FW) Chl. b (mg g−1 FW) Total Chlorophyll (mg g−1 FW) Carotenoids (mg g−1 FW)

0 1.69 ± 0.04 a 0.71 ± 0.02 bc 2.4 ± 0.06 a 0.49 ± 0.01 abc

GA3 1.75 ± 0.05 a 0.75 ± 0.02 ab 2.5 ± 0.06 a 0.52 ± 0.01 ab

Si 1.77 ± 0.05 a 0.79 ± 0.02 ab 2.56 ± 0.06 a 0.53 ± 0.01 ab

GA3 + Si 1.82 ± 0.05 a 0.83 ± 0.02 a 2.65 ± 0.07 a 0.54 ± 0.01 a

NaCl (200 mM) 0.89 ± 0.03 d 0.48 ± 0.01 f 1.28 ± 0.03 d 0.36 ± 0.01 d

200 mM NaCl +GA3 0.99 ± 0.02 cd 0.55 ± 0.01 ef 1.54 ± 0.03 cd 0.45 ± 0.01 c

200 mM NaCl +Si 1.12 ± 0.02 c 0.59 ± 0.01 de 1.71 ± 0.04 c 0.48 ± 0.01 bc

200 mMNaCl + GA3 + Si 1.33 ± 0.03 b 0.66 ± 0.01 cd 1.99 ± 0.05 b 0.54 ± 0.01 a

Mean in the column that shares a letter with the other entries is not significantly different at p ≤ 0.05
(Bonferroni Test).

2.3. RWC, Proline, H2O2, MDA and EL

The NaCl-treated plants showed decreased RWC by 20.94% as compared to the control;
however, supplementation of GA3 and Si to NaCl-treated plants enhanced the RWC content
by 30.48% and 32.89%, respectively. Nevertheless, the combined application of GA3 and Si
to NaCl-treated plants showed a maximum increase of 46% in comparison to NaCl-treated
plants alone (Table 3).
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Table 3. Outcome of gibberellic acid (GA3) and silicon (Si) application on RWC, proline, H2O2, MDA
and electrolyte leakage of B. juncea cultivated under NaCl stress.

Treatments RWC% Proline (µg g−1 FW) H2O2 (nmol g−1 FW) MDA (µg g−1 FW) Electrolyte Leakage %

0 91.77 ± 2.19 a 59.11 ± 2.02 d 8.22 ± 0.25 d 3.66 ± 0.08 d 11.45 ± 0.5 d

GA3 92.85 ± 2.36 a 62.15 ± 2.16 d 7.45 ± 0.48 d 3.59 ± 0.08 d 10.98 ± 1.47 d

Si 92.8 ± 2.26 a 63 ± 1.69 d 7.11 ± 0.31 d 3.55 ± 0.07 d 10.55 ± 0.63 d

GA3 + Si 94.11 ± 2.29 a 63.81 ± 1.93 d 7.18 ± 0.27 d 3.49 ± 0.07 d 9.73 ± 0.55 d

NaCl (200 mM) 55.6 ± 1.19 c 101.75 ± 2.24 c 26.22 ± 0.72 a 6.15 ± 0.16 a 65.55 ± 1.83 a

200 mM NaCl +GA3 72.55 ± 1.47 b 127.22 ± 3.31 b 19.61 ± 0.53 b 4.75 ± 0.12 b 35.27 ± 0.96 b

200 mM NaCl +Si 76.89 ± 1.5 b 139.34 ± 3.68 ab 17.75 ± 0.47 b 4.21 ± 0.1 c 31.48 ± 0.85 b

200 mM NaCl + GA3 + Si 81.22 ± 1.88 b 148.15 ± 3.92 a 12.55 ± 0.36 c 3.95 ± 0.08 cd 23.77 ± 1.05 c

Mean in the column that shares a letter with the other entries is not significantly different at p ≤ 0.05
(Bonferroni Test).

The proline content was enhanced by 72.13% in NaCl-treated plants as compared to
the control. Further enhancement in proline content by 25.03% and 36.9% was observed
by the supplementation of GA3 and Si, respectively, over NaCl-treated plants alone. The
combined application of GA3 and Si to NaCl-treated plants increased the proline content
by 45.60% over the salt-treated plants alone and the effect was more pronounced than the
individual effect of GA3 and Si (Table 3).

NaCl stress increased the H2O2 content by 219% with respect to the control; however,
GA3 and SI decreased the H2O2 content by 25.20% and 23.30%, respectively, over NaCl-
treated plants alone. The combined application of GA3 and Si decreased the H2O2 content
by 52.13% in salt-stressed plants and the result was more promising than the individual
effect of GA3 and Si.

The NaCl-stressed plants showed a 68.03% increase in MDA content as compared to
the control. However, the supplementation of GA3 and Si alone and in combination (GA3
and Si) showed a significant decline by 22.76%, 31.54% and 35.77%, respectively, in MDA
content as compared to NaCl-treated plants alone (Table 3).

The EL was increased by 472.48% in NaCl-treated plants as compared to the control.
However, when NaCl-stressed plants were treated with GA3 and Si, the EL decreased by
46.42% and 51.97%, respectively, over NaCl-treated plants alone. A maximum decrease of
63.73% was observed when NaCl-stressed plants were supplemented with a combination of
GA3 and Si. The combined effect of GA3 and Si was more promising than their individual
effect (Table 3).

2.4. Effect on Antioxidant Enzyme Activities

The NaCl toxicity enhanced the activity of SOD, APX and GR by 40.45%, 39.23%
and 48.48%, respectively as compared to the control. However, the application of GA3
alone to NaCl-treated plants further enhanced the SOD, APX and GR activity by 7.14%,
30.76% and 16.32%, respectively, over NaCl-treated plants alone. The supplementation
of Si to NaCl-treated plants also enhanced the activity of SOD, APX and GR by 11.90%,
26.05% and 19.45%, respectively over NaCl-treated plants alone. The maximum increase of
25.39%, 37.62% and 25.44% in the activities of SOD, APX and GR was observed when the
salt-stressed seedlings were treated in combination (GA3 and Si) in comparison to NaCl-
treated plants alone (Figure 1).

The seedlings treated with NaCl showed a significant decrease of 40.13% in CAT
activity with respect to the control plants. However, NaCl-stressed seedlings supplemented
with GA3 (NaCl and GA3) and Si (NaCl and Si) significantly enhanced the CAT activity by
30.76% and 43.95% as compared to NaCl-treated plants alone. The maximum increase of
59.34% in CAT activity was recorded under the combined application of GA3 and Si over
NaCl-treated plants alone (Figure 1).
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Figure 1. Effect of Gibberellic acid (GA3) and silicon (Si) application on (A) SOD, (B) CAT, (C) APX,
(D) GR, (E) DHAR and (F). MDHAR of B. juncea cultivated under NaCl stress. Mean on the column
bar that shares a letter with the other entries is not significantly different at p ≤ 0.05 (Bonferroni Test).

The control plants supplemented with GA3 and Si separately enhanced the DHAR
and MDHAR activity by 3.36%, 5.04%, 2.18% and 3.08%, respectively, over the control
(Figure 1). The combined supplementation of GA3 and Si further enhanced the DHAR
activity by 6.72% and MDHAR activity by 3.71% over the control plants.

The NaCl-treated plants supplied with GA3 and Si separately increased DHAR activity
by 111.5% and 121.45% and MDHAR by 65.53% and 84.46%, respectively, over NaCl-treated
plants alone. The combined supplementation of GA3 and Si to NaCl- treated plants further
enhanced the DHAR and MDHAR by 146.2% and 103.5%, respectively, as compared to
NaCl-treated plants alone. (Figure 1).
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2.5. AsA-GSH Cycle

The NaCl toxicity reduced the AsA content by 50% as compared to the control. How-
ever, this reduction in AsA was minimised to 33.3% and 27.08% when NaCl stressed plants
were treated individually with GA3 and Si over NaCl-treated plants alone. The combined
GA3 and Si supplementation showed a significant increase of 66.6% in AsA content over
NaCl-treated plants alone (Figure 2). The application of NaCl resulted in significant in-
crease of 43.6% and 90.8% in the levels of GSH and GSSG content over the control plants.
However, the individual treatment of GA3 and Si increased the levels of GSH by 18.98%
and 29.74% and GSSG levels by 21.9% and 30%, respectively, over NaCl= treated plants
alone. The maximum increases of 46.20% and 50.9% were reported when NaCl-treated
plants were subjected to combined supplementation of GA3 and Si over NaCl-treated plants
alone. The NaCl treatment also increased the GSH/GSSG ratio in the present study and the
separate application of GA3 and Si significantly increased the GSH/GSSG ratio by 5.32%
and 31.14% over NaCl-treated plants alone. The maximum increase of 40.57% was reported
when GA3 and Si was used in combined fashion in NaCl-stressed plants (Figure 2).

Plants 2023, 12, x FOR PEER REVIEW 6 of 18 
 

 

NaCl-treated plants alone. The combined supplementation of GA3 and Si to NaCl- treated 
plants further enhanced the DHAR and MDHAR by 146.2% and 103.5%, respectively, as 
compared to NaCl-treated plants alone. (Figure 1).  

2.5. AsA-GSH Cycle 
The NaCl toxicity reduced the AsA content by 50% as compared to the control. How-

ever, this reduction in AsA was minimised to 33.3% and 27.08% when NaCl stressed 
plants were treated individually with GA3 and Si over NaCl-treated plants alone. The 
combined GA3 and Si supplementation showed a significant increase of 66.6% in AsA 
content over NaCl-treated plants alone (Figure 2). The application of NaCl resulted in sig-
nificant increase of 43.6% and 90.8% in the levels of GSH and GSSG content over the con-
trol plants. However, the individual treatment of GA3 and Si increased the levels of GSH 
by 18.98% and 29.74% and GSSG levels by 21.9% and 30%, respectively, over NaCl= 
treated plants alone. The maximum increases of 46.20% and 50.9% were reported when 
NaCl-treated plants were subjected to combined supplementation of GA3 and Si over 
NaCl-treated plants alone. The NaCl treatment also increased the GSH/GSSG ratio in the 
present study and the separate application of GA3 and Si significantly increased the 
GSH/GSSG ratio by 5.32% and 31.14% over NaCl-treated plants alone. The maximum in-
crease of 40.57% was reported when GA3 and Si was used in combined fashion in NaCl-
stressed plants (Figure 2). 

 
Figure 2. Effect of GA3 and Si application on (A) AsA, (B GSH, (C). GSSH and (D). GSH/GSSG of B. 
juncea in relation to NaCl stress. Mean on the column bar that shares a letter with the other entries 
is not significantly different at p ≤ 0.05 (Bonferroni Test). 

  

Figure 2. Effect of GA3 and Si application on (A) AsA, (B GSH, (C). GSSH and (D). GSH/GSSG of
B. juncea in relation to NaCl stress. Mean on the column bar that shares a letter with the other entries
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2.6. Effect on Inorganic Nutrients

The plants exposed to NaCl stress showed a drastic increase in Na concentration by
1149%, but a reduction of 52.55% and 68.8% in K and Ca concentrations were observed
in the control plants (Table 4). However, when NaCl-treated plants were supplemented
with Si and GA3 separately, the concentrations of Na decreased by 45.18%, and 54.21%,
the concentration of K increased by 21.18% and 62.47% and Ca by 69.40% and 85.71%,
respectively, over NaCl-treated plants alone. The combined application of GA3 and Si
to NaCl-treated plants lead to a drastic reduction of 74.64% in Na concentration, while
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an increase of 93.95% and 151.9% in K and Ca concentrations was observed over NaCl-
treated plants alone (Table 4). During NaCl stress, the ratio of Na/K increased by 2536.84%;
however, after individual and combined application of GA3 and Si, this ratio decreased by
54.75%, 71.85% and 86.95% as compared to NaCl-treated plants alone (Table 4).

Table 4. Effect of gibberellic acid and silicon application on Na, K, Na/K and Ca of B. juncea cultivated
under NaCl stress.

Treatments Na (mg g−1 DW) K (mg g−1 DW) Na/K Ca (mg g−1 DW)

0 2.01 ± 0.25 d 35.22 ± 0.83 ab 0.06 ± 0.01 e 4.95 ± 0.12 a

GA3 2.12 ± 0.64 d 36.12 ± 0.95 ab 0.06 ± 0.02 e 5.12 ± 0.14 a

Si 2.14 ± 0.31 d 36.52 ± 0.94 a 0.06 ± 0.01 e 5.25 ± 0.14 a

GA3 + Si 2.15 ± 0.25 d 37.65 ± 0.93 a 0.06 ± 0.01 e 5.39 ± 0.14 a

NaCl (200 mM) 25.12 ± 0.71 a 16.71 ± 0.5 d 1.51 ± 0.06 a 1.54 ± 0.09 d

200 mM NaCl +GA3 13.77 ± 0.39 b 20.25 ± 0.47 d 0.68 ± 0.02 b 2.61 ± 0.07 c

200 mM NaCl +Si 11.5 ± 0.32 b 27.15 ± 0.54 c 0.42 ± 0.01 c 2.86 ± 0.07 c

200 mM NaCl + GA3 + Si 6.37 ± 0.48 c 32.41 ± 0.79 b 0.2 ± 0.02 d 3.88 ± 0.09 b

Mean in the column that shares a letter with the other entries is not significantly different at p ≤ 0.05
(Bonferroni Test).

3. Materials and Methods
3.1. Layout and Experimental Design

B. juncea seeds of the cultivar varuna were thoroughly washed and sterilized using
sodium hypochlorite, 0.1%. After that, the seeds were allowed to sprout on filter paper
with lined petri plates. Thereafter, seedlings were transplanted and raised in Hoagland’s
nutrient solution and then shifted in 15 pots of 10 L capacity containing soil with soil
physical properties available (P 2.16 mg kg−1; SO4

2− 6.52 mmol L−1; Cl− 2.20 mmol L−1;
K+ 0.05 mmol L−1; Na2+ 3.58; Ca2+ + mg2+ 3.72; Cu2+ 0.28 mg kg−1; Cr 0.20 mg kg−1; Si
210 mg kg−1; pH 7.92; EC 1.75 dS m−1 and Soil Organic Carbon (SOC) = 12.80 g kg−1).
Pots were maintained at a temperature of 25–35 ◦C and 16 h of light under a glasshouse
with 65–75% relative humidity during March and April. Plantlets were supplemented
with an analytical grade NaCl (200 mM). Silicon (Si) was supplied in the form of sodium
silicate solution (30% SiO2 (922587-5G) dissolved in 15% NaOH) in the roots, which were
added directly to jars in a dissolved condition. The 1 mg solution of GA3 (G7645) was
prepared by dissolving 100 mg of GA3 in DMSO and then diluting with 80 mL of the
aqueous phosphate buffer solution (pH 7.2) in order to achieve good solubility. The freshly
prepared GA3 solution (75 mL/pot) was spewed onto plants once a week from the starting
day (1st) to the end of the experiment (45th) day of the NaCl treatment. Control plants
were sprinkled with distilled water and tween-20 (75 mL/pot). Samples were collected
after 15 days of treatment with 3 replications in a randomized complete block design. All
the chemicals used in the present experiment were purchased from Merck (Rahway, NJ,
USA)and Sigma-Aldrich India (Mumbai, India).

3.2. Evaluation of Plant Growth Parameters

The root and shoot length were measured with the help of a meter scale and the whole
plant height was calculated in cm. The roots were then separated from the shoot, blotted,
and subsequently weighed to estimate their fresh weight (FW), then kept in an oven at
80 ◦C overnight and weighed again to obtain the respective dry weight (DW). The leaf
area was calculated by utilizing a portable leaf-area measuring instrument (Systronics 211,
Ahmadabad, India), as per the manufacturer’s instructions. Plants were harvested and
taken for sampling from each plot.
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3.3. Leaf Water Content (LWC) and Relative Water Content (RWC)

For the determination of LWC, the fresh weight of the leaves (fresh sample) was
measured (FW); for the dry weight measurement (DW), the leaves were dried overnight in
an oven at 70 ◦C and finally LWC was premeditated with equation

LWC = [(FW − DW)/FW] × 100 (1)

The fully extended leaves were used for calculating the RWC by using the procedure
by Singh et al. [19]. From the interveinal area of the plants, 5 leaf discs were excised, 10 mm
in diameter. The fresh weight of the samples (FW) was determined after pooling 20 discs
from each replicate. After 4 h of flotation in double-distilled water in petri plates to restore
leaf turgidity, the leaves were then weighed again to obtain the turgid weight (TW). The
leaf samples were subsequently dehydrated at 80 ◦C for 48 h to obtain the DW. According
to the tests, the leaf discs were completely hydrated in 4 h. The RWC was determined with
the help of following formula

RWC (%) = (FW − DW)/(TW − DW) × 100 (2)

3.4. Evaluation of Chlorophyll and Carotenoid Content

For the estimation of chlorophyll content, dimethyl sulfoxide (DMSO) was used as per
the method of Hiscox and Israelstam [20]. Fresh material (100 mg) was inserted inside the
test tubes containing DMSO. The tubes were put in an oven for 40 min at 65 ◦C. A total
of 1 mL mixture of aliquot and 2 mL of DMSO was formulated and whirled, followed by
absorbance determination spectrophotometrically at 480; 510; 645; and 663 nm (Beckmann
640 D, Fullerton, CA, USA). DMSO was used as a blank. The following equations were
used for the calculation of the above-mentioned parameters:

Chlorophyll-a
(

mg
g

fresh wt.
)
=

12.3D663 − 0.86D645

d × 1000 × W
× V

Chlorophyll-b
(

mg
g

fresh wt.
)
=

19.3D645 − 3.60D663

d × 1000 × W
× V

Carotenoids −
(

mg
g

fresh wt.
)
=

7.6 D480 − 1.49D510

d × 1000 × W
× V

Total Chlorophyll
(

mg
g

fresh wt.
)
=

20.2D645 + 8.02D663

d × 1000 × W
× V

3.5. Electrolytic Leakage (EL)

A total of 20 leaf discs were kept in a boiling test tube with 10 mL of de-ionized water
to measure initial electrical conductivity (EC-a). The contents in the test tube were then
again heated for 25 min in a water bath at 50 ◦C and 60 ◦C, and the EC was measured again
(EC-b). Afterwards, the tube contents were once again allowed to boil at 100 ◦C for 10 min
and the EC was recorded again (EC-c) [21]. The EL was then premeditated, as given below:

(%)Electrolyte leakage =
EC-b − EC-a

EC-c
× 100

3.6. Proline Determination

The proline content was estimated by Bates et al. [22]. Homogenization of the fresh
sample was done by putting 300 mg of sample in 10 mL 3% aq. sulfosalicylic acid and then,
centrifugation of the homogenate for 15 min at 10,000× g. After that, 2 mL of supernatant
aliquot was combined with glacial acetic acid along with ninhydrin in equal volumes
and incubated at 100 ◦C for 1 h. The reaction was completed in an ice bath followed by
extraction using 4 mL of toluene, after which the obtained extract was whirled for 20 s. The
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toluene-containing chromatophore was subsequently extracted from the aqueous phase.
The absorbance was noted using a spectrophotometer at 520 nm (Beckmann 640 D, USA)
with toluene as a blank.

3.7. Determination of Lipid Peroxidation (MDA)

Lipid peroxidation was estimated using the method of Heath and Packer [23]. Ho-
mogenization of 300 mg of fresh leaves was done with 2.5 mL 0.1% of trichloroacetic acid
(TCA). Afterwards, the homogenate was centrifuged for 10 min at 10,000× g. In total, 4 mL
20% of TCA with 0.5% thiobarbituric acid (TBAR) was then added for each 1 mL aliquot.
The obtained mixture was allowed to heat at 95 ◦C for half an hour and was cooled rapidly
in an ice bath. The obtained mixture was again centrifuged for 15 min at 10,000× g, and the
supernatant’s absorbance was taken at 532 nm. These observations were finally modified
for undefined turbidity by deducting the absorbance at a wavelength of 600 nm.

3.8. Enzyme Activity Determination

A total of 0.5 g leaves were homogenised in a 50 mM buffer solution of pH 7.0 with 1%
polyvinyl pyrrolidine. The centrifugation of homogenate was done at 15,000× g at 48 ◦C
for a duration of 20 min. The obtained supernatant was then utilized for the purpose of the
enzymatic determination activities of APX, CAT, POD, SOD and GR.

The method suggested by Bradford [24] was used for estimation of the soluble protein.
Bovine serum albumin was used as the standard.

Superoxide dismutase (SOD) activity was examined by observing its capability to con-
strain the photo-chemical decrease of NBT [25]. One unit of SOD may be demarcated as
the quantity of protein essential for a 50% decline of the SOD-preventable decrease of NBT.

A technique described by Aebi [26] was used in the investigation of the Catalase (CAT)
activity. The extract containing the enzyme (50 mL) was put into 3 mL 20 mM H2O2 along
with a 50 mM phosphate buffer solution (PBS) of pH 7.0. The reduction in the optical
density was observed at 240 nm. The Glutathione reductase (GR) activity was examined
by employing the Rao [27] method. The reacting mixture was constituted of an enzyme
extract, 150 mM NADPH and 500 mM glutathione in an oxidized form in a 100 mM buffer
solution of pH 7.0 in 1.0 mM EDTA.

Ascorbate peroxidase (APX) was examined using a spectrophotometer after a reduction
in absorbance value at 265 nm [28]. In a 3 mL mixture, 0.1 mM of EDTA, 0.5 mM of
ascorbate and 0.1 mM of hydrogen peroxide were combined with 0.1 mL enzyme extract
in a 50 mM buffer solution of pH 7.0. The ascorbate oxidation by hydrogen peroxide was
accompanied by a decrease in absorbance value at 290 nm. Glutathione in reduced form
(GSH) was measured using an enzyme recycling approach [29], where it was oxidised with
5,5’-dithiobis-2-nitrobenzoic acid (DTNB) afterwards, which was reduced with NADPH.
Then GSH was derivatized with the help of 2-vinyl-pyridine for measurement of the
glutathione in oxidised form (GSSG).

Using a mortar and pestle, 0.5 g of fresh-leaf tissue sample was pulverized in liquid
nitrogen. The pulverized tissue was then allowed to suspend in 0.5 mL of 5% sulfosalicylic
acid surveyed by centrifugation for 10 min at 12,000× g. In total, 300 mL supernatant
aliquot was then taken and neutralised with 18 mL of 7.5 M triethanolamine. Then, a
sample of 150 mL was utilized to calculate the GSH and GSSG concentrations. Afterwards,
a sample was pre-treated for 60 min at 20 ◦C with 3 mL of 2-vinylpyridine to protect the
GSH by making its derivative, for subsequent estimation of GSSG only. In all cases, aliquots
of 50 mL from the prepared samples were combined with 700 mL of 0.3 mM NADPH,
100 mL of DTNB, 150 mL of 125 mM SPB (pH 7.0) and 6.3 mM EDTA buffer solution
(pH 6.5). After that, an aliquot of 10 mL GR (5 U mL−1) was put in the sample, and the
variation in the absorbance value was measured at 412 nm at 30 ◦C. GSH was used to create
a standard curve. The reduced (GSH) ratio to oxidised form (GSSG) was used to represent
the redox state.
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3.9. MDHAR and DHAR Activity Determination

The homogenization of 50 mg leaves was done using 1 mL of non-denatured buffer
solution containing 0.1 M Tris-HCl (pH 7.5); 0.1 M KCl; 5 mM EDTA; 10 mM DTT; 1 mM
PMSF, 0.7 M sucrose and a protease inhibiting cocktail. The semi-liquid mixture was then
gestated for 15 min in an ice bath with constant shaking, and then centrifugated at 4 ◦C
for 15 min at 14,000× g. The clear supernatant was directly utilized for enzyme analysis
activity.

Mono-dehydroascorbate reductase (MDHAR) was examined by means of a spectropho-
tometer with the technique defined by Hossain et al. [30]. After that, NADH oxidation-
induced reduction in the absorbance at 340 nm was measured.

Dehydroascorbate reductase (DHAR) was examined at room temperature by determining
the absorbance at 265 nm using the procedure by Nakano and Asada [28]. The increase
in absorbance value induced by GSH-dependent generation of ascorbate was monitored
spectrophotometrically. The enzyme activity was stated in nmol per mg of protein.

3.10. Determination of Ascorbate Content (AsA)

Ascorbate (AsA) was examined using an approach defined by Zhang et al. [31]. The
AsA value measured was consequently divided into a reduced amount of AsA and a total
amount of AsA. Then absorbance was observed at 525 nm.

3.11. Determination of Inorganic Cations

The plant samples were wet-ashed using nitric-perchloric acid digestion. Finely
ground, oven-dried plant material (0.2 g) was quantitively transferred into 50 mL digestion
tubes, to which two microliters of concentrated HNO3, followed by 1 mL 70% HClO4
was added and finally diluted to 100 mL. Using this mixture, the total cation content of
Na+, K+ and Ca2+ was determined by inductively coupled plasma mass spectroscopy
(ICPS-7500, Shimadzu). The Na+/K+ ratio in B. juncea leaves was calculated using the
corresponding values.

3.12. Stastistical Analysis

Statistically, the obtained data was analysed with one-way variance analysis (ANOVA).
The values obtained were mean + SD for each group, with five samples of plant growth
parameters. p values < 0.05 were taken as significant using IBM SPSS 26.

4. Discussion

Increased salt concentrations in soils owing to agricultural mismanagements is a
prime factor that has catastrophic effects on agricultural productivity by decreasing crop
growth and survival [32]. Recent studies have demonstrated a substantial decline in crop
yields under salinity in wheat [33] and tomato [34]. Hence, a need arises for prevention
of crop losses due to increasing soil salinity to fulfil the food requirements of a swelling
human population [9,35]. Thus, more research is needed to propose some better choices for
strengthening the stress protection in B. juncea in order to increase crop productivity. In this
regard, we investigated the effectiveness of exogenous applications of GA3 and Silicon (Si)
in promoting crop development by way of its role in controlling some essential inherent
plant characteristics. Excessive concentration of salt in soils may diminish plant morpho-
logical characteristics by reducing cell division, resulting in decreased cell elongation and
growth because of nutritional imbalance, oxidative and osmotic stress [8]. Silicon dioxide
(SiO2) is the common form of Si in soil. Solubility of all Si forms is low and biogeochemi-
cally immobile. The major soluble forms of Si in the soil are poly- and monosilicic acids;
however, monosilicic acid occurs mostly in a feebly adsorbed condition and has low capa-
bility to migrate inside the soil. By increasing the monosilicic acid concentration in a soil
solution, plants are able to absorb phosphates (P) directly. The amount of monosilicic acid
is increased because of the chemical resemblance between phosphate and silicate anions,
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causing a competitive reaction in the soil. The insolubility of monosilicic acid decreases
slightly through interactions with heavy metals, iron, aluminium and manganese [36].

The consequence of negative growth was found to be more prominent in shoots than
in roots. The salt stress was more effective by hampering the capability of B. juncea plants to
captivate soil moisture, leading to stunted growth in plants. An exogenous application of
the GA3 application modified the shoot, root length and plant DW [5], thus alleviating the
adverse impacts of NaCl toxicity by augmenting above mentioned plant traits significantly
over non stressed ones [33] (Table 1). GA3 was helpful in increasing the length of the roots
and shoot in cultivars of oat [5]. Increased levels of GAs such as bioactive GA1 and GA4
contribute to cell elongation as well as to the tolerance to salinity and waterlogging [37].
Similar results were observed by Shaddad and El-Samad [38] upon treatment with GA3
in the development of shoots and roots of two cultivars of wheat. The application of GA3
in alleviating salinity-related adversities could be due to the activation of some distinct
enzymes involved in the synthesis of RNA and proteins [5]. The reduction in root-shoot
length and growth progression might be due to NaCl ions toxicity or a decrease in osmotic
potential produced by diminished water uptake and nutrient captivation. The impressions
of complex salt concentration on root growth and development were more noticeable than
the growth of shoots responsible for seedling growth reduction [3]. Ashour [39] reported
that an exogenous application of an Si nanoparticle with GA to the Cupressus macrocarpa
plant improved the root and shoot biomass, plant height, chemical constituents, nutrient
uptake and antioxidant system by increasing the indole and phenol contents in the plant.

Si treatment was also responsible for reducing problems caused by water scarcity
and increased salt stress by enhancing mineral uptake and transport, thereby increasing
growth and yield over non-stressed seedlings [40,41]. In stressful conditions, Si was found
to provide mechanical strength to plant tissues, thereby increasing pest resistance, which
was the major responsible factor in increasing shoot length, root length and plant DW in
B. juncea. Enhancement in various plant growth-related characters under different stresses
with Si supplementation is well established [42,43].

GA3 and silicon both have the ability to alleviate such adverse properties and improve
stress resilience, which may be attributed to their critical character in stress reduction [44,45].
In the current study, plant seedlings under salinity stress demonstrated a sharp reduction
in various growth-related parameters (Table 1). Reduction in growth under salinity stress
may be attributed to ROS production, responsible for biomolecule oxidation, such as
nucleic acids, proteins, lipid membranes and enzyme inhibitors [46], and a decrease in
photosynthesis [47,48]. A combined application of GA3 and Si counteracted the inhibitory
effect of salinity stress by enhancing the growth traits of okra [49]. Our results are in
corroboration with those of Ahmad et al. [44], who observed that a combined application of
GA3 and jasmonic acid alleviated cadmium stress in chick peas. The increase in chlorophyll
content was found to increase with GA3 application in Sorghum [3]. Application of Si has
also been found to lessen plant salt stress by improving numerous structural, biochemical
and physiological attributes [1,50]. It has been reported that GA3 application promotes
cell proliferation and elongation in several salt stressed plant species [51,52]. Application
of GA3 to salt-stressed plants improved the stages of cytokinin and IAA in plant leaves,
probably owing to the favourable impacts of GA3 on ion uptake and plant hormonal
homeostasis, as well as photosynthetic development. NaCl stress has been reported to
enhance the Na+/K+ ratio; however, on recovery from stress, the ratio decreased and
may be a plant-adaptive response [44,53]. Similarly, Si application may also improve
the growth and productivity of salt-stressed B. juncea by increasing the photosynthetic
rate, improving water levels, decreasing oxidative impairment, regulating osmolytes and
increasing antioxidant enzyme activity [47]. Further supplementation of silicate fertilizer
improved the vigour and growth progression and hence the yield of cucumber, which also
reduced the damage caused by Wilt disease [54].

The detrimental impacts of NaCl on chlorophyll concentrations and carotenoids in
plants could be ascribed to the effect of salt concentration on chloroplast structure disor-
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der, increased chloroplast degradation and inhibiting the ribulose-1,5-biphosphate. The
decrease in chlorophyll content under NaCl may be because of the repressive effects of
several salt ions on the biogenesis of diverse molecules of chlorophyll [3,55]. The momen-
tous intensifications in chl a, chl b and concentrations of carotenoid in silicon-treated and
salinity-stressed plants could be attributed to the ameliorative role of Si in increasing K+

and decreasing Na+ uptake [56], which in turn promotes photosynthesis, and improves
the actions of numerous enzymes, water status and RWC. Our results are consistent with
several recent researchers who have demonstrated that Si application decreases Na+ and
increases potassium uptake under salt and conditions of water deficiency stress in different
plants [3,47,50,56]. The constructive impacts of Si on chlorophyll biogenesis and photosyn-
thesis under NaCl toxicity have been reported widely. The application of different heavy
metals supplemented with Si enhances the chlorophyll and carotenoid content in the leaves of
maize, wheat, sorghum, cucumber and rice [11]. The application of Si-augmented chlorophyll
contents under heavy metal stress in different plants was also noted [57,58]. The increase
in chlorophyll contents under GA3 seed priming, foliar application and combined seed
priming and foliar spray was also reported in maize under salinity stress conditions, al-
though the highest increment in the contents of chlorophyll pigments were observed under
combined application over the control in stressed seedlings [59]. The present outcomes are
in conformity with the preceding results of Yousif et al. [3], who reported an enhancement
in leaf chlorophyll and carotenoid contents under GA3 application in sorghum.

Salinity stress adversely affects RWC and the reasons could be the inhibition of water
absorption from the soil solution to the plant root system, thereby decreasing the interior
supply of water and thus disturbing plant tissues undesirably [47]. Intensification in
proline levels under salt stress protects the chlorophyll from its degradation. Moreover,
proline as an osmolyte plays an important role in the foraging of harmful ROS, regulating
cell redox homeostasis and providing energy [17]. Silicon administration to soybean
seedlings alleviated the negative effects of salinity by enhancing endogenous GA3 and
lowering the ABA level [60], enhanced antioxidant defence system via ROS inhibition,
ameliorated photosynthetic activity and relative water status to alleviate the heat stress-
induced adversities in date palm [61]. Furthermore, the amelioration of the adverse effects
of salt stress with Si application was suggested by increasing bioactive GA (GA1 and GA4)
levels, but the levels of other plant hormones declined sharply, which were increased under
salinity stress.

A similar effect of increase in RWC and proline were also observed under salt stress
due to the exogenous application of Si in mustard, sweet peppers and other plants [47,54,62].
Comparable outcomes of the increase in RWC and proline content by GA3 supplementation
were also reported by Yousif et al. [3], Chauhan et al. [5] and Tuna et al. [17]. In the present
study, we examined the impact of Si and GA3 on EL, lipid peroxidation (MDA) and H2O2
content under salt stress This significant increase in EL, MDA and H2O2 content under
salt stress was also observed by Kaya et al. [55]. The deleterious effects of H2O2 on plant
membrane leads to lipid peroxidation and an electrolyte leakage [17,47]. This intensification
in MDA may probably be due to the oxidative stress in chloroplasts and mitochondria,
thereby enhancing MDA content [53]. Furthermore, an application of Si overcomes these
damaging effects of salt stress, including a significant decrease in EL, MDA and H2O2 levels.
This can be attributed to the fact that Si has a significant role in providing stability to plasma
membranes and increasing the concentration of osmolyte amassing, which results in ROS
foraging, particularly H2O2. Similar results of the decrease in MDA, EL and H2O2 under
Si application in salinity stress were also observed in sweet peppers and sorghum [3,47].
Further, our results demonstrating the decrease in MDA under GA3 application in maize
plants are in line with the outcomes of Tuna et al. [17], who observed decreased activity in
MDA by increasing the exogenous application of GA3 under salinity stress.

Our results of the enhanced activity of CAT, SOD, GR, APX, DHAR and MDHAR
under salt stress is corroborated by the findings of other researchers [3,15,43,54]. A similar
increase in activities of different antioxidants under salt stress were also observed by
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Yousif et al. [3]., Tuna et al. [17], Abdelaal et al. [47] and Shahzad et al. [59]. Exogenous
application of Si and GA3 under salinity stress amplified the levels of various antioxidant
enzymes. Si application in Oryza sativa plants under salt stress reduced the accumulation of
MDA and enhanced the activity of enzymatic antioxidants such as CAT, POD and PPO [11].
Torabi et al. [63] are of the opinion that Si application to borage plants decreased the
activities of SOD significantly. Nevertheless, Shekari et al. [7] found that the activities of
CAT, APX, SOD and POD were extremely amplified upon Si application to herbal Anethum
graveolens plants under NaCl stress. Similar patterns of SOD, GPX, APX, GR and CAT
activities were also detected by Al-aghabary et al. [64], Liang et al. [65] and Zhu et al. [66].
Furthermore, exogenous Si application was also related to the upregulating of the activities
of antioxidant enzyme activities of APX, MDHAR, DHAR, GR, GST, GPX and CAT in rape
seedlings [67]. Under salinity stress, the exogenous supplementation of GA3 enhanced the
expression of different antioxidants in sweet peppers [59]. Comparable results have been
previously described by Saeidi-Sar et al. [6]. However, externally applied GA3 was found
to increase the activities of MDHAR and DHAR under water stress in spring wheat [16].
The observed increase in the aforementioned antioxidants was noticed under exogenous
application of individual and combined jasmonic acid and GA3 under Cd toxicity [44].

Ascorbate is one of the most important and effective antioxidants among antioxidants
providing protection to plant cells under oxidative stress. This antioxidant works in the
AsA-GSH cycle organized with GSH [68]. The levels of AsA decreased under salt stress
in the present study coincides with the findings in other studies [67–69]. This reduction
in AsA was accountable for increasing H2O2, leading to oxidative stress. Due to the
activities of DHA and MDHAR enzymes, AsA can be renewed through the AsA-GSH
cycle [68]. The increase in AsA in Si-treated seedlings was accompanied by increased
levels of DHAR and MDHAR activities and in those that regenerated AsA effectively. A
salinity-induced increase in GSH and GSSG in in the current study is in line with the
results of Hasanuzzaman et al. [67] and Nahar et al. [69]. GSH reduces oxidation stress by
scavenging various ROS species after being involved in the process of ROS detoxification.
GSG is transmuted to GSSG, for which the level of GSSG is also amplified under salinity
stress, which is an indication of stress. Glutathione reductase helps to recover GSH, which
disturbs the GSH pool and the ratio of GSH/GSSG in plants to some extent (Figure 2). The
contents of GSH in plants is also controlled by GSH biosynthetic enzyme pathways [70]. In
other words, stress-tolerant plants instantly recycle GSSG more effectively into GSH so that
plants become ready to purify ROS once more. The levels of GSH and GSSG become much
improved after the addition of Si, and the reason for this is increased GSH and GSSG levels
due to the improved activities of GR. Exogenous Si application was helpful in increasing
AsA and GSH levels in sunflowers under salinity stress [71]. Silica uptake in large amounts
in rice plants was successful in enhancing the activities of different antioxidants under
salinity stress [72]. In a similar manner, the exogenic application of Si rises GSH content, and
the activities of APX and MDHAR in sorghum raised under salt stress [73]. The enhanced
actions of three important enzymes of the AsA-GSH cycle, i.e., APX, MDHAR and GR,
coupled with an increase in activities of AsA and GSH with reducing oxidative stress,
was observed in Si supplemented cucumber suffering from chilling-induced oxidative
stress [74]. Similar results of an increase in levels of GSH and GSSG were reported in rape
seedlings under the addition of Si to alleviate salt stress, as reported by Hasanuzzaman
et al. [67]. An increase in concentration of GSH and GSSG under GA3 and jasmonates has
also been reported in Artemisia absinthium L. [75]. The reported increase of AsA and GSH in
the leaf, root and stem under GA3 treatment in C. roseus were reported by Jaleel et al. [18],
and the maximum increase was reported in the leaves. The increase in levels of AsA, GSH
and GSSG were found to increase through the supplementation of GA3 under herbicides
and drought stress [76].

The salinity stressed B. juncea plant seedlings showed a significant decrease in sodium,
potassium calcium and N:K ratio in comparison to the control treatment (Table 4). However,
exogenic Si and GA3 application separately and in amalgamation increased the plant
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nutrients Na, K, Ca and N:K ratio following Si application under NaCl stress. The helping
role of Si in mineral nutrition and uptake of different nutrients were reported in grapes [77],
sweet peppers [47] and maize [78]. This role of Si can be attributed to declining levels of Na+

and enhancing K+ content [79]. GA3 application improved shoot calcium concentration in
the tissues of the SARC-1 seed cultivars of wheat [80]. This may be the reason behind why
the permeability of the membrane was distorted in B. juncea salt stressed leaves, where
levels of calcium were very low and its enhancement under GA3 restored the integrity
of cell membranes in NaCl-stressed plants. A higher concentration of Ca2+ in plants was
helpful in attaining healthier crop subsistence with greater plant vigour and development
under stressful environmental conditions.

NaCl toxicity causes a noteworthy reduction in K+ uptake, although exogenous
application of GA3-enhanced K+ uptake and the results coincide with the findings of
Tuna et al. [17], Kaya et al. [55] and Ashraf et al. [80] in maize and wheat, respectively. It
has a wide acceptance that the rivalry between Na+ and K+ leads to the decreased levels of
interior K+ at higher concentrations of NaCl [55], which results in high ratios of Na:K and
reduces plant growth. Interestingly, there lies a synergistic relationship between Si and GAs
in mediating several adaptive responses to counteract detrimental stress conditions. Silicon
treatment significantly influences endogenous levels of GA, especially during unfavorable
conditions. For instance, Si has been shown to up-regulate the production of endogenous
bioactive GAs in response to salinity stress [60,81].

It is essential to understand how underground plant roots are skilled to distinguish
between indispensable K+ and lethal Na+ ions. This difference lies in the fact that similar
ionic radius and ion hydration energies are the two essential issues that determine how
K+ and Na+ ions transfer over membrane proteins into cells and to the whole plant [17].
Additional study on the conceivable mechanism of Si and GA3 uptake and conveyance in
B. juncea individually and in combined application is of extreme importance to decipher Si-
and GA3-induced beneficial effects in alleviating salt stress, which needs more research in
the future.

5. Conclusions

From the current results, it was observed that NaCl decreased plant biomass, photo-
synthetic pigments and RWC and enhanced the production of ROS, notably H2O2, which
in turn enhanced lipid peroxidation and electrolyte leakage. The mineral uptake and Na/K
ratio are also disturbed by the NaCl toxicity. However, the supplementation of GA3 and Si
individually as well as in combination showed the mitigating role through the modulation
of physio-biochemical attributes and enhanced activities of enzymatic and non-enzymatic
antioxidants. The combined effect of GA3 and Si was more effective in raising the tolerance
against NaCl toxicity than through their individual effects. The present study will be useful
for bringing marginal land under cultivation through this approach.
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