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Abstract: “Hormesis” is considered a dose–response phenomenon mainly observed at hyperaccu-
mulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis
responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing
the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the
parameters of plant growth and photosynthetic characteristics increased significantly when exposed
to 5 mg L−1 Cd, and decreased slightly when exposed to 25 mg L−1 Cd, showing an inverted U-
shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under
electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis
effect on the plant, especially by 2 V cm−1 voltage. Under 2 V cm−1 voltage, the dry weight of the
root and leaf biomass exposed to 5 mg L−1 Cd increased significantly by 38.38% and 42.14%, and the
photosynthetic pigment contents and photosynthetic parameters were also increased significantly
relative to the control, indicating that a suitable electric field provides better improvements for the
hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L−1 Cd and
2 V cm−1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic
characteristics could contribute to the promoted application of electro-phytotechnology.

Keywords: hormesis; electric fields; heavy metal; Lonicera japonica Thunb.; phytoremediation

1. Introduction

With rapid population growth and intensive human activities, large quantities of chem-
ical contaminants, especially heavy metals released into the environment, have recently
attracted global attention [1,2]. Heavy metals in soils are mainly derived from metalliferous
mining and waste water irrigation, overuse of agricultural fertilizers and pesticides, warfare
and military training, and over recent decades, heavy metals have become ubiquitous envi-
ronmental contaminants all over the world [3,4]. Increasing emissions of heavy metals pose
a significant threat to human health, because they may be accumulated in plants, animals
or microorganisms and enter into the food chain [5–8]. Among heavy metals, cadmium
(Cd) is one of the most hazardous pollutants and can cause leaf chlorosis, nutritional imbal-
ance, and growth and photosynthesis inhibition [9–15]. Current methods for remediating
Cd-contaminated soils rely primarily on physical and chemical techniques, which have
the disadvantages of high operation cost, limited site scope, and complicated operation
and may easily bring secondary contaminations or negative environmental effects [16,17].
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In contrast, the phytoremediation technology of heavy metal-contaminated soil is widely
considered as a promising and sustainable remediation strategy because of its superior
characteristics such as being green, low cost and causing less secondary contamination.
The key role of phytoremediation technology is hyperaccumulator uptake or the extraction
of heavy metals from contaminated soils [18]. It is considered that the concentrations
in hyperaccumulators for accumulating heavy metal elements in contaminated soils can
reach more than 100 times of those found in non-accumulators [19,20]. Recently, several
studies have indicated that electric fields could improve heavy metal accumulation and
stimulate seed germination, growth and development of different plants responding to
various environmental stresses [21–25]. The combination of hyperaccumulators and electric
fields has also been proposed as a new method to promote remediation efficiency [26–30].
However, limited information is available on the effect of electric fields on the growth and
photosynthetic characteristics of Cd-hyperaccumulators.

It is known that numerous studies focus on the toxicity of high-dose environmental
contaminants [31–34]; however, some low-dose environmental contaminants may have
beneficial effects on organisms [35–37]. The beneficial effects of low-dose environmental
contaminants is widely recognized in the field of toxicology and medicine, where it is de-
fined as “hormesis”, characterized by a biphasic adaptive response [38–40]. It is also found
that hormesis can improve the adaptation of plants to some adverse environments, such as
the low doses of nitrogen, lanthanum, ozone, ultraviolet radiation and herbicides [41–48].
Some researchers observed that hormesis can protect plants against environmental stress
and enhance plant biomass productivity and functional components [49–51]. Nevertheless,
few studies focus on the relationship of hormesis and hyperaccumulation. Thus, it is very
necessary to investigate the hormesis response strategy of hyperaccumulators, especially
the electric field-assisted effects on the hormesis responses of growth and photosynthetic
characteristics in a hyperaccumulator.

Lonicera japonica Thunb. (Japanese honeysuckle) is a popular ornamental plant and has
become established in temperate and tropical regions worldwide in the past 150 years [52].
It is commonly cultivated as a highly valued garden plant in urban greening because
of its high biomass and easy cultivation, and its deep roots and shoots could reach as
long as 150 cm. It also possesses the characteristics of extensive competitive ability, wide
geographic distribution, and strong resistance to environmental stresses such as bacte-
rial, viral and oxidative interference [53]. Our previous studies showed that L. japonica
has a strong tolerance and good accumulation capability for Cd in plant tissues (the
stem and shoot Cd accumulated concentrations in L. japonica can reach 344.49 ± 0.71 and
286.12 ± 9.38 µg g−1 DW, respectively), and it is recognized as a new woody ornamental
Cd-hyperaccumulator [9,54,55]. Moreover, we also found that the growth, photosynthetic
pigment and relative water contents in L. japonica were stimulated by hormesis under low
concentrations of Cd stress [9,54–57]. In the present study, we selected L. japonica as a model
plant to investigate the effect of different electric fields on the hormesis responses of the
growth, photosynthetic pigment composition and photosynthesis of the plant. The specific
objectives are to explore whether an electric field can improve the hormesis responses of the
plant under different concentrations of Cd stress. It will contribute to a better understand-
ing of the hormesis response strategy of hyperaccumulators and promote the application
of electro-phytotechnology.

2. Materials and Methods
2.1. Plant Materials and Experimental Treatments

The experiment was carried out in a greenhouse of Shenyang Agricultural Uni-
versity (41◦44′ N and 123◦27′ E, 44.7 m a.s.l.). Seedlings of L. japonica were collected
from a non-contaminated experimental field and cultivated in sterilized sand by culture
medium. The culture medium was Hoagland solution containing the following compo-
sition (mmol L−1): Ca(NO3)2·4H2O 5.00, MgSO4·7H2O 2.00, KNO3 5.00, KH2PO4 1.00,
H3BO3 0.05, ZnSO4·7H2O 0.80× 10−3, MnCl2·4H2O 9.00× 10−3, CuSO4·5H2O 0.30 × 10−3,
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(NH4)6Mo7O24·4H2O 0.02 × 10−3, Fe-EDTA 0.10 [54,58]. The pH was measured by a pH
meter and the pH value was 5.8 ± 0.1.

After the plants were cultivated for 8 weeks, CdCl2·2.5H2O (Kermel Chemical Reagent
Co., Ltd., Tianjin, China, >99%) was added into the culture medium and the Cd treatments
were 0, 5 and 25 mg L−1. Subsequently, an electric field (EF), which contains a pair of
graphite electrodes (10.0 cm in length) associated with a DC power supply (220 V, 50 Hz),
was daily 6 h and referred to 0, 1, 2 and 3 V cm−1 according to Liu et al. (2022) [59]. The
EF-Cd treatments are shown in Table 1. The experiment consisted of three independent
replicates. After one week, the plants were harvested for analysis.

Table 1. The treatments in the study.

Different
Treatments EF-Cd Treatment Electric Field (V cm−1) Cd Treatment (mg L−1)

T1 0-0 0 (V0) 0 (Cd0)
T2 0-5 0(V0) 5 (Cd5)
T3 0-25 0 (V0) 25 (Cd25)
T4 1-0 1 (V1) 0 (Cd0)
T5 1-5 1 (V1) 5 (Cd5)
T6 1-25 1 (V1) 25 (Cd25)
T7 2-0 2 (V2) 0 (Cd0)
T8 2-5 2 (V2) 5 (Cd5)
T9 2-25 2 (V2) 25 (Cd25)
T10 3-0 3 (V3) 0 (Cd0)
T11 3-5 3 (V3) 5 (Cd5)
T12 3-25 3 (V3) 25 (Cd25)

2.2. Measurements of Plant Biomass and Cd Content

The harvested plants were washed with tap water, and the roots of the plants were
immersed in 20 mM Na2-EDTA for 15 min and then washed with deionized water to
remove Cd adhering to the root surface [9]. The plants were separated into leaves and
roots. These plant tissues were dried at 105 ◦C for 20 min, then at 70 ◦C until the weight
was constant. Subsequently, the dry weight (g) of the root and leaf biomass was obtained.

Dried plant materials were ground to fine powder by a grinder. The powders were
digested with a concentrated acid mixture of HNO3/HClO4 (3:1, v/v). The plant Cd concen-
trations in L. japonica were determined with a flame atomic absorption spectrophotometer
(Perkin-Elmer, Waltham, MA, USA) after microwave digestion.

2.3. Deteremination of Photosynthetic Pigment Contents

The photosynthetic pigments were measured by the uniform and similar leaf sam-
ples. The leaf samples (0.2 g) were cut into small pieces, and then soaked in 25 mL 95%
(v/v) ethanol at 4 ◦C in darkness until the tissues became white. The extracting solution
absorbance at 649, 665 and 470 nm was measured. The contents of chlorophyll a (Chla),
chlorophyll b (Chlb), total chlorophyll (Total Chl) and carotenoid (Car) were calculated
by a modified method according to Lichtenthaler and Wellburn (1983) and Lichtenthaler
(1987) [60,61].

2.4. Assays of Photosynthetic Parameters

The photosynthetic parameters were determined by a portable photosynthesis system
(LI-6400, Li-Cor Inc. Lincoln, NE, USA) under different treatments. The photosynthetic pa-
rameters consisted of net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration
rate (Tr) and intercellular CO2 concentration (Ci). During different treatments, the param-
eters inside the leaf chamber (light level, CO2 concentration and leaf temperature) were
maintained constant at 1000 µmol m−2 s−1 PPFD, 25± 0.3 ◦C and 380 ± 5 µmol CO2 mol−1.
The upper second fully expanded leaves were used for the determination according to the
method of Pandey et al. (2003) [62].
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2.5. Statistical Analyses

All measurements in the study were replicated three times. The data analyses were
performed as the means ± SD. The statistical analysis of variance was carried out with
SPSS 22.0. The significant difference was presented at the p < 0.05 level. The least significant
difference (LSD) test was used to determine the multiple comparison between treatments.

3. Results and Discussion
3.1. Effects of Different EF-Cd Treatments on Plant Cd Concentrations

The Cd accumulations in L. japonica under different treatments were shown in Figure 1.
With the increase of Cd concentrations in the medium without an electric field (T1–T3,
Table 1), the plant Cd concentrations in L. japonica had an increased trend, which ranged
from 11.11, 137.43 to 419.05 mg kg−1. Under the T4–T6 treatments (V1-Cd0, V1-Cd5
and V1-Cd25), a slight increase of plant Cd concentrations in L. japonica under different
concentrations by Cd stress was observed by 1 V cm−1 voltages, which ranged from 12.31,
198.92 to 654.65 mg kg−1. Under the T7–T9 treatments (V2-Cd0, V2-Cd5 and V2-Cd25),
the plant Cd concentrations in L. japonica under different concentrations by Cd stress had
a significant increased trend compared with the T1–T3 treatments (under Cd treatments
without electric field), which ranged from 13.23, 358.30 to 1440.00 mg kg−1. Under the T10–
T13 treatments (V3-Cd0, V3-Cd5 and V3-Cd25), the plant Cd concentrations in L. japonica
under different concentrations by Cd stress had a more significant increase compared with
the T1–T3 treatments (under Cd treatments without electric field), which ranged from 13.99,
414.58 to 1630.84 mg kg−1. It was demonstrated that the concentrations of several heavy
metals (Cd, Cu, Zn and Pb) in plants were promoted because of the application of electric
fields [27,63]. In the present study, the electric fields significantly enhanced the plant Cd
concentrations in L. japonica exposed to different concentrations Cd compared with T1–T3
treatments (under Cd treatments without electric fields). The significant increase of plant
Cd concentrations under the electric field were observed when the plants were exposed
to different concentrations of Cd, especially exposed to high concentrations (25 mg L−1)
Cd. Under different concentrations of Cd treatments, the plant Cd concentrations in L.
japonica were increased significantly by 2 V cm−1 voltage and 3 V cm−1 voltage, which
reached 1440.00 (T9, V2-Cd25) and 1630.84 mg kg−1 (T12, V3-Cd25), which were 3.44 and
3.89 times of the T3 treatment (V0-Cd25), respectively. The positive effect of the electric field
may be correlated with the variety of metal ions polarity and cell membrane properties in
plants [64,65]. The similar results have been reported by Klink et al. (2019) and Yuan et al.
(2021), which mainly resulted from the electric field-induced increase of the membrane
polarization rate, cell metabolism and activated ion channels [25,66].
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3.2. Effect of Different EF-Cd Treatments on Plant Growth

It is well known that the biomass of plants is an important highly sensitive indicator
responding to heavy metal or other abiotic stresses [32,33]. The growth responses in the
form of dry weight of the root and leaf biomass in L. japonica under different treatments is
displayed in Figure 2. Under the T1–T3 treatments (under Cd treatments without electric
fields), the dry weight of the root biomass exposed to 5 mg L−1 Cd increased signifi-
cantly by 10.12% relative to the T1 treatment (V0-Cd0), and had a slight decrease when
exposed to 25 mg L−1 Cd, indicating an inverted U-shaped curve, which confirmed that
low concentration Cd has the hormesis effect on the root growth of L. japonica. The results
correspond to our previous studies, which showed that the growth characteristics, photo-
synthetic pigments contents, relative water contents and other physiological parameters
of Cd treatments all significantly indicated an inverted U-shaped dose–response curve,
confirming that the hormesis effect of low concentration Cd occurred in L. japonica [9,54–57].
Under the T4–T12 treatments (under electric field), the dry weight of root biomass had
an increased trend compared with the T1–T3 treatments (under Cd treatments without
electric fields), which showed that different voltages significantly promoted the inverted
U-shaped trend of dry weight of root biomass in L. japonica, especially by 1 V cm−1 voltage
and 2 V cm−1 voltage. Under 1 V cm−1 voltage and 2 V cm−1 voltage, the dry weight of
root biomass exposed to 5 mg L−1 Cd increased significantly by 20.54% and 38.38% relative
to the T2 treatment (V0-Cd5), which investigated that the medium voltage (2 V cm−1) has
more improvements to the hormesis effect of low concentration Cd on the plant growth of
L. japonica. He et al. (2017) have also reported that the dry weight of root biomass in maize
under a drought environment was enhanced by a pulsed electric field, which could be
derived from the improvement of the respiration metabolism and substance transformation
through the pulsed electric field [67]. Under different voltages, the dry weight of root
biomass exposed to 25 mg L−1 Cd increased by 15.12%, 34.30% and 10.47% relative to
the T3 treatment (V0-Cd25), which confirmed our previous study, indicating the electric
field-enhanced tolerance of L. japonica responded to high concentrations of Cd.

In contrast, under the T1–T3 treatments (under Cd treatments without electric fields),
the dry weight of leaf biomass exposed to 5 mg L−1 Cd increased significantly by 17.78%
relative to the T1 treatment (V0-Cd0), and decreased slightly when exposed to 25 mg L−1

Cd, showing a similar inverted U-shaped trend of the hormesis effect with the dry weight
of root biomass. Wiewiórka (2013) observed that a high-intensity electric field had limited
impacts on the growth of tomatoes in a hydroponic culture [64]. However, in the present
study, under the T4–T12 treatments (under electric field), the dry weight of leaf biomass
had an increased trend compared with the T1–T3 treatments (under Cd treatments without
electric field), which indicated that different voltages significantly promoted the inverted
U-shaped trend of the dry weight of leaf biomass in L. japonica, especially by 1 V cm−1

voltage and 2 V cm−1 voltage. Under 1 V cm−1 voltage and 2 V cm−1 voltage, the dry
weight of leaf biomass exposed to 5 mg L−1 Cd increased significantly by 15.09% and
42.14% relative to the T2 treatment (V0-Cd5). Compared with the results of the dry weight
of root biomass above, it indicated that the medium voltage (2 V cm−1) more significantly
enhanced the hormesis effect of low concentration Cd on the leaf biomass than the root
biomass in L. japonica, which could be the reason that plant organs in L. japonica have
different sensitivity and tolerance mechanisms when responding to environmental stress.
In summary, a medium strength electric field (2 V cm−1) could improve the hormesis
responses of plant growth in L. japonica under different treatments. This is in accordance
with those earlier studies that reported that the electric field stimulated the plant growth
and productivity though regulating the different levels of plant growth hormones [22,64,66].



Plants 2023, 12, 933 6 of 13

Plants 2023, 12, x FOR PEER REVIEW 6 of 13 
 

 

study, under the T4–T12 treatments (under electric field), the dry weight of leaf biomass 

had an increased trend compared with the T1–T3 treatments (under Cd treatments without 

electric field), which indicated that different voltages significantly promoted the inverted 

U-shaped trend of the dry weight of leaf biomass in L. japonica, especially by 1 V cm−1 

voltage and 2 V cm−1 voltage. Under 1 V cm−1 voltage and 2 V cm−1 voltage, the dry weight 

of leaf biomass exposed to 5 mg L−1 Cd increased significantly by 15.09% and 42.14% rela-

tive to the T2 treatment (V0-Cd5). Compared with the results of the dry weight of root 

biomass above, it indicated that the medium voltage (2 V cm−1) more significantly en-

hanced the hormesis effect of low concentration Cd on the leaf biomass than the root bio-

mass in L. japonica, which could be the reason that plant organs in L. japonica have different 

sensitivity and tolerance mechanisms when responding to environmental stress. In sum-

mary, a medium strength electric field (2 V cm−1) could improve the hormesis responses 

of plant growth in L. japonica under different treatments. This is in accordance with those 

earlier studies that reported that the electric field stimulated the plant growth and produc-

tivity though regulating the different levels of plant growth hormones [22,64,66]. 

 

 

Figure 2. Effects of different EF-Cd treatments on dry weight of root and leaf biomass in L. japonica. 

Different colors showed the different responses in L. japonica under EF-Cd treatments. Different let-

ters indicate significant differences at the p < 0.05 level. Values represent mean ± SD.  

3.3. Effect of Different EF-Cd Treatments on Photosynthetic Pigment Composition 

The measured results of photosynthetic pigment composition including chlorophyll 

a (Chla), chlorophyll b (Chlb), total chlorophyll (Total Chl) and carotenoid (Car) in leaves 

of L. japonica are presented in Figure 3. Under the T1–T3 treatments (under Cd treatments 

without electric fields), the contents of Chla, Chlb, Total Chl and Car exposed to 5 mg L−1 

Cd increased significantly by 5.99%, 7.56%, 6.55% and 7.41% relative to T1 treatment (V0-

Cd0), and had a decrease exposed to 25 mg L−1 Cd, which showed an inverted U-shaped 

curve, indicating low concentration Cd has the hormesis effect on the photosynthetic pig-

ment composition of L. japonica. The results confirmed that low concentration Cd could 

have a stimulatory effect on plant growth, the reasons of which may be the promoted dry 
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3.3. Effect of Different EF-Cd Treatments on Photosynthetic Pigment Composition

The measured results of photosynthetic pigment composition including chlorophyll a
(Chla), chlorophyll b (Chlb), total chlorophyll (Total Chl) and carotenoid (Car) in leaves
of L. japonica are presented in Figure 3. Under the T1–T3 treatments (under Cd treatments
without electric fields), the contents of Chla, Chlb, Total Chl and Car exposed to 5 mg L−1

Cd increased significantly by 5.99%, 7.56%, 6.55% and 7.41% relative to T1 treatment (V0-
Cd0), and had a decrease exposed to 25 mg L−1 Cd, which showed an inverted U-shaped
curve, indicating low concentration Cd has the hormesis effect on the photosynthetic
pigment composition of L. japonica. The results confirmed that low concentration Cd could
have a stimulatory effect on plant growth, the reasons of which may be the promoted dry
matter accumulation and seedling biomass through the increased photosynthetic pigment
contents [68–70]. When L. japonica was exposed to 25 mg L−1 Cd without electric fields
(T1–T3 treatments), the contents of Chla, Chlb, Total Chl and Car in the plant showed the
decreased trend, which could have resulted from the substitution of chlorophyll Mg2+ in
photosynthetic pigment composition by Cd2+ [71]. With the increase of Cd concentrations
in the medium, more chlorophyll Mg2+ in the photosynthetic pigment composition are
replaced spontaneously by Cd2+ and cause the degradation of photosynthetic pigments
and even the inhibition of photosynthesis. Under the T4–T12 treatments (under electric
fields), the contents of Chla, Chlb, Total Chl and Car had an increased trend compared
with the T1–T3 treatments (under Cd treatments without electric fields), which showed the
electric field could improve the Cd-induced degradation of photosynthetic pigments and
stimulate the protective mechanism in L. japonica. It was observed that the different voltages
significantly promoted the inverted U-shaped trend of the contents of Chla, Chlb, Total
Chl and Cars, especially by 1 V cm−1 voltage and 2 V cm−1 voltage. Moreover, different
photosynthetic pigments have different sensibilities to environmental stress [72]. Under
1 V cm−1 voltage, the contents of Chla, Chlb, Total Chl and Cars exposed to 5 mg L−1 Cd
increased significantly by 13.48%, 6.25%, 10.89% and 13.79% relative to the T2 treatment
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(V0-Cd5); by comparison, under 2 V cm−1 voltage, the contents of Chla, Chlb, Total Chl and
Cars exposed to 5 mg L−1 Cd increased significantly by 24.78%, 23.44%, 24.30% and 22.41%
relative to the T2 treatment (V0-Cd5), which indicated that a medium voltage (2 V cm−1)
better promotes the hormesis effect of low concentration Cd on the photosynthetic pigment
composition of L. japonica. The phenomenon is in agreement with the hormesis responses
of plant growth in L. japonica under different treatments, which mainly result from electric
field-induced uptake increase of Fe, Mg or other trace elements [32,73]. When the increased
voltage reached 3 V cm−1 under the electric field, the contents of Chla, Chlb, Total Chl and
Cars exposed to 5 mg L−1 Cd had no significant increases relative to the T2 treatment (V0-
Cd5), the contents of which were 2.45 mg g −1FW, 1.29 mg g −1FW, 3.74 mg g −1FW and
1.86 mg g −1FW, respectively. The results indicated that a suitable electric field could have
better improvement for the hormesis responses of photosynthetic pigment composition in
L. japonica to Cd stress.
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ages significantly promoted the inverted U-shaped trend of the contents of Chla, Chlb, 

Total Chl and Cars, especially by 1 V cm−1 voltage and 2 V cm−1 voltage. Moreover, differ-

ent photosynthetic pigments have different sensibilities to environmental stress [72]. Un-

der 1 V cm−1 voltage, the contents of Chla, Chlb, Total Chl and Cars exposed to 5 mg L−1 

Cd increased significantly by 13.48%, 6.25%, 10.89% and 13.79% relative to the T2 treat-
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Chl and Cars exposed to 5 mg L−1 Cd increased significantly by 24.78%, 23.44%, 24.30% 

and 22.41% relative to the T2 treatment (V0-Cd5), which indicated that a medium voltage 

(2 V cm−1) better promotes the hormesis effect of low concentration Cd on the photosyn-
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hormesis responses of plant growth in L. japonica under different treatments, which 

mainly result from electric field-induced uptake increase of Fe, Mg or other trace elements 
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3.4. Effect of Different EF-Cd Treatments on Photosynthetic Parameters

Photosynthesis, as the basis of all plant growth and crop yield, is undoubtedly the
most important biological process and is very susceptible to environments contaminated
by Cd [74]. The photosynthesis responses in terms of the net photosynthetic rate (Pn),
stomatal conductance (Gs), transpiration rate (Tr) and intercellular CO2 concentration (Ci)
in L. japonica under different treatments are evaluated in Table 2. Under the T1–T3 treat-
ments (under Cd treatments without electric fields), when the plants were exposed to low
concentration (5 mg L−1) Cd, the contents of Pn, Gs, Tr and Ci in L. japonica had a significant
increase compared with the T1 treatment (V0-Cd0), which were 15.85 ± 0.91 µmol m−2 s−1,
0.38 ± 0.01 mol m−2 s−1, 2.52 ± 0.05 mmol m−2 s−1 and 383.25 ± 10.78 µL L−1, respec-
tively. It is shown that the significant hormesis effect on Pn promoted the gas exchange
and transpiration in L. japonica in the form of the increased Gs, Tr and Ci, the reasons of
which may result from the stimulating impact of low concentration Cd on the Rubisco
contents [74]. Under the T4–T12 treatments (under electric fields), when the plants were
exposed to low concentration (5 mg L−1) Cd, the contents of Pn, Gs, Tr and Ci in L. japonica
were all increased significantly by 1 V cm−1 voltage (T5, V1-Cd5), 2 V cm−1 voltage (T8,
V2-Cd5) and 3 V cm−1 voltage (T11, V3-Cd5), respectively. Under the T4–T12 treatments
(under electric fields), different voltages significantly promoted the inverted U-shaped
trend of the contents of Pn, Gs, Tr and Ci, especially by 2 V cm−1 voltage. Under different
EF-Cd treatments, the maximum value of Pn, Gs and Tr reached 22.95 ± 0.98 µmol m−2 s−1,
1.19 ± 0.05 mol m−2 s−1 and 3.33 ± 0.08 mmol m−2 s−1, and under low concentration
(5 mg L−1) Cd treatment, the contents of Pn, Gs, Tr and Ci were all increased significantly
by 2 V cm−1 voltage (T8, V2-Cd5). This is in agreement with the dry weight of root and
leaf biomass, which showed that the combination of low concentration (5 mg L−1) Cd
and medium voltage (2 V cm−1) was useful to improve the photosynthesis capacity and
plant growth. The photosynthesis responses, in terms of Pn, Gs, Tr and Ci in L. japonica
under different treatments, also have a good correlation with the change trend of the
photosynthetic pigment composition. Several researchers observed that Cd stress had a
negative impact on plant photosynthesis, which is probably traceable in the decreased
chlorophyll biosynthesis and thylakoids or the inhibited plant growth [68,75–77]. However,
in the present study, under high concentration (25 mg L−1) Cd treatment, the contents of
Pn, Gs, Tr and Ci in L. japonica were promoted significantly by electric fields relative to the
T3 treatment (V0-Cd25), which is probably associated with the adaptive mechanisms of
hyperaccumulators responding to external stress [78–80].
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Table 2. Effect of different EF-Cd treatments on photosynthetic parameters in L. japonica.

Different Treatments Pn (µmol m−2 s−1) Gs (mol m−2 s−1) Tr (mmol m−2 s−1) Ci (µL L−1)

T1 13.61 ± 0.45 a 0.16 ± 0.02 ab 1.77 ± 0.10 a 357.23 ± 8.15 a
T2 15.85 ± 0.91 b 0.38 ± 0.01 d 2.52 ± 0.05 bc 383.25 ± 10.78 b
T3 14.26 ± 0.36 c 0.22 ± 0.02 bc 2.38 ± 0.03 d 320.92 ± 16.51 cd
T4 15.65 ± 0.83 ab 0.36 ± 0.02 d 1.97 ± 0.07 ab 337.51 ± 11.02 c
T5 19.72 ± 0.42 d 0.77 ± 0.04 e 2.91 ± 0.04 e 342.97 ± 18.65 abc
T6 16.33 ± 0.85 abc 0.43 ± 0.02 bcd 2.59 ± 0.12 cd 341.86 ± 8.97 ab
T7 17.62 ± 0.51 bc 0.56 ± 0.03 cde 2.17 ± 0.06 d 316.45 ± 13.52 cd
T8 22.95 ± 0.98 ef 1.19 ± 0.05 fg 3.33 ± 0.08 gh 375.08 ± 19.33 b
T9 18.74 ± 0.72 cd 0.67 ± 0.03 ef 2.83 ± 0.11 def 365.63 ± 9.82 bc
T10 14.13 ± 0.69 a 0.21 ± 0.02 b 1.82 ± 0.09 ab 281.36 ± 17.20 ef
T11 17.45 ± 0.57 cde 0.54 ± 0.01 de 2.68 ± 0.06 def 320.27 ± 11.26 cd
T12 15.56 ± 0.62 b 0.35 ± 0.03 abc 2.51 ± 0.05 c 333.29 ± 14.91 bcd

Data are means ± SD. Different letters indicate significant differences at the p < 0.05 level. Pn: net photosynthetic
rate; Gs: stomatal conductance; Tr: transpiration rate; Ci: intercellular CO2 concentration.

4. Conclusions

Based on the previous study, it is shown that L. japonica is a good model plant to
investigate the effect of different electric fields on the hormesis responses of the growth,
photosynthetic pigment composition and photosynthesis of plants. In the study, under
the T1–T3 treatments (under Cd treatments without electric fields), the parameters of plant
growth (dry weight of root and leaf biomass), photosynthetic pigment composition (Chla,
Chlb, Total Chl and Cars) and photosynthesis (Pn, Gs, Tr and Ci) increased significantly
when exposed to 5 mg L−1 Cd (p < 0.05), and had a slight decrease when exposed to
25 mg L−1 Cd, showing an inverted U-shaped trend, which confirmed that low concentra-
tion Cd has a hormesis effect on L. japonica. Under the T4–T12 treatments (under electric
field), different voltages significantly promoted the inverted U-shaped trend of the horme-
sis effect, especially by 2 V cm−1 voltage, which indicated that a suitable electric field
better improves the hormesis responses of growth photosynthetic pigment composition
and photosynthesis in L. japonica to Cd stress. The present results will be useful to explore
the underlying mechanisms of the hormesis effect of Cd stress on hyperaccumulators for
electric field-assisted phytoremediation.
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