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Abstract: Agricultural waste can have a catastrophic impact on climate change, as it contributes
significantly to greenhouse gas (GHG) emissions if not managed sustainably. Swine-digestate-
manure-derived biochar may be one sustainable way to manage waste and tackle GHG emissions in
temperate climatic conditions. The purpose of this study was to ascertain how such biochar could be
used to reduce soil GHG emissions. Spring barley (Hordeum vulgare L.) and pea crops in 2020 and
2021, respectively, were treated with 25 t ha−1 of swine-digestate-manure-derived biochar (B1) and
120 kg ha−1 (N1) and 160 kg ha−1 (N2) of synthetic nitrogen fertilizer (ammonium nitrate). Biochar
with or without nitrogen fertilizer substantially lowered GHG emissions compared to the control
treatment (without any treatment) or treatments without biochar application. Carbon dioxide (CO2),
nitrous oxide (N2O), and methane (CH4) emissions were directly measured using static chamber
technology. Cumulative emissions and global warming potential (GWP) followed the same trend
and were significantly lowered in biochar-treated soils. The influences of soil and environmental
parameters on GHG emissions were, therefore, investigated. A positive correlation was found
between both moisture and temperature and GHG emissions. Thus, biochar made from swine
digestate manure may be an effective organic amendment to reduce GHG emissions and address
climate change challenges.

Keywords: biochar; CO2; N2O; CH4 emissions; cumulative emissions; global warming potential; soil
moisture; soil temperature

1. Introduction

In recent decades, the increase in human population has caused serious challenges to
the agriculture sector and to the agronomist in ensuring food security, causing minimum
soil and environmental pollution [1]. Inorganic nitrogen fertilizer consumption in the agri-
cultural sector of the European Union has increased by around 2% over the past ten years to
10.2 million tons [2]. This considerable share of synthesized fertilizer application is due to
inefficient use, which causes financial harm, environmental damage, and health risks [3–5].
Inorganic fertilizer amendment and soil tillage practices have increased greenhouse gas
(GHG) emissions [6–8]. By 2030, it is anticipated that the agricultural sector’s nitric oxide
(N2O) emissions may rise by 35–60%. This increase is linked to higher nitrogen content due
to fertilizer use and higher production of animal waste [9,10]. Moreover, the increase in
the number of livestock is directly proportional to methane (CH4) emissions that, between
1990 and 2030, are anticipated to increase by 60% [11]. The predicted rise in agrofarming
emissions is 8–8.4%, with a mean increase of 8.3 Pg CO2-eq by 2030, assuming the aforesaid
rates of rising emissions (10–15%) for the 2020–2030 period. Anthropogenic emissions
of GHGs (CO2, CH4, and N2O), have become a substantial contributor to global climate
change [12,13]. GHG emissions are highly dependent on soil temperature and moisture,
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which are instantaneously affected by biochar application [14–16]. The use of biochar is a
farming method that improves soil temperature and moisture retention. There are two ways
to best manage increase in soil moisture: (1) to increase the amount of organic matter in the
soil (because the stability and porosity of aggregates are improved by the direct addition
of biochar [17,18]) and (2) to increase physical barriers on the surface, which reduces soil
surface runoff and evaporation [19]. Thus, soil moisture and temperature improvements
appear to balance the emission of GHGs. Biochar application enhances soil organic carbon
and, consequently, results in carbon sequestration [20,21]. Biochar amendment boosts crop
productivity and reduces the overuse of synthetic chemical fertilizers while simultaneously
increasing soil organic carbon (SOC) stock, moisture retention, and temperature [22–24].
By reducing the usage of synthetic fertilizers, this strategy can enhance both environmental
and human health [25,26].

One of the main economic drivers is agriculture, and according to EEA Report No. 17,
the sector’s overall GHG emissions, which amount a 4.4 Mt CO2 equivalent, are slightly
lower than those of the transportation sector [27]. According to the long-term commitment
EU panel, which was initiated in 2014 by Fertilizers Europe, the EU mineral fertilizer indus-
try promotes fertilizer use efficiency to improve agricultural production and a sustainable
environment (EU Nitrogen Expert Panel). Moreover, the addition of biochar improves
the efficiency of the bacteria involved in carbon and nitrogen metabolism, considerably
enhancing CO2, CH4, and N2O outputs [28,29]. However, using biochar in conjunction with
inorganic nitrogen fertilizer lowers GHG emissions without reducing crop output [30,31].
The impact of adding swine-digestate-derived biochar as an organic amendment with
nitrogen fertilizer on GHG emissions from the soil in spring barley and pea cropping
systems in the EU has not yet been reported. The use of biochar made from swine digestate
is, therefore, hypothesized to minimize GHG emissions, either with or without using 70%
of the recommended dose of synthetic nitrogen fertilizer. Therefore, two-year experiments
on the mitigation of GHGs coupled with reduced synthetic nitrogen fertilizer are carried
out at the research fields of the Lithuanian Research Center for Agriculture and Forestry,
Lithuania. This study’s primary goals are to decrease the excessive use of inorganic syn-
thetic nitrogen fertilizer, improve environmental quality by lowering GHG emissions, and
evaluate the usage of biochar made from swine digestate as a potential substitute source
of fertilizer.

2. Materials and Methods
2.1. Experimental Site

The experimental study was conducted during the growing seasons of 2020 and 2021 at
the fields of the Lithuania Research Center for Agriculture and Forestry (55◦40′ N, 23◦87′ E).
The chemical compositions at depths of 0–10, 0–20, and 0–60 cm for the Endocalcari-
Epihypogleyic Cambisol soil used in the experimental fields is shown in Table 1. Biochar
was prepared from swine manure digestate at 550 ◦C. Both biochar and N fertilizer were
applied to the soil one week prior to sowing of the crop and were manually applied to
each plot (1.5 m2). The experiment was carried out using the spring barley (Hordeum
vulgare L.) “Luoke cultivar” and the pea (Pisum sativum) “Respect cultivar” in 2020 and
2021, respectively. The period of growth was from April to August 2020 for spring barley
and from April to July 2021 for the pea crop. Data were recorded at each growth stage from
seedling until maturity. Lithuanian Hydrometeorological Service-Dotnuva data under the
Ministry of Environment data were used (http://www.meteo.lt/, accessed on 12 January
2020) (Figure 1). The chemical changes over two years in the fields studied are given in
Table 1.

http://www.meteo.lt/


Plants 2023, 12, 1002 3 of 15Plants 2023, 10, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Mean monthly precipitation (mm) and air temperature (°C) during 2020 and 2021. 

Table 1. Physiochemical properties of soil and biochar and soil chemical changes during two years. 
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0–20 6.9 0.14 24.03 230.11 0.98 - - - 
0–60 - - -  - 11.21 1.21 10 

Soil Chemical Changes 
Before sowing 6.8 0.14 142 230.17 1.03 6.78 1.25 9.39 
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P2O5—phosphorus pentoxide; NH4-N—ammonium nitrogen; NO3-N+N2O-N—nitrate plus nitrite. 
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590 nm [35]. A revised ammonium-acetate technique was used to measure cation 
exchange capacity [36]. Inductively coupled plasma atomic emission spectrometry (Perkin 
Elmer ICP-OES, Waltham, MA, USA) was used to assess the extractable Mg from DTPA 
[37]. Using a reference approach, total nitrogen (TN) and accessible phosphorus 
concentrations were determined [38]. A TGA provided information on biochar ash 
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Figure 1. Mean monthly precipitation (mm) and air temperature (◦C) during 2020 and 2021.

Table 1. Physiochemical properties of soil and biochar and soil chemical changes during two years.

Soil

Depth (cm) pH Total N (%) P2O5
(mg/kg)

K2O
(mg/kg)

Organic
carbon (%)

Mineral
nitrogen
(mg/kg)

NH4-N
(mg/kg)

NO3-
N+N2O-N
(mg/kg)

0–10 6.8 0.14 13.90 228.22 1.02 - - -

0–20 6.9 0.14 24.03 230.11 0.98 - - -

0–60 - - - - 11.21 1.21 10

Soil Chemical Changes

Before sowing 6.8 0.14 142 230.17 1.03 6.78 1.25 9.39

After harvesting 6.9 0.13 254 232.08 0.99 9.20 2.09 7.11

Difference −0.1 0.01 −112 −1.91 0.04 −2.42 −0.84 −1.58

Biochar

- pH Ash
content (%)

Moisture
wt. (%)

Volatile wt.
(%)

Residual
mass (char
formed) wt.

(%)

Total Mg
(g/kg) Organic C (%)

9.1 32.21 2.52 56.73 40.75 10.50 62.33

P2O5—phosphorus pentoxide; NH4-N—ammonium nitrogen; NO3-N+N2O-N—nitrate plus nitrite.

2.2. Soil Physicochemical Properties

Laboratory-based, standardized techniques were used to examine the physicochem-
ical characteristics of both the soil and the biochar. A 1:5 (vol:vol−1) soil combination
in 1 M KCl solution was used for the electrical conductivity and pH analysis of the soil
and biochar [32,33], as well as an extract in distilled water [34]. Soil and biochar organic
matter contents were measured using a spectrophotometer at a wave length of 590 nm [35].
A revised ammonium-acetate technique was used to measure cation exchange capac-
ity [36]. Inductively coupled plasma atomic emission spectrometry (Perkin Elmer ICP-OES,
Waltham, MA, USA) was used to assess the extractable Mg from DTPA [37]. Using a
reference approach, total nitrogen (TN) and accessible phosphorus concentrations were
determined [38]. A TGA provided information on biochar ash content, moisture, volatiles,
and residual mass.
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2.3. Experimental Design

The field study used a three-factorial randomized full-block design with six treat-
ments and three replications. No biochar plus no nitrogen fertilizer (control), no biochar
plus 160 kg ha−1 nitrogen fertilizer (N1), no biochar plus 120 kg ha−1 nitrogen fertilizer
(N2), 25 t ha−1 biochar plus 160 kg ha−1 nitrogen fertilizer (N1B), 25 t ha−1 biochar plus
120 kg ha−1 nitrogen fertilizer (N2B), and 25 t ha−1 biochar plus no nitrogen fertilizer (N2B)
were the experimental treatments (B).

2.4. Gas Sampling and Flux Calculation

Gas chromatography was used to measure the gas flux, and a static chamber gas [13,39]
method was modified only slightly for the analysis. A U-shaped groove (50 mm wide
and 50 mm deep) was present on the top edge of the chamber base box (frame) to retain a
detachable chamber box. Stainless-steel frames were permanently buried 10 cm beneath
the surface of the soil. A frame’s perimeter covered 0.36 m2. The chamber was sealed
for 3 min before each flux measurement, and 20 mL of gas sample was drawn using a
20 cm3 syringe. To increase the consistency of gaseous flux estimates, the gas samples were
collected between the hours of 9:00 and 10:00 in the morning. Glass vials with rubber tubing
used as a lid were used to collect the gas samples. From the beginning of the cultivating
season (one week before the application of biochar) to one month after harvest, the fluxes of
CO2, N2O, and CH4 were measured at 2-week intervals. Three replicates of each treatment
were used; thus, gas samples were collected from each plot. The samples were examined
using a gas chromatograph (HP 6890 Series, GC System, Hewlett-Packard, Analytical
system Management, Denver, USA) that had nickel catalysts for converting CO2 to CH4
and flame ionization and electron capture detectors. The corresponding temperatures were
70, 300, and 350 ◦C, respectively. The techniques for gas chromatography were explained
by [40]. Equations (1) and (2) were used, respectively, to compute the cumulative and GHG
flow rates and global warming potential for the growing seasons of 2020 and 2021 (from
April to August). Based on the rate of change in GHG concentration within the chamber,
which was determined as the slope of the linear regression between the GHG concentration
and the gas-sampling time, the flow rate of each GHG was derived.

Ra =

[
Ri + Ri + 1

2

]
× n (1)

GWP = (CO2 ∗ 1) + (N2O∗ 298) + (CH4 ∗ 25) (2)

2.5. Calculation of Cumulative Soil GHG Emissions

Between various growth stages, cumulative CO2, CH4, and N2O emissions for each
treatment were estimated as indicated by [5,41].

The total cumulative emissions of soil CO2, CH4, and N2O (mgha−1h−1) are rep-
resented by the symbol Ra, where the initial emissions of soil CO2, CH4, and N2O are
represented by Ri; the subsequent emissions of soil CO2, CH4, and N2O are represented by
Ri + 1 after the subsequent time i; and n is the number of interval days for the emissions of
soil CO2, CH4, and N2O.

2.6. Global Warming Potential (GWP)

The following equation was used to determine the global warming potential (GWP) of
soils treated with biochar and N fertilizer in 2020–2021 (IPCC, 2007).

2.7. Soil Temperature and Moisture Measurements

In each growth stage, the soil temperature was measured using a squarely buried
thermometer at a depth of 5 cm over the years 2020–21 [5]. Additionally, using an oven-
drying method for 24 h at 105 ◦C, soil samples were taken from 0 to 10 cm deep using a
soil auger in order to quantify soil moisture (in mass percent) at each growth stage. The
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link between soil temperature, moisture content, and CO2, N2O, and CH4 emissions was
examined using a linear regression.

2.8. Statistical Analysis

An analysis of variance (ANOVA) was performed on annual data gathered for each
parameter during the 2-year period. The statistical differences were examined using Statistix
8. The Tukey Test was used to assess mean values at a 0.05 probability level. GraphPad
Prism 9 was used to plot the data.

3. Results
3.1. Soil CO2 Emission Flux

Periodic variation was recorded between the seasons of the spring barley crop of 2020
and the pea crop of 2021. The emission of CO2 during the 2020 spring barley crop was
recorded as higher throughout the season, except during jointing stage. During 2021 of the
pea crop season, CO2 emissions were found significantly (≤0.05) lowered under biochar-
treated soils compares to the spring barley of 2020 (Figure 2). All biochar-treated soils
showed substantially (≤0.05) lowered CO2 emissions (by 57%, 55%, and 59%, respectively,
for B, N1B, and N2B) compared to non-biochar-treated soils during all stages of the pea
crop. The N2B treatment significantly (≤0.05) lowered CO2 emissions during the tillering
stage (by 58%) compared to the control treatment. Similarly, the B treatment substantially
(≤0.05) lowered CO2 emissions during the jointing, flowering, and maturity stages by 50%,
51%, and 50%, respectively (Figure 2).
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Figure 2. Direct effect of biochar on CO2 emissions at different growth stages of spring barley (2020)
and after effects on pea crop (2021). Treatments: control-without amendments; N1-160 kg ha−1

nitrogen fertilizer; N2-120 kg ha−1 nitrogen fertilizer; B-25 t ha−1 biochar; N1B-160 kg ha−1 nitrogen
fertilizer plus 25 t ha−1 biochar; N2B-120 kg ha−1 nitrogen fertilizer plus 25 t ha−1 biochar.

3.2. Soil N2O Emission Flux

Biochar treatments had no effect on N2O emissions during the spring barley crop
of 2020 throughout all the growth stages. However, there was significant variation
recorded during different growth stages of both cropping seasons regarding N2O emissions
(Figure 3). Following the above trend, the biochar-treated soils of B, N1B, and N2B showed
substantially (≤0.05) lowered N2O emissions by 48%, 49%, and 48%, respectively, through-
out the growth stages of the pea crop compared to non-biochar treatments (Figure 3). In
2021, during the pea crop season, the N2 treatment (100% nitrogen fertilizer alone) tended
to enhance N2O emission, specifically during the seedling and tillering stages.
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Figure 3. Direct effect of biochar on N2O emissions at different growth stages of spring barley (2020)
and after effects on pea crop (2021). Treatments: control-without amendments; N1-160 kg ha−1

nitrogen fertilizer; N2-120 kg ha−1 nitrogen fertilizer; B-25 t ha−1 biochar; N1B-160 kg ha−1 nitrogen
fertilizer plus 25 t ha−1 biochar; N2B-120 kg ha−1 nitrogen fertilizer plus 25 t ha−1 biochar.

3.3. Soil CH4 Emission Flux

There was no substantial variation recorded for methane gas (CH4) emissions during
the spring barley crop of 2020. However, the results indicated significant fluctuation in
CH4 emissions during the pea crop growing stages of 2021 (Figure 4). The N1B treatment
significantly (≤0.05) lowered CH4 emissions by 17%, and 19% during the flowering and
maturity stages, respectively (Figure 4). However, biochar did not affect CH4 emissions the
way it effected CO2 and N2O emissions.
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nitrogen fertilizer; N2-120 kg ha−1 nitrogen fertilizer; B-25 t ha−1 biochar; N1B-160 kg ha−1 nitrogen
fertilizer plus 25 t ha−1 biochar; N2B-120 kg ha−1 nitrogen fertilizer plus 25 t ha−1 biochar.
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Biochar application did not affect the cumulative emissions of CO2, N2O, and CH4
during the growth stages of the spring barley crop of 2020 (Table 1). However, there was
big variation recorded during the growth stages of the pea crop of 2021. The biochar
treatments of B, N1B, and N2B significantly (≤0.05) lowered cumulative CO2 emissions
by 16%, 19%, and 17%, respectively, compared to the control treatment. However, the
cumulative emission of N2O was significantly (≤0.05) lowered by 6% only in the B treatment
compared to the control treatment (Table 2). Similarly, the cumulative emission of CH4 was
significantly lowered by 7% in the B and N1B treatments compared to the control treatment
(Table 2).

Table 2. Cumulative CO2–C, N2O–N, and CH4 (mg ha−1 hr−1) emissions under different treatments
over the two-year study.

Treatment Cumulative CO2 Cumulative N2O Cumulative CH4

2020

Control 13262 ± 81.71a 10.09 ± 0.17a 20.18 ± 0.20ab
N1 12393 ± 79.03ab 9.66 ± 0.19ab 19.78 ± 0.17ab
N2 12487 ± 110.1ab 9.66 ± 0.15ab 21.13 ± 0.21a
B 13685 ± 99.21a 9.66 ± 0.17ab 20.68 ± 0.13ab

N1B 13972 ± 83.52a 9.93 ± 0.19ab 20.77 ± 0.18ab
N2B 12385 ± 91.33ab 10.04 ± 0.15a 21.20 ± 0.19a

2021

Control 8374 ± 91.01a 7.05 ± 0.11a 14.26 ± 0.20a
N1 8093 ± 91.26a 7.96 ± 0.11a 14.18 ± 0.18a
N2 8264 ± 83.21a 7.84 ± 0.13a 14.08 ± 0.20a
B 6907 ± 74.32b 6.64 ± 0.12b 13.06 ± 0.16b

N1B 6716 ± 63.41b 7.00 ± 0.14a 13.05 ± 0.15b
N2B 6833 ± 78.51b 6.97 ± 0.12a 14.16 ± 0.19a

Treatments: control-without amendments; N1-160 kg ha−1 nitrogen fertilizer; N2-120 kg ha−1 nitrogen fertilizer;
B-25 t ha−1 biochar; N1B-160 kg ha−1 nitrogen fertilizer plus 25 t ha−1 biochar; N2B-120 kg ha−1 nitrogen fertilizer
plus 25 t ha−1 biochar. Letters (a, b, and ab) show significant differences among treatments for spring barley (2020)
and pea crops (2021) at p ≤ 0.05 (LSD).

The global warming potential (GWP) of CO2, N2O, and CH4 emissions followed the
same trend as that of cumulative emissions. There was no significant fluctuation recorded
for GWP during the growth stages of spring barley in 2020. However, the GWP caused
by CO2 was recorded as substantially (≤0.05) lower in the biochar treatments of B, N1B,
and N2B by 39%, 35%, and 39%, respectively, compared to other treatments during the
growth stages of the pea crop of 2021 (Table 3). The GWPs caused by CH4 and N2O were
significantly lowered in treatment B by 19% and 34% compared to the control treatment,
respectively (Table 3).

The substantial changes under biochar and N fertilizer rates for soil moisture and
temperature are presented in (Figure 5). During 2020–2021, no significant effects of the
treatments were recorded for lower soil temperature during the vegetative growth stages
of both crops. Furthermore, soil moisture contents were 9.5%, 8.3%, and 7.6% higher in
the N2B, N1B, and B treatments, respectively, during flowering and maturity stages of
spring barley. A similar trend was recorded during different growth stages of the pea crop
(Figure 5).
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Table 3. Effect of biochar on global warming potential (GWP) (mg ha hr−1) during the years of 2020
and 2021.

Treatment GWP of CO2 GWP of CH4 GWP of N2O Cumulative
GWP

2020

Control 60.59 ± 0.117a 2.95 ± 0.05a 15.85 ± 0.15a 79.39 ± 0.112a
N1 61.68 ± 0.132a 2.96 ± 0.06a 15.56 ± 0.19a 80.20 ± 0.132a
N2 60.38 ± 0.126a 2.94 ± 0.04a 15.44 ± 0.12ab 78.76 ± 0.144ab
B 62.09 ± 0.137a 2.94 ± 0.05a 15.79 ± 0.20a 80.82 ± 0.141a

N1B 62.66 ± 0.118a 2.95 ± 0.02a 15.67 ± 0.14 a 81.28 ± 0.152a
N2B 59.58 ± 0.127a 2.96 ± 0.07a 15.73 ± 0.17a 78.27 ± 0.143ab

2021

Control 60.81 ± 0.281a 2.82 ± 0.09a 16.29 ± 0.27ab 79.92 ± 0.138a
N1 59.76 ± 0.256ab 2.79 ± 0.08a 16.60 ± 0.14a 79.15 ± 0.163a
N2 60.77 ± 0.242ab 2.81 ± 0.07a 17.46 ± 0.21a 81.04 ± 0.140a
B 37.17 ± 0.271b 2.70 ± 0.09b 13.08 ± 0.17b 52.95 ± 0.145b

N1B 39.33 ± 0.229b 2.74 ± 0.02ab 15.29 ± 0.19a 57.36 ± 0.134b
N2B 37.70 ± 0.217b 2.75 ± 0.10ab 15.11 ± 0.21a 55.53 ± 0.122b

Treatments: control-without amendments; N1-160 kg ha−1 nitrogen fertilizer; N2-120 kg ha−1 nitrogen fertilizer;
B-25 t ha−1 biochar; N1B-160 kg ha−1 nitrogen fertilizer plus 25 t ha−1 biochar; N2B-120 kg ha−1 nitrogen fertilizer
plus 25 t ha−1 biochar. Letters (a, b, and ab) show significant differences among treatments for spring barley (2020)
and pea crops (2021) at p ≤ 0.05 (LSD).
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4. Discussion
4.1. CO2 Emission

The decomposition of organic materials is caused by CO2, N2O, and CH4 emis-
sions [42,43]. Biochar provides additional environmental advantages since it improves
soil fertility through decomposition [44,45]. Biochar is a significant source of carbon and
helps in increasing SOC buildup [46,47] that, even at low soil temperatures, resulted in
higher average CO2 emissions in biochar-amended soil compared to non-biochar treat-
ments in 2020. This result showed that soil C has a greater potential for soil CO2 emission
variability [48,49] and, hence, increases soil fertility. However, on the other hand, biochar
has the potential to mitigate CO2 emission [50,51]. The seasonal changes in soil CO2
were dramatically impacted by biochar applications in 2021. Similar fluctuations in soil
temperature and moisture were visible for the biochar treatments during the field trial.
The agricultural fields′ consistent results demonstrate that biochar decomposition initially
boosted soil CO2 emission and soil carbon and nitrogen availability [52,53]. However,
there was also substantially lowered soil CO2 after biochar decomposition compared to
non-biochar treatments. Unnecessary agronomic practices may influence soil moisture,
which can affect soil CO2 emission [54,55]. For instance, it was reported that different
tillage operations lead to GHG emissions [56]. According to the current study, the higher
precipitation (Figure 1) in the first year (2020) compared with that of the second year (2021)
could mean that, due to favorable conditions for the decomposition of biochar, the soil CO2
emission increased [57,58].

4.2. N2O Emission

The overusage of N fertilizer increases GHG emissions and has negative effects on
the ecosystem [59,60]. The current findings showed that, during the growth seasons, the
N fertilizer treatments of N1, N2, and N3 alone considerably boosted soil N2O emissions.
(2021). Based on the N used and the emission variables, soil amendment with biochar
and synthetic fertilizers can reduce N2O emissions [61]. It is challenging to anticipate the
emission factors because of the complex chemical compositions of organic fertilizers [5,62].
It is known that N fertilization and mulching treatments together boost N2O flux by
71–123% [63–65].

Nevertheless, biochar on a field might help to reduce N2O emissions [66,67]. Addition-
ally, it was determined from these outcomes that N application with biochar could decrease
N2O emissions, as observed in the biochar-treated plots compares to non-biochar-treated
plots. Moreover, it was also reported that N fertilization could influence degradable N and
C, which resulted in improving the intricate microbial interaction between N and C, thus
enhancing N2O emissions [68,69].

As a comparison to applying N fertilizer alone, using biochar with N fertilizer reduces
N2O emissions by 25–35% [70,71]. Higher nitrogen fertilizer application rates result in
higher GHG emissions, which has an immediate impact on soil N2O emissions [5,72,73].
The present study suggested that the N1, N2, and N3 treatments are more environmentally
unfriendly due to N2O emissions, while the B treatment with N fertilizer is ecofriendly.

4.3. CH4 Emission

Compared to CO2 and N2O emissions, only the N1B treatment decreased CH4 emis-
sions during 2021. It was reported that the organic piles’ structure was improved with
biochar application anaerobically, and biochar could alter the oxidation–reduction potential
by enhancing absorptivity, which lowered the mechanism of methanogens and increased
that of methanotrophs to mitigate CH4 emissions [74]. Several of the literature findings
have indicated that the interaction between applying biochar to soil and CH4 flux is not
well-known [75,76]. The soil applications of biochar have been shown to enhance [77],
lower [77–79], or have no substantial influence on CH4 emission flux [80]. It was reported
that biochar addition to soil also promoted methanotrophic CH4 intake at the oxic–anoxic
junction in anaerobic environments. Moreover, the addition of biochar improved the oxida-
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tion of CH4 by methanotrophic organisms at the oxic–anoxic root interface, which lowered
the concentration of CH4 that could enter a plant′s aerenchyma and escape [79].

4.4. Global Warming Potential (GWP)

The overall impact of the main greenhouse gases (i.e., CO2, CH4, and N2O) is driven
by GWP [81]. The plots with applied biochar had a much lower net GWP during 2021.
However, no substantial difference was reported in 2020, which is in line with the following
reports. The non-significant difference in GWP might be due to the non-decomposition of
biochar in the first year [82]; however, the decomposition of biochar might be enhanced
in the second year, which led to GWP reduction [51]. Overall, studies report that biochar
application can significantly mitigate global warming. The biochar C:N ratio may be an
important factor that drives GWP under biochar applications [83].

4.5. Soil Moisture and Temperature

The incorporation of biochar into soil is treated as sustainable waste. It was reported
that the inappropriate management of different wastes (food, agriculture, etc.) creates
a global environmental challenge [84]. Thus, biochar addition provides a multitude of
advantages in terms of sustainable environment and agriculture aspects [85]. Furthermore,
the current study reported that biochar applications significantly (p ≤ 0.05) elevated soil
moisture content in the years of 2020–2021. Greater soil moisture content as a result of
surface area and porous structure has been observed [22,86]. However, changes in soil
temperature could be attributed to weather conditions.

4.6. Correlation between Soil Moisture, Temperature, and CO2 and N2O Emissions

According to the current study, CO2, N2O, and CH4 emissions were considerably
positively associated with soil temperature and moisture. According to a report, the pri-
mary variables affecting soil gas emission fluxes are its thermal characteristics [87,88]. Soil
CO2 and CH4 emissions increase due to fact that higher soil temperature and moisture
cause higher biochar decomposition and higher methane oxidation rates [89–91]. The
reason for higher N2O emissions with higher temperatures could be attributed to N fer-
tilization, which releases mineralized N upon decomposition [92]. It was observed that
soil temperature and soil moisture had a positive, two-parameter linear association with
CO2, N2O, and CH4 emissions (Figure 6). The findings of this study, therefore, show that
agricultural management techniques under humid climate conditions affected the rate of
soil GHG emission.

For the spring barley and pea crops in 2020–2021, the linear relationship between soil
CO2, N2O, and CH4 emissions and soil moisture and soil temperature was studied. Figure 6
demonstrates a positive correlation between soil temperature and moisture and soil GHG
CO2, N2O, and CH4 emissions. The linear CO2, N2O, and CH4 R2 values during 2020
and 2021 were 0.2171 and 0.1353, 0.5550 and 0.3355, and 0.7611 and 0.1981, respectively.
According to Figure 6, soil CO2, N2O, and CH4 emissions significantly increased when soil
temperature and wetness rose.



Plants 2023, 12, 1002 11 of 15

Plants 2023, 10, x FOR PEER REVIEW 10 of 15 
 

 

4.5. Soil Moisture and Temperature 
The incorporation of biochar into soil is treated as sustainable waste. It was reported 

that the inappropriate management of different wastes (food, agriculture, etc.) creates a 
global environmental challenge [84]. Thus, biochar addition provides a multitude of ad-
vantages in terms of sustainable environment and agriculture aspects [85]. Furthermore, 
the current study reported that biochar applications significantly (p ≤ 0.05) elevated soil 
moisture content in the years of 2020–2021. Greater soil moisture content as a result of 
surface area and porous structure has been observed [22,86]. However, changes in soil 
temperature could be attributed to weather conditions.  

4.6. Correlation between soil moisture, temperature, and CO2 and N2O Emissions 
According to the current study, CO2, N2O, and CH4 emissions were considerably pos-

itively associated with soil temperature and moisture. According to a report, the primary 
variables affecting soil gas emission fluxes are its thermal characteristics [87,88]. Soil CO2 
and CH4 emissions increase due to fact that higher soil temperature and moisture cause 
higher biochar decomposition and higher methane oxidation rates [89–91]. The reason for 
higher N2O emissions with higher temperatures could be attributed to N fertilization, which 
releases mineralized N upon decomposition [92]. It was observed that soil temperature and 
soil moisture had a positive, two-parameter linear association with CO2, N2O, and CH4 emis-
sions (Figure 6). The findings of this study, therefore, show that agricultural management 
techniques under humid climate conditions affected the rate of soil GHG emission.  

 
Figure 6. Linear relationship of soil CO2, N2O, and CH4 emissions with soil temperature and soil 
moisture at different growth stages of spring barley (2020) and pea crops (2021).  
Figure 6. Linear relationship of soil CO2, N2O, and CH4 emissions with soil temperature and soil
moisture at different growth stages of spring barley (2020) and pea crops (2021).

5. Conclusions

Biochar application substantially lowered direct CO2, N2O, and CH4 emissions from
soil in the second year compared to first year for non-biochar-treated plots. Thus, the
lower CO2, N2O, and CH4 emissions from the agricultural fields confirmed that swine
manure digestate biochar could be a suitable remedy for agriculture fields with higher
GHG emissions, especially in temperate climatic conditions. Likewise, the cumulative
emissions and global warming potential were substantially influenced by biochar during
the second year of the experiment. A positive correlation was recorded between GHG
emissions and soil moisture and temperature. No negative environmental issues were
recorded during the two years of field research. More research is required to explore the
long-term implication of swine-digestate-manure-derived biochar.
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