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Abstract: Plant diseases that affect crop production and productivity harm both crop quality and
quantity. To minimize loss due to disease, early detection is a prerequisite. Recently, different
technologies have been developed for plant disease detection. Hyperspectral imaging (HSI) is
a nondestructive method for the early detection of crop disease and is based on the spatial and
spectral information of images. Regarding plant disease detection, HSI can predict disease-induced
biochemical and physical changes in plants. Bacterial infections, such as Pseudomonas syringae pv.
tabaci, are among the most common plant diseases in areas of soybean cultivation, and have been
implicated in considerably reducing soybean yield. Thus, in this study, we used a new method based
on HSI analysis for the early detection of this disease. We performed the leaf spectral reflectance of
soybean with the effect of infected bacterial wildfire during the early growth stage. This study aimed
to classify the accuracy of the early detection of bacterial wildfire in soybean leaves. Two varieties
of soybean were used for the experiment, Cheongja 3-ho and Daechan, as control (noninoculated)
and treatment (bacterial wildfire), respectively. Bacterial inoculation was performed 18 days after
planting, and the imagery data were collected 24 h following bacterial inoculation. The leaf reflectance
signature revealed a significant difference between the diseased and healthy leaves in the green and
near-infrared regions. The two-way analysis of variance analysis results obtained using the Python
package algorithm revealed that the disease incidence of the two soybean varieties, Daechan and
Cheongja 3-ho, could be classified on the second and third day following inoculation, with accuracy
values of 97.19% and 95.69%, respectively, thus proving his to be a useful technique for the early
detection of the disease. Therefore, creating a wide range of research platforms for the early detection
of various diseases using a nondestructive method such HSI is feasible.

Keywords: soybean; hyperspectral imaging; spectral band; wavelength; plant disease detection

1. Introduction

Soybean (Glycine max L.) is a vital commercial crop that is consumed as human food
and animal feed worldwide [1–3]. However, biotic and abiotic stress factors often limit soy-
bean yield [4]. According to previous reports, >100 pathogens have been reported to attack
soybean plants [5,6]. In the United States alone, disease infection is accountable for ~11%
annual yield losses [7]. Among the pathogens, fungi, viruses, bacteria, and nematodes are
responsible for causing the highest economic loss, reducing crop yield by ~11%, ~1%, ~11%,
and ~30%, respectively [8–10]. Among the various biotic stresses, the incidence of bacterial
disease in soybean plants has drastically increased in recent decades [11]. In the United
States, a 4–40% yield reduction was attributed to bacterial diseases [12]. Similarly, bacterial
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diseases hampered 15–60% yield worldwide [13]. Pseudomonas syringae pv. tabaci causes bac-
terial wildfire in soybeans, was first reported in 1945 [14], and is the most common bacterial
disease worldwide in soybean crops [15]. In the Republic of Korea, it was first found in the
soybean fields of Boeun and Munkyung cities in 2006 and 2007, respectively [16]. Frequent
rainfall and humid weather conditions with temperatures >35 ◦C are favorable for disease
proliferation [11]. The symptoms of this disease include small-to-big light-brown necrotic
patches with specific disease signs typically emerging on the leaves and surrounded by
wide yellow halos. In addition, regions of black or dark brown necrotic tissue with an
apparent halo are found [17]. A study conducted in the Chungbuk province of the Republic
of Korea reported that the disease incidence of bacterial wildfire in the affected fields
and infected plants was 23.2% and 10.1%, respectively, with the sprout soybean variety
exhibiting the highest incidence (25.05%) followed by Daewon (24.7%) [18]. This bacterial
disease occurs globally and damages both the seedlings and field plants of tobacco, causing
yield loss up to 16% [19,20]. Furthermore, P. syringae pv. tabaci produces a powerful toxin
known as tabtoxin or wildfire toxin that radially spreads, resulting in extensive infection
within 2–3 days [21]. Thus, the early detection of this disease is imperative for preventing
extensive yield loss. However, the early detection of bacterial wildfire in fields is very
difficult as it is time consuming and laborious.

Hyperspectral imaging (HSI) contains four parts: a hyperspectral camera, a light
source, a carrier stage, and a computing device [22,23]. HSI primarily includes a set of
images covering the entire wavelength range. This technology has been broadly employed
in numerous sectors, including food, agriculture, medical science, geography, and archaeol-
ogy [24–29]. HSI is a nondestructive, nonpolluting, and quick technique that considerably
expedites gathering data and identifying the internal or external quality characteristics of
agricultural products [30]. Consequently, crop disease diagnosis using this technique offers
obvious benefits [31,32]. A hyperspectral camera equipped with a remote sensing tool
is a crucial technique that can determine plant pigment composition related to pathogen
infections or their physiological status [33]. Furthermore, HSI has been successfully used to
characterize, detect, model, and categorize plant diseases [34]. It encompasses techniques
that are efficient at detecting plant diseases using spectral, multispectral, and hyperspectral
methods. This method has the most potential as it can concurrently capture pictures and
spectral data for the same purpose while including hundreds of wavebands [35]. The alter-
ation of chlorophyll pigment in plants, which considerably impacts its spectral reflectance
in the visible region of the electromagnetic spectrum, has also been employed in plant
research to identify and distinguish various diseases and other ailments, leading to the
development of vegetation indices (VIs) [36–39]. Furthermore, VIs has been employed by
several studies to investigate the correlation between leaf pigment concentration and visible
characteristics [40–43]. The connection between plant canopy structure and canopy spectral
reflectance was studied to establish techniques to detect plant disease and stress [44,45]. In
addition to red, green, and blue (RGB) images, HSI provides spectrum characteristics that
simultaneously depict the location, size, shape, and chemical characteristics of soybean
crops. As HSI can record various biochemical or metabolic changes that might not be
visible to the naked eye, canopy spectra may be a useful tool for early disease identification
and classification [46]. Additionally, numerous studies have used HSI to identify soybean
diseases, such as the detection of soybean rust in both the laboratory and field using thresh-
old setting and centroid finding techniques in multispectral images. The results revealed
that HSI effectively detected disease severity [47]. Similarly, Nagasubramanian et al. (2018)
detected soybean charcoal rot disease using a support vector machine and reported that
the classification accuracy was 90.91% [48]. Recently, using HSI and the A-ResNet meta-
learning model, Gui et al. (2023) investigated pest detection in soybean and attained a
classification accuracy of up to 94.75% ± 0.19%. Recently, apart from disease detection,
HSI has been used alongside chemometrics to monitor and evaluate soil phytoremediation
under heavy metal stress, such as mercury in relation with tobacco, cadmium in relation
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with amur silver grass (Miscanthus sacchariflorus), and arsenic in relation with fern (Pteris
vittata) [49–51].

For appropriate plant management, recognizing plant stress levels should be priori-
tized. Furthermore, the early detection of the causes of plant stress is imperative. However,
plant diseases remain a huge challenge in controlling quality and yield loss [52,53]. Thus,
early plant disease detection constitutes the most crucial step in monitoring, preventing,
and managing agricultural yield and quantity losses [54,55]. Similarly, an early diagnosis of
specific crop diseases can lead to better management of the optimal chemical and fertilizer
applications. Although several studies regarding the detection of leaf infections at the
late stage of the soybean plant have been published, to the best of our knowledge, no
pre-prediction approach has been studied. Thus, herein, we used HSI to investigate the
early detection of bacterial wildfire in soybean leaves. This study aimed to (1) assess the
feasibility of employing HSI to detect bacterial wildfire infection in soybean leaves, (2) de-
termine the precise dates of disease symptom detection, and (3) select efficient wavelengths
for the early differentiation of healthy and diseased plants.

2. Results
2.1. Significant Wavelength Selection

A total of 15 primary wavelengths (510.48, 513.4, 625.22, 628.18, 631.15, 634.11, 637.08,
690.64, 693.62, 696.61, 699.6, 702.58, 705.57, 708.57, and 711.56 nm) were identified via
the Python analysis algorithm. The range of the obtained wavelengths was 510–513 nm,
with 625–637 nm representing the green and orange visible absorption band; however,
these wavelengths might interfere with environmental factors in natural light. Thus, the
wavelength ranges of 690–711 nm in the near-infrared (NIR) region were selected. Following
infection, the confirmed NIR absorption regions were extracted. Classification without
differentiation between the varieties is required for the early diagnosis of wildfire disease.
Thus, a common major wavelength was selected before and after visual verification. The
wavelength details are provided in Supplementary Figure S1.

2.2. Identification of Significant Wavelength

In this present study, we first developed the Python analysis algorithm/code based on
full spectral wavelengths. The statistic values were extracted from the selected region of
interest (ROI). These data values of each pixel from the selected ROI of 204 different bands
were subjected to further analysis using the developed Python algorithm. The spectral
wavelengths from both healthy and diseased leaves were used for the algorithm model
analysis. To identify the effective wavelength that can detect the diseased leaf, heatmaps
were established. Figure 1 shows the distinction between healthy and diseased soybean
leaves from 1 to 10 days after inoculation (DAI). The blue–yellow color in the heatmap
represents the F-value, which is the pixel information of the diseased and healthy leaves
of the plant. Heatmap with yellow regions represents a value with a high significance
value, whereas blue represents a low significance value as shown in Figure 1A, 2 DAI.
According to Figure 1A, B show no significant wavelength differences between the healthy
and diseased leaves on the first day following inoculation. However, from 3 to 10 DAI
(Figure 1A), they revealed yellow color in between the wavelength of 700 nm on X axis and
710 nm on Y axis continually. According to a similar pattern in Figure 1B, the wavelength
that can be used to detect wildfire in the Daechan variety was in the range of 700 nm on the
X axis and 710 nm on the Y axis. Thus, these findings indicate that these wavelengths can
be used to detect wildfire disease in the soybean plants of both varieties, Cheognja 3-ho
and Daechan.
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Among the nine formulas used in the algorithm analysis, the accurate results ob-

tained from formula number 3 revealed the highest accuracy percentage compared with 
the other formulas shown in Supplementary Table S1. Two-way analysis of variance 
(ANOVA) was performed to determine the main effectiveness of the wavelength values 
(data not shown). Similarly, in Cheongja 3-ho and Daechan, the wavelengths at 700 and 
710 nm were extracted as the main effective wavelengths from 1 to 10 DAI (Table 1). The 
results showed that Cheongja 3-ho exhibited a poor accuracy of 57.41% at 1 DAI and 
67.74% in 2 DAI. Conversely, Daechan achieved an accuracy of 62.26% at 1 DAI. Further-
more, the accuracy% of Daechan and Cheongja 3-ho increased by 2 and 3 DAI, respec-
tively. The classification accuracy was confirmed to be 97.19% for Daechan at 2 DAI, 
whereas Cheongja 3-ho confirmed the possibility of classification with 95.69% accuracy at 
3 DAI. Only the diseased regions of the leaf were detected, thereby validating the excellent 
classification accuracy. 

Figure 1. Heatmap obtained from the Python 3.9 analysis algorithm shows the difference in the
wavelength between the control and diseased soybean varieties, (A) Cheongja 3-ho and (B) Daechan,
respectively.

2.3. Classification Accuracy

Among the nine formulas used in the algorithm analysis, the accurate results obtained
from formula number 3 revealed the highest accuracy percentage compared with the other
formulas shown in Supplementary Table S1. Two-way analysis of variance (ANOVA)
was performed to determine the main effectiveness of the wavelength values (data not
shown). Similarly, in Cheongja 3-ho and Daechan, the wavelengths at 700 and 710 nm were
extracted as the main effective wavelengths from 1 to 10 DAI (Table 1). The results showed
that Cheongja 3-ho exhibited a poor accuracy of 57.41% at 1 DAI and 67.74% in 2 DAI.
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Conversely, Daechan achieved an accuracy of 62.26% at 1 DAI. Furthermore, the accuracy%
of Daechan and Cheongja 3-ho increased by 2 and 3 DAI, respectively. The classification
accuracy was confirmed to be 97.19% for Daechan at 2 DAI, whereas Cheongja 3-ho
confirmed the possibility of classification with 95.69% accuracy at 3 DAI. Only the diseased
regions of the leaf were detected, thereby validating the excellent classification accuracy.

Table 1. Classification accuracy obtained via two-way analysis of variance analysis.

Day after Inoculation Classification Formula Cheongja 3-ho Accuracy (%) Daechan Accuracy (%)

1 DAI

700 nm
710 nm

57.41 62.26
2 DAI 67.74 97.19
3 DAI 95.69 100.0
4 DAI 98.72 100.0
5 DAI 98.96 100.0
6 DAI 99.49 99.20
7 DAI 100.0 99.50
8 DAI 100.0 100.0
9 DAI 100.0 100.0

10 DAI 100.0 100.0

Using formula/function 3 (Tables 2 and S1), we calculated the accuracy of disease
detection in soybean. Figure 2 shows the differences in the symptomatic region. Figure 2A,B
represent the three replications of Cheongja 3-ho and Daechan on 3 and 2 DAI, respectively.
On comparing the final image obtained after the analysis (Figure 2A,B (iii)), the annotated
ROI (Figure 2A,B (ii)) exhibited a lower intensity in the grayscale image. The healthy region
of the leaves exhibits darker pixel values compared with the diseased regions. Based on
the annotated diseased regions and using formula/function 3, the disease was evaluated.

Table 2. List of the formulas used to verify the significance between the multiple wavelengths.

Serial Number Function/Formula Serial Number Function/Formula

1 |a− b| 6
∣∣loga b

∣∣
2 |a + b| 7 | a − b

b |
3 | ab | 8 | (a + b) + (a − b)

a + b |
4 | a + b

a | 9 | (a + b) − (a−b)
a − b |

5 | a − b
a |

Note: a and b denote the wavelength values extracted via a comparison between healthy and diseased leaves,
respectively. Among these nine different classification functions/formulas, function 3 demonstrated the highest
accuracy (Supplementary Table S1) for verifying disease detection in both the varieties. Thus, for determining the
classification accuracy of disease detection, this formula was used in the Python algorithm.
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Plants 2023, 12, 901 7 of 14

3. Materials and Methods
3.1. Plant Materials and Growth Conditions

In this study, two soybean variety seeds, Cheongja 3-ho and Daechan, were received
from the Rural Development of Administration, Republic of Korea. The selected soybean
varieties are popular in the Republic of Korea and have high nutritional value alongside
high antioxidant activity [56,57]. The seeds were sown in polyvinyl chloride pipes (16.5 cm
[diameter] × 50 cm [height]) filled with horticultural soil (zeolite 4%, cocopeat 68%, perlite
7%, rough stone 6%, pittmoss 14.73%, fertilizer 0.201%, wetting agent 0.064, and pH
modifier 0.005). The soybean plants were planted in a greenhouse (maximum temperature,
35 ◦C; minimum temperature, 20 ◦C; humidity, 77 ± 10%, sunlight source of 14 h 26 min of
photoperiod) in the research center of Kyungpook National University, Daegu, Republic of
Korea on 24 May 2021. There were 60 experimental pots in total, of which 30 were control
and 30 were inoculated with bacterial wildfire with three replications (n = 5). The plants
were regularly irrigated and kept healthy till bacterial inoculation.

3.2. Bacterial Strain and Artificial Inoculation in Soybean Plants

The P. syringae pv. tabaci strain BC2367 was used as an inoculum source. It was grown
in tryptic soy agar (30 g trypticase soy broth, 15 g agar, and 1 L distilled water; adjust
pH to 7.3), and incubated at 28 ◦C for 48 h to prepare the inoculum. The colonies were
maintained and stored at −80 ◦C in glycerol (15% w glycerol and 0.85% w NaCl) for future
experiments [58]. Bacteria were harvested from culture plates using a sterile loop, and
suspended in sterile water (1.8 × 107 cfu/mL). Artificial inoculation was performed when
the soybean plants reached the vegetative growth stage (V2). The pathogens were sprayed
on the entire leaves via spray inoculation to ensure that the leaves were sufficiently covered
with inoculum, and the plants were then covered with plastic wrap and kept overnight.
Specim IQ hyperspectral camera (model: WL18 MODGB, firmware version: 2019.05.31.1)
based on Specim’s push-broom technology having a wavelength range of 400–1000 nm was
used to capture the images of the soybean plants. The camera was equipped to capture
two-dimensional pictures in the spectral dimension with a resolution of 512 × 512 pixels.
The number of total recorded spectral bands was 204. A halogen-based lighting system
that covers the complete 400–1000 nm wavelength range is generally recommended for
capturing images; however, the images can be captured outdoors under sunlight as well.
Calibration was performed using the white reference target where the focus ring of the
camera was rotated till the target was highlighted with the maximum amount of orange-
colored indicators. The intensity was maintained by changing the intensity slider to select
the correct area, and the area from the orange-colored tiles was selected. The simultaneous
method of white reference was used to capture the images where the white reference panel
was used in every image captured, and this method was best for capturing images outdoors
where the lighting environment changes between capturing of the images. The pathogen
inoculation procedure and image acquisition of the soybean plants are shown in Figure 3.

3.3. Image Acquisition and Data Extraction Using ENVI Software

Image acquisition was performed daily in the afternoon from ~3 to 5 PM (completes
the day cycle [24 h] after inoculation) till 10 days after inoculation. The time period from
3 to 5 PM occurs before sunset and is also known as the golden hour when the lighting
is considered most suitable for outdoor photography [59] The proposed experiment was
for predetecting bacterial wildfire in soybean leaves. Hyperspectral transmission images
offer extensive information regarding diseased leaves. The plant-related information
obtained from HSI was accurate and crucial for identifying bacterial damage to leaves
within this pool of information. In total, 106 images were used as inputs for analysis.
Consequently, to ensure the integrity of each plant, the ROI (sub image) was captured
of each relative hyperspectral transmission image in the diseased region of each plant
leaf position. The ROI was manually selected based on the same symptomatic region
that occurred on the same leaves, and the spectral wavelengths data were collected and
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used as reference data for image capturing via the multispectral camera. In total, 204
wavebands with a range of wavelength from 400 to 1000 nm obtained from the selected
ROIs of each position were extracted using ENVI V.5.5.3 software (Figures 4 and 5). First,
the inoculated plants colonized without symptoms. A day later, they began exhibiting
symptoms, including spots and water-soaked spots in the Cheongja 3-ho and Daechan
varieties, respectively. The first signs of bacterial wildfire were the yellowish patches on the
leaves. The patches subsequently become necrotic and turned into characteristic brown
halos 4–6 days following inoculation. At 10 DAI, halos surrounded all the leaf lesions,
forming chlorotic areas. While capturing the images, the diseased area was approximately
maintained in a similar position to ensure easy comparison on different days. Figure 4A
represents the original image where symptoms can be observed from 2 DAI. We annotated
only the diseased regions and obtained the ROIs (Figure 4B) followed by the annotated
image alongside the ROI and diseased regions in Figure 4C. Data were extracted from these
ROIs and further analyzed. There was a general trend of increase in the diseased region
from 2 DAI, which decreased in the later stage probably owing to leaf shrinkage.
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Figure 5. Flow chart of image processing and analysis. The flow chart represents image acquisition
followed by image annotation using ENVI software, extraction of annotated data, and analysis using
the Python algorithm to accurately access the healthy and diseased plants.

3.4. Statistical Analysis

The results of the spectral band distinguishing between the control and inoculated
plants were analyzed using the Python analysis algorithm package via Jupyter notebook
as a working environment. Nine additional formulas (denoted as functions) were applied
to verify the significance between multiple wavelengths rather than single wavelength
analysis (Table 2). Using the nine types of formulas, we performed ANOVA analysis with a
p of <0.05.
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4. Discussion

The findings of this study reveal that early identification of foliar soybean bacterial
wildfire is possible. The hyperspectral camera is a useful tool for detecting the disease
using different ranges of wavebands. Herein, we used two soybean varieties, both of
which exhibited significant differences in wavelengths and wavebands selected based on
the leaf spectral reflectance. The disease symptoms on the foliar part were observed at
2 DAI till the end of the experiment, and no transmission was observed from the diseased
leaves to the new young leaves. A similar pattern was observed in tobacco plants which
showed young plants of the age of 42 days of tobacco susceptible to bacterial wildfire
on the lower leaves compared to younger leaves of the age of plants 84 days [60]. Our
results when compared to the total nine functions/formula, specifically formula number
3 (Table S1) reveal the highest classification accuracy used in the algorithm analysis and
using this function it was revealed that the Daechan and Cheongja 3-ho varieties were
classified with high accuracies of 97.19% and 95.69% at 2 and 3 DAI, respectively. Shao
et al. [61] used back propagation and genetic algorithm optimized back propagation neural
network algorithm to determine bacterial wildfire in tobacco with classification accuracies
of 78.00% and 94.00%, respectively. Similarly, Gui et al. (2023) successfully demonstrated
pest detection with 94.75% ± 0.19% accuracy in soybean plants based on HSI and the
A-ResNet meta-learning model. Apart from soybean, different plant diseases, such as
grapevine trunk disease, fusarium head blight, and cercospora leaf spot, were successfully
detected, with high classification accuracy in Grape (Vitis vinifera L. cv.), wheat (Triticum
aestivum L.), and sugar beet (Beta vulgaris), respectively [62–64]. Herein, we used a similar
approach for bacterial wildfire disease detection with high accuracy by extracting spectral
data at wavelengths of 700 and 710 nm (NIR region). Thus, these selected wavelengths may
be particularly effective for the early identification of bacterial wildfire in soybean plants.

Although the experiment was conducted in greenhouse conditions, and a handheld
tool was used to capture pictures (Specim IQ camera), this method offers a great deal of
promise for utilization in an autonomous device. The fact that the device and objects must
be stabilized during capturing images and that the picture must be adjusted to focus on the
diseased leaves are some challenges of the suggested technique. However, several studies
have been conducted on detecting diseases in soybean leaves separated from the shoot that
were collected and analyzed in a laboratory [65,66]. Using this handheld device in fields
will be challenging owing to unstable light intensity. In contrast to the laboratory setting,
a single field shot typically comprises several plant details alongside a more complicated
background color [67,68].

Recently, progressive researchers have used HSI for early plant disease detection.
This technology exhibits high potential and accuracy for plant disease detection [69]. In
this study, we observed that HSI is suitable for the early detection of bacterial disease
in soybean leaves. Previously, using the automated method and HSI data, researchers
discriminated between healthy and diseased leaves with a classification accuracy of up
to 97% [70]. In addition, some previous studies used spectral wavebands alongside VIs
to detect pathogens and determine plant growth, yield, and soil characteristics [71–75].
This study was conducted during the early growth stage of the plant; however, reportedly,
soybean plants are infected by bacterial wildfire during the late growth stage between the
vegetative growth stage (V5) and the reproductive stage [16,17,76]. Therefore, the findings
of this study may help pathogen detection in soybeans during later growth stages.

5. Conclusions

Early detection of diseases is a prerequisite for preventing severe yield loss and
disease spread. The present study focused on the early detection of bacterial wildfire
using a nondestructive method of disease detection, HSI. Our findings reveal that the
different varieties reflect different spectral signatures and provide proof of concept for
employing HSI to detect bacterial infection in soybean leaves and determine the precise date
of infection, effective wavelengths for disease symptom detection and differences between
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healthy and diseased plants. The experimental results indicate that the early detection of
disease is possible using HSI as high accuracy in disease detection was observed (97.19%
for Daechan and 95.69% for Cheongja 3-ho) at 2 and 3 DAI, respectively, in both varieties.
Hence, the usefulness of HSI was confirmed for the early detection of bacterial wildfire in
soybean plants in both asymptomatic and symptomatic conditions. However, a further
comprehensive study using multiple soybean varieties may provide more confirmative
insight and validate the disease accuracy level using the suggested formula.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12040901/s1. Table S1, Selected wavelength file; Figure S1,
Python source code.
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