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Abstract: Aegilops tauschii is one of the malignant weeds that affect wheat production and is also the
wild species ancestor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD). It contains
many disease resistance genes that have been lost in the long-term evolution of wheat and is an
important genetic resource for the mining and utilization of wheat disease resistance genes. In recent
years, the genome sequence of Aegilops tauschii has been preliminarily completed, which has laid a
good foundation for the further exploration of wheat disease resistance genes in Aegilops tauschii.
There are many studies on disease resistance genes in Aegilops tauschii; in order to provide better
help for the disease resistance breeding of wheat, this paper analyzes and reviews the relationship
between Aegilops tauschii and wheat, the research progress of Aegilops tauschii, the discovery of disease
resistance genes from Aegilops tauschii, and the application of disease resistance genes from Aegilops
tauschii to modern wheat breeding, providing a reference for the further exploration and utilization
of Aegilops tauschii in wheat disease resistance breeding.
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1. Introduction

As one of the major crops, wheat is the main grain for about one third of the world’s
population, and its yield is of great significance for alleviating global hunger [1]. According
to the FAO, pests and diseases cause 20–40% of global food crop losses and losses of USD
220 billion in agricultural trade every year [2]. In the long-term natural selection and
artificial selection, wheat has lost many excellent disease resistance genes [3,4], resulting in
a single genetic background of wheat.

Aegilops tauschii belongs to the genus Aegilops in the Triticeae family of Poaceae [5]. It is
an annual weed in wheat fields and is also a relative plant of wheat and the donor species of
the D genome during the evolution of common hexaploid wheat [6,7]. Compared with the
D genome of wheat, Aegilops tauschii has a richer genetic diversity and contains many stress
resistance, disease resistance, and insect resistance genes, among many other excellent
genes, which are an important breeding resource for wheat breeders to improve wheat
traits as well as disease resistance and stress resistance [8–11]. Therefore, fully exploring
and utilizing the excellent disease resistance genes in Aegilops tauschii are of great value for
wheat disease resistance breeding.

2. The Relationship between Aegilops tauschii and Wheat

Aegilops tauschii (DD, 2n = 14), which originates from West Asia, is mainly distributed
in the Middle East, Europe, West Asia, and other places [12,13]. In China, Aegilops tauschii
is mainly distributed in Xinjiang and the Yellow River Basin (including Shaanxi and Henan
Provinces) [14,15]. There are two main lines of introducing Aegilops tauschii into the Yellow
River Basin of China: first, Middle East→Russia→Xinjiang, China→Yellow River Basin
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into China; second, it was directly imported from the Middle East via the ancient Silk Road
without passing through Xinjiang [16] (Figure 1a,b). As the donor of the D genome of
wheat, Aegilops tauschii has a wider distribution area and higher genetic diversity than
common hexaploid wheat. The addition of the D genome makes hexaploid wheat more
adaptable to continental climates, which has laid a solid foundation for the large-scale
cultivation of wheat [17].
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Wheat originated in the fertile crescent of the Middle East. The first domesticated wild
wheat was Triticum monococcum, followed by cultivated emmer wheat (Triticum turgidum);
finally, the common wheat (Triticum aestivum) was formed through natural hybridization
between cultivated emmer wheat and Aegilops tauschii along the Caspian Sea coast [18]. As
for how wheat evolved from diploid wheat to the present allohexaploid wheat, there are
two theories: one is formation by direct homoploid hybridization. Marcussen et al. found
that approximately 6.5 million years ago, the wheat lineage (Triticum and Aegilops) began to
differentiate from a common ancestor into the A and B genome lineages. About 5.5 million
years ago, the first hybridization occurred between the A and B genome lineages and led
to the origin of the D genome lineage. Furthermore, the second hybridization between
the A genome donor Triticum urartu (AA) and a related species (BB) of Aegilops speltodies
occurred approximately 0.8 million years ago, resulting in allotetraploid emmer wheat
(Triticum turgidum; AABB), which then acclimated to cultivated tetraploid wheat, being
crossed again with the D genome donor Aegilops tauschii (DD) about 0.4 million years ago
to form hexaploid wheat; finally, it was acclimated to Triticum aestivum (AABBDD) [19].
In addition, Li et al. re-evaluated the homoploid hybrid origin of Aegilops tauschii. Based
on the whole chloroplast genome sequence, they analyzed the neighbor joining tree of the
Triticum–Aegilops complex and found that the chloroplast topology reveals that Aegilops
tauschii is cladistically nested between the A and remaining S * and M genomes. They gave
two possible explanations, i.e., the chloroplast capture model and the ancestry capture
model. Therefore, they clearly pointed to a more complex history of Aegilops tauschii than
that proposed by Marcussen et al. [19], one that may have involved multiple rounds of both
recent and ancient hybridizations [20]. Then, Aegilops tauschii hybridized with tetraploid
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wheat to form hexaploid wheat. According to Alison et al., wheat was introduced into
China in at least two ways. The first is that wheat came from the northwest of West Asia,
moving through Eurasia, southern Siberia, and Mongolia to the middle and lower reaches
of the Yellow River; the second is that wheat came from West Asia, potentially moving
through the Afghanistan or Central Asian oases and northern Xinjiang into China’s Yellow
River Basin, rather than the Eurasian steppe [21] (Figure 1c,d). China is the secondary
origin center of wheat, mainly including three wheat subspecies: Yunnan wheat (Triticum
aestivum ssp. yunnanense King), Tibet semi-wild wheat (Triticum aestivum ssp. tibetanum
Shao), and Xinjiang wheat (Triticum aestivum ssp. Petropavlovsk yi) [22].

Since the domestication of wheat, yield improvement has always been the focus of
wheat research. By improving cultivation measures and breeding techniques, the yield
per unit area of wheat has been greatly increased [23–32]. Among them, enhancing wheat
disease resistance has always been an important part of improving wheat yield. Aegilops
tauschii contains abundant beneficial genes for disease resistance, insect resistance, cold
resistance, and high quality, which is of great significance for improving wheat yield.

By analyzing the relationship between the two species, it has been proved that Aegilops
tauschii is an important germplasm resource of wheat. During the long-term evolution
process of wheat, the genetic diversity of the D genome has gradually narrowed, resulting
in few available genetic resources. However, as the donor of the D genome of wheat,
Aegilops tauschii carries abundant excellent genes, and the genetic material between them
can be exchanged and recombined, which provides a valuable genetic resource pool for
wheat breeding. Since both of these wheat species originated in West Asia, we can further
enrich wheat germplasm resources by exploring wild wheat and Aegilops tauschii from
West Asia.

3. The Research Progress of Aegilops tauschii

At present, the research on Aegilops tauschii mainly includes the construction of the
Aegilops tauschii gene map, the utilization of distant wheat germplasm resources, and the
control of malignant weeds in crop fields.

(1) Construction of Aegilops tauschii gene map: Jia et al. [33] used AL8/78 as the
research material to construct the Aegilops tauschii gene map and sequenced the entire
genome of AL8/78 with Illumina high-throughput sequencing technology to obtain the
whole genome sketch of Aegilops tauschii. Luo et al. [34] sequenced the BAC library of
AL8/78 using the snapshot method, developed an SNP chip, and constructed a physical
map containing 7185 markers, which laid the foundation for the analysis of Aegilops tauschii.
Luo et al. [35] generated a reference-quality genome sequence for Aegilops tauschii strange-
lata accession AL8/78 by using ordered clone genome sequencing, whole-genome shotgun
sequencing, and BioNano optical genome mapping, which is closely related to the wheat D
genome. Zhao et al. [36] used new sequencing assembly technology to assemble AL8/78
and obtain new genomic data. Previous studies on the construction of the Aegilops tauschii
gene map, on the one hand, provided data support for fragment location and cloning
of Aegilops tauschii itself; on the other hand, they provided technical support for genetic
improvement of wheat breeding and made important contributions to the research and
utilization of Aegilops tauschii resources.

(2) Utilization of distant wheat germplasm resources: Previous studies on the germplasm
resources of Aegilops tauschii mainly focused on the exploration and utilization of disease
resistance genes, insect resistance genes, high-yield genes, etc. The development of disease
resistance genes is the focus of wheat germplasm resources. There is a lot of research in this
area. The second part of this paper mainly introduces the research in this area in detail. At
present, there are eight permanently named cereal cyst nematode resistance genes, namely,
Cre1–Cre8, and only two genes, Cre3 and Cre4, were derived from Aegilops tauschii [37,38].
Later, Lage et al. [39] found a gene resistant to wheat aphids on the genome of Aegilops
tauschii. In the study of high-yield genes, Wan et al. [40] found a major QTL for leaf sheath
hairiness (LSH) on Aegilops tauschii 4DS, and the allele of this QTL locus was significantly



Plants 2023, 12, 880 4 of 19

positively correlated with the increase in grain yield, grain weight, and grain weight per
spike. Delorean et al. [41] sequenced 273 accessions spanning the known diversity of Aegilops
tauschii. They found that Aegilops tauschii is a reservoir for unique Glu-D1 alleles and provides
a genomic resource for improving wheat quality.

(3) Control of malignant weeds in crop fields: In the current production, the herbicide
mesosulfuron–methyl is mainly used to control Aegilops tauschii in wheat fields, and it is
often used in combination with the safener mefenpyr–diethyl [42]. However, Yuan et al. [43]
found that the tolerance of Aegilops tauschii to mesosulfuron–methyl was significantly
increased in the presence of mefenpyr–diethyl by performing a bioassay, and they proposed
that seed dressing with mefenpyr–diethyl could replace spraying to improve the resistance
of wheat to mesosulfuron–methyl and enhance the control effect on Aegilops tauschii.

4. Discovery of Disease Resistance Genes from Aegilops tauschii

As an important resource of wheat resistance genes, Aegilops tauschii provides stripe
rust resistance genes, leaf rust resistance genes, powdery mildew resistance genes, brown
spot resistance genes, etc.

4.1. Discovery of Rust Resistance Genes from Aegilops tauschii

Rust is one of the main diseases of wheat, including three types: stripe rust, leaf rust,
and stem rust [44].

4.1.1. Discovery of Stripe Rust Resistance Genes from Aegilops tauschii

Wheat stripe rust is a common disease of wheat, caused by Puccinia striiformis f. sp.
tritici (Pst), which is characterized by a high prevalence and frequency, a wide incidence
range, and serious damage [45]. It is estimated that the annual loss of wheat production
caused by stripe rust worldwide is over 5 million tons, with an estimated market value of
USD 1 billion [46]. On the one hand, the pathogen of stripe rust invades wheat and absorbs
wheat nutrients and water, affecting plant growth; on the other hand, it causes a reduction in
the wheat leaf area, affecting photosynthesis, and reducing wheat yield. Using wheat stripe
rust resistance genes to control wheat stripe rust is the most effective and environmentally
friendly way to counter this disease [47]. At present, there are 84 permanently named stripe
rust resistance genes in wheat, namely, Yr1–Yr84, and only 8 genes, Yr5, Yr7, Yr15, Yr18,
Yr27, Yr28, Yr36, and Yr46, have been cloned [17,48–54]. Among them, only the Yr28 gene
is derived from Aegilops tauschii (Table 1).

Yr28 was first discovered and named by Singh et al. [55], and it was located on the
short arm of the 4D chromosome and had resistance to multiple stripe rust races, showing
all-stage resistance (ASR) in Aegilops tauschii. Liu et al. [56] and Huang et al. [57] found
the dominant stripe rust resistance gene YrAS2388 in Aegilops tauschii and located it on
chromosome 4DS. In 2013, Liu et al. [58] found the existence of YrAS2388 in the subspecies
Aegilops tauschii subsp. Strangulata near the Caspian Sea. In 2019, Zhang et al. [17] cloned
the YrAs2388 gene using traditional map-based cloning technology, confirmed that the
YrAs2388 gene is the internationally named Yr28 gene, and introduced this gene into
hexaploid wheat using synthetic wheat. Yr28 encodes a typical NBS-LRR structural protein
(NLR4DS-1). Compared with the susceptible haplotype of Yr28, the resistant haplotype has
two repeated 3′ untranslated regions (3′UTR1 and 3′UTR2), and there are five transcript
variants in the domain of the gene (two alternative splicing variants are associated with
3’UTR1, and the other three alternative splicing variants are associated with 3’UTR2), which
makes Aegilops tauschii and synthetic wheat containing the Yr28 gene resistant to stripe rust,
but Yr28 only shows adult plant resistance (APR) in synthetic wheat. Athiyannan et al. [59]
found a full-growth period resistance gene, YrAet672, from Aegilops tauschii CPI110672
and successfully cloned it through map-based cloning. It was proved that the gene was
identical to the coding region sequence of YrAS2388, only being different in the 5’UTR and
3’UTR regions, and was an allele of YrAS2388 and Yr28. The study also found that the
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hexaploid wheat genome can inhibit the expression of YrAet672, where there may be some
modification or inhibition of the gene.

4.1.2. Discovery of Leaf Rust Resistance Gene from Aegilops tauschii

Wheat leaf rust is a fungal disease caused by Puccinia triticina (Pt), which has the
characteristics of multiple infection and strong harmfulness [60]. When wheat is infected
with leaf rust, the yield decreases by 5–15%, and the yield loss even reaches 40% in pandemic
years [61]. Wheat leaf rust fungus mainly affects the normal growth and development of
wheat by infecting wheat leaves, especially photosynthesis, and then affects grain filling,
resulting in a reduction in the 1000-grain weight [62]. Up to now, 82 wheat leaf rust
resistance genes have been identified, namely, Lr1–Lr82 [63,64], although only seven genes,
Lr1, Lr10, Lr13, Lr21, Lr22a, Lr34, Lr42, and Lr67, have been cloned [65,66]. At present,
the leaf rust resistance genes from Aegilops tauschii include Lr21, Lr22a, Lr32, Lr39, and
Lr42 [67–71] (Table 1).

The Lr21 gene was found in synthetic wheat RL5406 by Rowland and Kerber in 1974
and is located on chromosome 1DS. The gene was derived from Aegilops tauschii on the coast
of the Caspian Sea [67] and is an all-stage resistance gene. In 2003, Li and Gill found that
RGA-like could be used to mark all known members of the Lr21 leaf rust resistance gene
family in Aegilops tauschii and wheat, and the Lr21 gene was successfully cloned using the
diploid/polyploid shuttle localization strategy [72,73]. Scofield et al. [74] analyzed the resis-
tance mechanism of Lr21 using virus-induced gene silencing and found that Lr21 encodes a
leucine-rich repeat resistance gene product at the nucleotide binding site, which may con-
tribute to wheat resistance. To further elucidate the origin of the Lr21 gene, Huang et al. [75]
identified and analyzed three basic non-functional Lr21 haplotypes, H1, H2, and H3, by
analyzing the Lr21 and Lr21 allele sequences of 24 wheat cultivars and 25 Aegilops tauschii
and found that Lr21 is a chimera of H1 and H2 in wheat. The next year, Fu et al. [76]
re-sequenced the wheat leaf rust resistance locus Lr21 of 95 wheat varieties released in
Canada, revealed 13 SNPs, 4 insertions and deletions, 10 haplotypes, and 4 major haplotype
groups, and developed a new SCAR marker to identify resistant haplotypes and haplotype
groups. In North America, Kolmer and Anderson found that the physiological races TFBJQ
and TFBGQ were toxic to wheat varieties containing Lr21 [77]. Kumari et al. [78] developed
a KASPar marker for the Lr21 gene and tested it on 384 American wheat lines, finding that
the marker could effectively distinguish resistant and susceptible genotypes and could be
applied to molecular-marker-assisted breeding of disease-resistant wheat varieties through
gene pyramiding. Naz et al. [79] studied the evolution and functional differentiation of Lr21
in diploid and hexaploid wheat by using population genetics and high-resolution compara-
tive genomics and found that there were at least two independent polyploidization events
in wheat evolution. At the same time, a unique Lr21-tbk allele and its neofunctionalization
were discovered in hexaploid wheat, and the seedling resistance and adult plant resistance
were related to the development-dependent variation in Lr21 expression, which helps us to
further understand the evolution of Lr21 and its role in broad-spectrum resistance to leaf
rust in wheat.

Lr22a was discovered by Dyck and Kerber in synthetic wheat derived from common
wheat and Aegilops tauschii and mapped on chromosome 2DS [68]. Pretorius found that
in adult-plant-resistant wheat line RL6044, Lr22a was not expressed at the seedling stage
but at the adult stage, indicating that Lr22a endowed this line with adult plant resistance
(APR) [80]. The next year, Pretorius found that Lr22a was a partially recessive monogenic
inheritance [81]. In order to select varieties containing the Lr22a gene among different
wheat lines, Hiebert et al. [82] found that a GWM marker is close to Lr22a and could be
used as a microsatellite marker of the Lr22a gene, and it is useful under different genetic
background conditions. Based on TACCA (targeted chromosome-based cloning via long-
range assembly), Thind et al. [83] cloned the broad-spectrum leaf rust resistance gene
Lr22a using molecular marker information and ethyl methane sulfonate (EMS) mutants
and found that Lr22a encodes an intracellular immune receptor homologous to the RPM1
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protein of Arabidopsis thaliana. Although Lr22a has broad-spectrum resistance and has been
successfully cloned, it has not been widely used in production. Sharma et al. [84] identified
and isolated SNPs using the Lr22a coding sequence and developed four competitive allele-
specific polymerase chain reaction (KASP) markers, which can reliably detect the presence
or absence of Lr22a and will contribute to the application of Lr22a in breeding.

Lr32 is a whole-growth period resistance gene, which was first discovered by Ker-
ber et al. and later located on the 3DS chromosome. Thomas found that the Lr32 gene has
two simple sequence repeat (SSR) loci, wmc43 and barc135, which can be used as superpo-
sition markers between Lr32 and other widely effective leaf rust resistance genes [69,85,86].

Lr39 was first discovered by Pretorius and located on 2DS by Raupp through mi-
crosatellite marker analysis, and it is a full-growth stage disease resistance gene [70,87].
Li et al. [88] revealed 36 differentially expressed genes (DEGs) for wheat leaf rust resistance
mediated by Lr39/41 through suppression subtractive hybridization and microarray analy-
sis and quantitatively analyzed the expression levels of eight selected DEGs at different
stages of Lr39/41-mediated resistance.

Lr42 is a partially dominant gene, which was discovered and reported by Cox et al.
together with the Lr41 and Lr43 genes; Sun et al. located it on chromosome 1DS [71,89].
Harsimardeep et al. [90] found that Lr42 was dominant in Aegilops tauschii, fine-mapped the
gene to the 3.16 Mb genomic region on chromosome 1DS of Chinese Spring and the 3.5 Mb
genomic region on chromosome 1 of the Aegilops tauschii reference genome, and developed
two co-dominant allele-specific polymorphism (KASP) markers (SNP113325 and TC387992)
on the flanking region of Lr42 for assisted breeding selection. Liu et al. [91] identified
the sequence polymorphism of the differentially expressed gene (TaRPM1) encoding the
hypothetical NB-ARC protein in the Lr42 candidate region through RNA sequencing of the
Lr42 allelic variation near-isogenic line and developed a diagnostic DNA marker for Lr42.
The marker is designed based on deletion mutations and single-nucleotide polymorphisms
(SNPs) in the gene and has the advantages of a low cost and easy determination. In 2022,
Lin et al. identified three candidate genes of Lr42 using the batch-isolated RNA-Seq (BSR-
Seq) mapping strategy. Among them, the gene AET1Gv20040300 has obvious sequence
differences in disease-resistant and susceptible varieties. The down-regulation of the Lr42
gene caused by virus-induced gene silencing (VIGS) and the mutation of the Lr42 C700Y
amino acid caused by mutagenesis were carried out on this gene. It was found that both
caused the loss of resistance of the Aegilops tauschii line TA2450, and the candidate gene
AET1Gv20040300 was finally determined as Lr42 and successfully cloned [92].

4.1.3. Discovery of Stem Rust Resistance Genes from Aegilops tauschii

Wheat stem rust, caused by Puccinia graminis Pers. f. sp. tritici, is one of the most
devastating fungal diseases in wheat production. The disease can lead to wheat production
reductions of up to 75%, and some areas even experience no production [93]. Stem rust
mainly destroys the tissues of wheat stems and leaves. Its spores can penetrate the leaves,
invade the host from the stomata, reduce the photosynthetic area of the host, destroy the
guiding tissues of the stems, and hinder nutrient transport [94]. At present, 62 wheat
stem rust resistance genes have been officially named, namely, Sr1–Sr62 [95–98], of which
Sr13, Sr21, Sr22, Sr33, Sr35, Sr45, Sr46, Sr50, and Sr62 have been cloned [98–105]. At
present, there are three genes, Sr33, Sr45, and Sr46, found to be resistant to stem rust in
Aegilops tauschii [106–108] (Table 1). Furthermore, some stem rust resistance genes are still
under investigation and not formally named, such as the SrTA10187 and SrTA10171 genes
located on chromosomes 6DS and 7DS, respectively [109]. Wiersma et al. finely mapped
SrTA10187 to the 1.1cM region and developed PCR-based SNP and STS markers using
genotyping-by-sequencing tags and SNP sequences available in online databases [110].

Sr33 is an adult plant resistance gene; Kerber and Dyck first discovered it, and then
Jones et al. located it on the 1DS chromosome arm of wheat through the double-terminal
and normal chromosome 1D recombination substitution line. This gene is derived from
Aegilops tauschii [111,112]. Han et al. discovered the co-dominant markers Xbarc152 and
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Xcfd15, located on both sides of Sr33 [113]. Sambasivam successfully cloned Sr33 and found
that it encodes a coiled-coil, nucleotide-binding, leucine-rich repeat protein, which is closely
related to its ability to confer stem rust resistance in wheat [100]. Through bioinformatics
analysis, Ivaschuk et al. found that sequences S5DMA6 and E9P785 were the closest
homologues of the Sr33 gene product RGA1e protein [114]. Md Hatta et al. found that Sr33
functions not only in wheat but also in barley to resist stem rust [115].

Sr45 comes from Aegilops tauschii; it was discovered by Marais et al. and is closely
linked to Sr33 and localized on chromosome 1DS [116]. It is an adult plant disease resistance
gene [117]. Therefore, to develop a marker for the identification of Sr45 in the tight linkage
of centromere-Sr45-Sr33-Lr21-telomere, Periyannan et al. fine-mapped the Sr45 region
in a large mapping population generated by the hybridization of CS1D5406 (the disomic
substitution line on chromosome 1D of RL5406 replaced Chinese Spring 1D) with Chinese
Spring and amplified a fragment linked to Sr45 using an AFLP marker sequence to mark
Sr45-carrying haplotypes [107]. Steuernagel used MutRenSeq technology to clone the
stem rust resistance gene Sr45 by combining chemical mutagenesis with exon capture
and sequencing [102]. Md Hatta et al. found that Sr45, like Sr33, could confer stem rust
resistance in both wheat and barley [115].

Sr46 was discovered by Evans but not published in relevant papers; however, it
was then included in the “Catalogue of Gene Symbols for Wheat” by McIntosh [108,117].
Yu et al. located Sr46 on 2DS. The gene is significantly affected by temperature and is
an adult plant resistance gene. In the meantime, Yu et al. found that two closely linked
markers, Xgwm210 and Xwmc111, could be used for marker-assisted selection of Sr46 in
wheat breeding [108]. Arora et al. combined association genetics with R gene enrichment
sequencing (AgRenSeq) to successfully clone the stem rust resistance gene Sr46 [105].
Aegilops tauschii germplasms RL5271 and CPI110672 were resistant to wheat stem rust.
Athiyannan et al. identified RL5271 and found that SrRL5271 was the dominant resistance
gene in RL5271, while CPI110672 resistance was separated in Sr672.1 and Sr672.2. They
also found that SrRL5271 and Sr672.1 have the same sequence and are the alleles of Sr46,
except that an amino acid sequence (N763K) is different from Sr46, although the other
amino acid sequences are identical [118].

4.2. Discovery of Powdery Mildew Resistance Genes from Aegilops tauschii

Wheat powdery mildew is a widespread wheat disease in the world, which is caused
by Blumeria graminis f. sp. Tritici (Bgt). The yield reduction caused by powdery mildew
accounts for about 5% of the yield reduction caused by wheat pests and diseases, which
seriously affects the yield improvement and quality improvement of wheat [119]. Wheat
powdery mildew is a type of living parasitic fungus. When conidia make contact with
living tissues such as the leaves and stems of wheat, they will be immersed in host cells
to form white flocculent small mildew spots, which weakens plant photosynthesis and
enhances transpiration and respiration, resulting in reduced plant dry matter accumulation
and reduced yield [120]. Thus far, a total of 68 wheat powdery mildew resistance genes
have been officially named, namely, Pm1–Pm68, and Pm1a, Pm2, Pm3b, Pm4, Pm5e, Pm8,
Pm17, Pm21, Pm24, Pm38, Pm41, Pm46, and Pm60 have been cloned [49,50,121–131]. Mean-
while, researchers have found 140 QTLs for powdery mildew resistance, distributed in
21 chromosomes of wheat, among which 4 QTLs have been confirmed and widely used
in some regions or units [132]. Thus far, the powdery mildew resistance genes discov-
ered and officially named from Aegilops tauschii include Pm2a, Pm19, Pm34, Pm35, and
Pm58 [133–137] (Table 1).

Pm2a, a powdery mildew resistance gene, was discovered by Pugsley and Carter in
1953 and later officially named Pm2, with whole-growth resistance [133,138]. In 1970, re-
searchers found that Pm2a was located near the centromere of wheat chromosome 5DS [139].
Lutz et al. [140] obtained 40 materials containing the Pm2 gene from 400 Aegilops tauschii
materials. Sáchez-Martín et al. [123] cloned the wheat powdery mildew resistance gene
Pm2a using the MutChromSeq (mutant chromosome sequencing) strategy. Since powdery
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mildew and disease resistance genes are consistent with the gene-for-gene hypothesis, there
are corresponding avirulence genes in the pathogen, which react with disease resistance
genes to stimulate a wheat disease resistance response [141]. Praz et al. [142] cloned the
avirulence gene BgtE-5845 corresponding to Pm2 by combining genetic mapping and associ-
ation analysis, namely AvrPm2, and speculated that AvrPm2 may have dual functions: first,
it has the function of recognizing and stimulating the host immune response with Pm2 in
incompatible interactions; second, it participates in the formation of haustoria in the affinity
interaction and inhibits the function of the host cell defense response. Manser et al. [143]
further studied AvrPm2 and found two other haplotypes of AvrPm2, AVRPM2-H1 and
AVRPM2-H2, in powdery mildew strains USA7 and USA2, and only AVRPM2-H1 could be
specifically recognized by Pm2a.

Pm19 is a new powdery mildew resistance gene discovered by Lutz et al. [134] in their
progeny by crossing two powdery mildew resistance wheat lines with susceptible durum
wheat, and it is located on chromosome 7D.

Pm34 was discovered by Miranda et al. [135] using the F (2) derivative line of NC97BGTD7
×Saluda, and it is a new wheat powdery mildew resistance gene; the authors then marked
the gene on the long arm of chromosome 5D with microsatellite markers and officially named
it Pm34.

Pm35 is a single gene controlling powdery mildew resistance identified by
Miranda et al. [136] through genetic analysis of the F (2) derivative line of NCD3×Saluda.
Miranda then located the gene on chromosome 5DL with microsatellite markers, and the
gene was independent from Pm34, being officially named Pm35.

Pm58 was derived from Aegilops tauschii TA1662 near the Caspian Sea. Wiersma et al.
used 96 BC2F4 introgression lines to position Pm58 within an interval of 8.6 Mb on chromo-
some 2DS and obtained two high-generation lines carrying the Pm58 gene and excellent
agronomic traits the following year [137,144]. These two lines are highly resistant to pow-
dery mildew, but the yield is lower than that of common wheat. In 2022, Xue et al. [145]
fine-mapped the Pm58 gene into a 141.3 Kb Xsts20220-Xkasp61553 region and developed
a co-segregated KASP marker, Xkasp68500, that could be used for Pm58-assisted selec-
tion breeding.

4.3. Discovery of Other Disease Resistance Genes from Aegilops tauschii

Besides stripe rust resistance genes, leaf rust resistance genes, and powdery mildew
resistance genes, Aegilops tauschii also contains septoria tritici blotch resistance genes and
brown spot resistance genes. Stb5 is a septoria tritici blotch resistance gene, which was
discovered by Arraiano et al. in Synthetic 6x (derived from a hybrid of Triticum dicoccoides
and Triticum tauschii) and located on the 7D short arm, endowing the plant with resistance
at the whole-growth stage [146,147] (Table 1). Tsr3, a brown spot resistance gene, from
tetraploid wheat and Aegilops tauschii synthetic wheat lines (CS/XX41, CS/XX45, and
CS/XX110) was identified by Tadesse et al. (Table 1). The Tsr3 gene is a recessive gene.
Tadesse et al. used SSR markers to carry out linkage analysis and found that Tsn3a of XX41,
Tsn3b of XX45, and Tsn3c of XX110 were clustered near Xgwm2a, located on the short arm of
chromosome 3D [148].
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Table 1. Officially named disease resistance genes in Aegilops tauschii.

Classification Gene Types Chromosome Cloned Reference

stripe rust resistance genes Yr28 ASR 4DS Yes [55]

leaf rust resistance genes

Lr21 ASR 1DS Yes [67]
Lr22a APR 2DS Yes [68]
Lr32 ASR 3DS No [69]
Lr39 ASR 2DS No [70]
Lr42 ASR 1DS Yes [71]

stem rust resistance genes
Sr33 ASR 1DS Yes [111]
Sr45 APR 1DS Yes [116]
Sr46 APR 2DS Yes [108]

powdery mildew resistance genes

Pm2a ASR 5DS Yes [133]
Pm19 ND 7D No [134]
Pm34 ND 5DL No [135]
Pm35 ND 5DL No [136]
Pm58 ND 2DS No [137]

septoria tritici blotch resistance genes Stb5 ASR 7DS No [146]

brown spot resistance genes Tsr3 ND 3D No [148]
ND: not detected; ASR: all-stage resistance; APR: adult plant resistance.

5. Application of Disease-Resistant Genes from Aegilops tauschii in Wheat Breeding

The utilization of disease resistance genes in Aegilops tauschii is of great significance for
expanding wheat disease resistance. Synthetic hexaploid wheat (SHW) is an artificially cre-
ated hexaploid wheat that can simultaneously introduce genetic variations from tetraploid
wheat and Aegilops tauschii, and it has been widely used to expand the genetic diversity
of common wheat [149]. The method mainly includes two main steps: First, a hybrid F1
with an ABD genome is produced by direct hybridization of tetraploid wheat with Aegilops
tauschii, and then a synthetic hexaploid wheat with an AABBDD genome is obtained
through chromosome doubling [149]. Second, the genetic variation in Aegilops tauschii and
tetraploid wheat is introduced into common wheat varieties by using the artificial synthetic
hexaploid wheat as a bridge and common wheat as a backcross or topcross [107].

5.1. Application of Rust Resistance Genes from Aegilops tauschii in Wheat Breeding
5.1.1. Application of Stripe Rust Resistance Genes from Aegilops tauschii in Wheat Breeding

Yr28 is the first stripe rust resistance gene cloned from Aegilops tauschii. Through map-
based cloning results, previous researchers designed resistance co-segregation molecular
markers, conducted auxiliary selection, and bred a new variety, Shumai 1675 [17]. The
main cultivation processes were as follows: (1) introducing disease resistance genes into
synthetic hexaploid wheat; (2) establishing a breeding population; (3) F2 small group mixed
selection; (4) F3 small population for molecular marker selection to prevent target gene loss;
(5) F5 line focused on the selection of yield-related traits, and molecular marker selection of
disease resistance genes [150]. After the above processes, the yield of F5 and its selected
line Shumai 1675 increased significantly and showed stripe rust resistance.

5.1.2. Application of Leaf Rust Resistance Genes from Aegilops tauschii in Wheat Breeding

Lr21 is the first powdery mildew resistance gene found and successfully cloned
from Aegilops tauschii. Thus far, the application of the Lr21 gene in wheat breeding is
low. Mebrate et al. [151] used 31 Pt races to detect 36 wheat cultivars from Ethiopia and
Germany and found that Sirbo and Granny contained Lr21. Gebrewahid et al. [152]
identified 83 wheat varieties and 36 lines with known leaf rust resistance (Lr) genes
from three provinces in China. There were 41 cultivars containing leaf rust resistance
(Lr) genes, but only Wanmai 47 contained Lr21. Khakimova et al. [153] studied 36 syn-
thetic hexaploid wheat varieties from Russia and identified 11 materials containing Lr21.
Zhang et al. [154] identified and analyzed 46 Chinese landraces and found that only Baihe-
shang contained Lr21.
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Lr22a has broad-spectrum resistance to wheat leaf rust, but it has not been widely used
in production due to differences in varieties from different regions. Khakimova et al. [153]
studied 36 synthetic hexaploid wheat varieties from Russia and found that three of them
contained Lr22a. Huang et al. identified and analyzed 36 wheat production varieties in
Gansu Province and found that the varieties Huining 15, Lantian 37, and Longjian 113
showed resistance to all Lr22a non-toxic races, indicating that these three materials may
contain Lr22a [155]. However, Atia et al. [156] identified and analyzed 50 wheat varieties in
Egypt and successfully identified 21 Lr genes, and all wheat varieties contained Lr22a.

Although Lr32 has not been cloned successfully, it was found that the disease-resistant
wheat varieties contained this gene in actual production identification. Zhao et al. identified
23 Chinese wheat microcore collections, and the five core germplasms of Tongjiaba wheat,
Honghua wheat, Kefeng 3, Atlas66, and Golden wheat contained the Lr32 gene [157].
Hanaa et al. [158] identified leaf rust resistance in 10 Egyptian spring wheat varieties at the
seedling stage and found that Sids12 and Sakha93 contained Lr32. Bahar et al. [159] used
SSR markers of 13 resistance genes to identify 57 wheat lines and found that all 57 lines
contained Lr32. Atia et al. [156] identified and analyzed 50 wheat varieties in Egypt and
successfully identified 21 Lr genes, and all wheat varieties contained Lr32.

Lr39 is a powdery mildew resistance gene of wheat at the seedling stage, and it
has certain development value [160]. Hanaa et al. [158] identified leaf rust resistance in
10 Egyptian spring wheat varieties at the seedling stage and found that Miser1 and Miser2
contained Lr39. Atia et al. [156] identified and analyzed 50 wheat varieties in Egypt and
successfully identified 21 Lr genes, and 42 wheat varieties contained Lr39. Wang et al.
identified the leaf rust resistance of 71 important wheat production varieties in Henan
Province and found that four cultivars contained Lr39 [161].

As early as 1991, Lr42 was transferred from Aegilops tauschii to common wheat through
hybridization by the Wheat Germplasm Resources Center (WGRC) of Kansas State Uni-
versity in the United States, and the KS91WGRC11 wheat line was developed [162]. Sub-
sequently, the International Maize and Wheat Improvement Center (CIMMYT) widely
applied the disease resistance genes in this line to breeding materials. Through the iden-
tification and analysis of 103 wheat varieties (lines) of CIMMYT and 35 control varieties
containing known leaf rust resistance genes, Han et al. found that 11 CIMMYT wheat
varieties may contain Lr42 [163]. Liu et al. tested 66 wheat varieties approved by Qinghai
Province and found that 23 varieties contained Lr42, accounting for 34.85% [164]. Among
52,943 CIMMYT lines or varieties sequenced by GBS, 5121 pedigrees contained Lr42 [92].

5.1.3. Application of Stem Rust Resistance Genes from Aegilops tauschii in Wheat Breeding

Sr33 is an important gene for resistance to the physiological race Ug99 of stem rust,
and its wide application is of great significance to reduce the harm of stem rust. Ma et al.
conducted SSR detection on 58 spring wheat varieties resistant to Ug99 introduced at home
and abroad and 18 main wheat varieties in Heilongjiang Province and found that only
one spring wheat variety material resistant to Ug99 and three main wheat varieties in
Heilongjiang Province contained the Sr33 gene [165].

Periyannan et al. [107] found that Sr45 was effective against Puccinia graminis f. sp.
tritici races prevalent in small populations in Australia and South Africa and the Ug99 race
group, but the related detection was lower.

Kokhmetova and Atishova found that only the Sr46 gene existed in the 338-K1-
1//ANB/BUC/3/GS50A/4/422/5/BAYRAKTAR line when detecting 88 cultivars of
spring soft wheat in Kazakhstan [166].

5.2. Application of Powdery Mildew Resistance Genes from Aegilops tauschii in Wheat Breeding

Pm2a, as a successfully cloned gene from Aegilops tauschii, is of great significance
in wheat breeding for powdery mildew resistance. Švec et al. [167] identified the Pm2
gene in 32 Polish wheat varieties. Agnieszka et al. [168] identified seven wheat varieties
from Europe by establishing a multiplex PCR reaction and found that all wheat varieties
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contained the Pm2 gene. Jimai 22 has been approved and widely promoted in Shandong
Province and the northern part of Huanghuai; as of the summer harvest in 2020, the
cumulative promotion area was 20 million hm2. Liangxing 66 has been promoted and
planted in Shandong, central and southern Hebei, southern Shanxi, and Anyang, Henan,
to the north of the Huanghuai winter wheat region [169]. Through genetic analysis and
molecular marker detection, the above two varieties were found to carry the wheat powdery
mildew resistance gene Pm2 [170]. With the increase in the utilization frequency of Pm2
in production, the frequency of the corresponding virulent species variation is also rising,
resulting in an increasing risk of overcoming Pm2 resistance.

With the acceleration of variety replacement, the varieties containing Pm19 in actual
production have gradually increased. Li et al. [171] identified 23 white powdery mildew-
resistant materials and found that only one material contained Pm19. According to the
identification results, Pm19 was considered to have low resistance and should be used in
combination with other resistance genes. Shi et al. [172] identified 61 reserve varieties of
powdery mildew in China and found that 21 wheat varieties contained powdery mildew
resistance genes, and four of them contained Pm19.

Although Pm34 has not been cloned, it has been identified to contain this gene in
wheat in actual production. Li et al. [173] identified 42 Yunnan wheat varieties using
20 wheat powdery mildew strains with different toxicity profiles and found that four
varieties contained Pm34. Wang et al. [174] analyzed 305 wheat germplasm resources at
home and abroad and found that 95 wheat varieties contained Pm34, accounting for 31.15%,
including Lumai 5, Yanzhan 4110, Fengsheng 3, Jimai 22, CA9719, and Azulon.

El-Shamy et al. [175] used 12 Egyptian wheat varieties to identify the virulence of
52 powdery mildew strains and found that wheat varieties containing the Pm35 gene had
higher disease resistance. However, in actual production, there are few wheat varieties
containing Pm35. Through toxicity monitoring and annual dynamic change analysis of
wheat powdery mildew populations in Shaanxi Province, China, Liu et al. found that NCD3
wheat varieties containing Pm35 had higher disease resistance [176]. Yan et al. identified
371 wheat materials from Hebei Province and found that only Pubing 01 contained the
Pm35 gene [177].

Due to the late discovery and cloning of Pm58, only the germplasm lines U6714-A-011
(Reg.No.GP-1023, PI682090) and U6714-B-056 (Reg.No.GP-1022, PI 682089) of the new pow-
dery mildew resistance gene Pm58 cultivated by Michigan State University using TA1662
and KS05HW14 are currently available, but the wheat yields of these two germplasm lines
need to be improved [144].

5.3. Application of Other Disease-Resistant Genes from Aegilops tauschii in Wheat Breeding

Because the genetic research on wheat septoria tritici blotch resistance genes are
relatively slow, Stb5, as the only localized gene of wheat septoria tritici blotch in Aegilops
tauschii, has not been widely studied and utilized in production [178].

Tsr3 is one of the four genes for wheat brown spot disease resistance officially mapped
in Aegilops tauschii [179]. The research on Tsr3 is less than that on wheat resistance to wheat
septoria tritici blotch, and relevant production research reports have not been found yet.

6. Expectations

With the completion of the wheat gene map construction, breeders, on the one hand,
have stepped up their research on the genes of common wheat itself; on the other hand, they
have also excavated and utilized wheat-related plants. Aegilops tauschii, as a relative plant
of wheat and an ancestor species of the wheat D genome, has a wider genetic diversity than
that of the wheat D genome. Compared with the wheat A and B genomes, the D genome
has the lowest degree of excavation. At present, the gene map of Aegilops tauschii has been
basically constructed, and a reference-quality genome sequence for Aegilops tauschii has
been available since 2017. It is of great significance to supplement wheat’s genetic resources
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and improve its genetic diversity by fully excavating and utilizing the disease resistance
genes in it.

According to previous studies, we found that there is still a huge gap from the success-
ful gene mapping or cloning of genes in Aegilops tauschii to the application of genes to actual
production. The utilization of wheat disease resistance genes in Aegilops tauschii should
be promoted from the following aspects: (1) Intensify the excavation of wheat disease
resistance genes in Aegilops tauschii. Through the previous studies on stripe rust, leaf rust,
and stem rust, it is found that there are still few disease resistance genes discovered in
Aegilops tauschii. Understanding how to explore more disease resistance genes from Aegilops
tauschii will still be a key topic for a long time in the future. We should innovate the research
methods of gene discovery and accelerate the discovery of excellent resistance genes in
Aegilops tauschii through association map analysis, map-based cloning, MutChromSeq, long
reads, CRISPRs, and other modern methods. (2) Clone the discovered wheat resistance
genes. It can be seen from the previous description that although many wheat disease resis-
tance genes have been discovered and mapped in Aegilops tauschii, there are still few genes
successfully cloned, and the disease resistance mechanism still needs to be further studied.
Because the traditional map-based cloning technology is very time-consuming and entails
a huge, laborious workload, and because it often takes many years to successfully clone
genes, understanding how to clone disease-resistant genes quickly and efficiently is still a
difficult challenge for the future. (3) Accelerate the application of cloned genes in wheat
resistance breeding production. Previous studies have shown that only a few of the cloned
disease resistance genes in Aegilops tauschii have been successfully applied to breeding
production, while the most widely used disease resistance genes in actual production are
still the first few genes cloned. With the large-scale application of single disease-resistant
genes and the continuous emergence of new pathogenic races, many production varieties
will rapidly lose disease resistance after several years of planting. In production, polygene
polymerization breeding should be adopted to broaden the variety of disease resistance
genes and reduce the loss of disease resistance genes as much as possible. Moreover, there
may be genetic encumbrance among the resistance genes. Therefore, understanding how
to successfully break this genetic encumbrance, speed up the transfer of cloned genes into
the wheat genome, and cultivate new disease-resistant lines is still the top priority in the
application of disease resistance genes from Aegilops tauschii in wheat breeding.
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