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Abstract: Essential oil (EO)-based nanoemulsions (NEs) are promising grain protectants in the
management of stored-product pests. However, the potential impact of the stored-grain species
on the green insecticide effectiveness has been poorly studied. In this study, two concentrations of
EO-based NEs from Carlina acaulis L., Mentha longifolia (L.) Huds., and Hazomalania voyronii (Jum.)
Capuron were evaluated as insecticides against the major stored-product pest Sitophilus oryzae (L.) on
barley, oats, and maize kernels. The C. acaulis EO-based NE applied at 1000 ppm on barley achieved
the highest mortality, killing 94.4% of S. oryzae adults after a 7-day exposure, followed by 1000 ppm
of H. voyronii EO-based NE (83.3%). The lowest mortality (1.1%) was recorded with 500 ppm of M.
longifolia EO-based NE on maize after the same interval. All tested NEs exhibited elevated efficacy
when applied on barley, while mortalities were lower on oats and maize. Furthermore, C. acaulis
EO-based NE was the most effective when applied on all commodities, followed by H. voyronii and M.
longifolia EO-based NEs. Overall, our results highlighted the significant impact of the stored cereal on
the insecticidal effectiveness of EO-based NE used for stored-product pest control. Sitophilus oryzae
adults on barley can be adequately controlled through the application of C. acaulis and H. voyronii
EO-based NEs.

Keywords: barley; grain protectant; green insecticide; maize; nanopesticide; oats; stored-product
pest control

1. Introduction

Essential oils (EOs) are complex mixtures of volatile, lipophilic substances, often char-
acterized by a strong odor, and showing interesting bioactivities against viruses, bacteria,
fungi, and arthropod pests and vectors, among others [1–4]. Therefore, their application on
stored-product pest management constitutes a potential alternative to the overuse of syn-
thetic insecticides [3–5]. To enhance the properties of plant EOs, they can be encapsulated
into nanoemulsions (NEs), i.e., dispersions of oil nanodroplets in water that are kinetically
stable thanks to the presence of surfactants (surfactant-to-oil ratio generally between 1 and
2) [6]. NEs are more easily dispersible in water than pure EOs; therefore, they can interact
with greater ease than the EOs with the target sites [6,7].

Sitophilus oryzae (L.) is a primary pest globally, attacking many types of stored grains,
as well as pulses and nuts [8,9]. It is a small destructive beetle species (2.5–4 mm), causing
great economic damages worldwide, especially in warm climate regions [8,10,11]. Despite S.
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oryzae being a key insect in storages, the currently used synthetic insecticides face resistance
and tolerance issues concerning its effective management [4,12–14].

Concerning the pesticidal potential of EOs against S. oryzae, many plant species have
been tested previously mainly as contact insecticides on filter paper or as fumigants [15–21].
For example, Mentha spicata L., Mentha rotundifolia (L.) Huds., and Mentha longifolia (L.)
Huds. EOs have been tested on filter paper, killing 95% of S. oryzae after 18 h exposure [17].
Furthermore, Melaleuca rhaphiophylla Schauer EO was more effective against S. oryzae as
a fumigant than by contact [21]. Of note, only a few studies focus on the utilization of
EOs as grain protectants against S. oryzae adults. For instance, 100% mortality of S. oryzae
adults was recorded after exposing them for 6 days to Carlina acaulis L. EO-treated stored
wheat [4]. When EOs from Pinus roxburghii Sarg., Psidium guajava L., and Haplophyllum
tuberculatum (Forsk.) Ad. Juss. were applied on wheat, they killed all exposed beetles
after 14 days of exposure [22]. Studies including EO-based NEs for the management of S.
oryzae adults are even more scarce. Adak et al. [23] documented that the eucalyptus EO
provided lower mortality rates if compared to its NE applied on concrete. Choupanian
et al. [24] reported that the NE of Azadirachta indica A. Juss killed more S. oryzae adults than
the EO when applied on filter paper. Recently, Choupanian and Omar [25] pointed out the
insecticidal efficacy of A. indica EO-based NE on wheat and rice.

However, despite these efforts, little is known about potential variations in the EO-
based NE insecticidal efficacy when distributed on different stored cereals. To tackle this
research challenge, herein we selected three EOs with proven insecticidal activity, formu-
lating them in NEs, and assessing their effectiveness against S. oryzae when distributed
on barley, oats, and maize grains. Carlina acaulis is a perennial species typically found
on warm and calcareous mountainous areas of Central and Southern Europe [26]. It is a
thoroughly documented medicinal herb and has been used in traditional medicine for its di-
uretic, cholagogic, anti-inflammatory, antibiotic, and laxative functions [27,28]. It is a quite
common ingredient for culinary uses across its distributional areas [27,29]. Parts of this
plant can be consumed raw, cooked, or as decoction [27,29]. Its root EO has been reported
as highly effective against important groups of pests, including beetles, houseflies, moths,
and mosquitoes [4,30–35]. Mentha longifolia is a widespread wild perennial herb, native to
temperate regions across Eurasia and Africa [36,37]. It is a pungent scented plant, with erect
stems and spiked multi-flowered inflorescences [38], which is extensively consumed for its
medicinal properties, as well as a spice and an infusion in culinary practices [39–42]. Its EO
has antioxidant, anti-inflammatory, antispasmodic, analgesic, and anticancer activities from
a human healthcare point of view [43]. Earlier research has documented its antiparasitic,
antimicrobial, and insecticidal properties [44,45]. For example, M. longifolia EO has elevated
insecticidal activities against Tribolium castaneum (Herbst) and Callosobruchus maculatus (F.),
when applied on filter paper [44]. Hazomalania voyronii (Jum.) Capuron is an endemic plant
species of Western Madagascar located in dry forests [46]. The bark of this plant has been
used in local Malagasy folk medicine to treat wounds and infections [47]. A bark was
being used in conjunction with chloroquine by local people in western Madagascar to treat
malaria, since the extract of H. voyronii has potent anti-plasmodial properties [48]. More-
over, the major compound of the species, i.e., perilla aldehyde, is used in food industry [49].
Its EOs and NEs are effective against insect vectors, agricultural pests, and stored product
beetles [46,49].

Although the EO-based NEs of M. longifolia, C. acaulis, and H. voyronii have been
assessed on grains for managing pests attacking stored products [49–51], there are no
data available for their efficacy when applied on various types of cereals against S. oryzae.
Therefore, the objective of this research was to evaluate the insecticidal effectiveness of
M. longifolia, C. acaulis, and H. voyronii EO-based NEs against adults of S. oryzae when
formulated on barley, oats, and maize kernels.
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2. Results

Carlina acaulis, M. longifolia, and H. voyronii EOs yields, as well as their chemical
compositions, were in line with those of Kavallieratos et al. [52]. Specifically, the poly-
acetylene carlina oxide (94.6%) was the main compound of the C. acaulis EO, followed by a
minor percentage of benzaldehyde (3.1%). Mentha longifolia EO was mainly composed of
piperitenone oxide (61.1%), and minor percentages of myrcene (10.8%), 1,8-cineole (5.3%),
and limonene (5.3%). Perilla aldehyde (43.0%) was the dominant compound of H. voyronii
EO, followed by 1,8-cineole (33.2%) and limonene (13.0%).

The three tested NEs were prepared according to the procedure and the quantita-
tive composition of the formulation previously optimized in terms of encapsulated EO
and polysorbate 80 (as emulsifier) ratios [49–51]. Particle size, expressed as the mean
hydrodynamic diameter (Z-average), and particle size distribution, expressed as polydis-
persity index (PDI) of the disperse oil droplets, were 53.51 ± 1.10 nm, 0.382 ± 0.004 for
H. voyronii EO-based NE; 102.26 ± 12.4 nm, 0.342 ± 0.036 for C. acaulis EO-based NE; and
142.46 ± 1.11 nm, 0.269 ± 0.012 for M. longifolia EO-based NE. Values are in accordance
with those previously reported [52].

Concerning insecticidal assays, exposures (between, within), all main effects and the
corresponding interactions were significant (Table 1). When the insecticides were applied on
barley, 1000 ppm of C. acaulis and H. voyronii EO-based NEs, as well as pirimiphos-methyl
killed 61.1, 44.4, and 53.3% of the exposed individuals, 5 days post-exposure, respectively
(Table 2). At the termination of the bioassays, 1000 ppm of C. acaulis EO-based NE led to the
highest value of mortality (94.4%), followed by pirimiphos-methyl (88.9%) and 1000 ppm
of H. voyronii EO-based NE (83.3%). The lowest mortality was noticed testing 500 ppm of
M. longifolia EO-based NE, which did not exceed 22.2% at the end of the experimentation.
The remaining insecticides, i.e., 500 ppm of C. acaulis and H. voyronii EO-based NEs and
1000 ppm of M. longifolia EO-based NE, killed 35.6–46.7% in the same exposure.

Table 1. MANOVA parameters for the main effects and associated interactions leading to the observed
mortality rates of Sitophilus oryzae adults between and within exposure intervals (error DF = 168).

Between Exposure Intervals DF F p

Intercept 1 1499.5 <0.01
Insecticide 6 67.5 <0.01

Grain 2 149.3 <0.01
Insecticide x grain 12 5.6 <0.01

Within exposure intervals
Exposure 9 303.0 <0.01

Exposure x insecticide 54 7.0 <0.01
Exposure x grain 18 20.1 <0.01

Exposure x insecticide x grain 108 2.5 <0.01

The tested insecticides applied on oats, provided lower mortality rates in comparison
to those distributed on barley (Table 3). On the fourth day of the trials, pirimiphos-methyl
caused death to 30.0% of S. oryzae while all the other tested insecticides killed 1.1–6.7%
of the individuals. Pirimiphos-methyl caused 76.7% mortality, followed by 1000 ppm C.
acaulis EO-based NE (43.3%) and 1000 ppm H. voyronii EO-based NE (27.8%), after 7 days
of exposure. The other tested insecticides caused the death of 11.1 (500 ppm H. voyronii
EO-based NE)-20.0% (1000 ppm M. longifolia EO-based NE) of S. oryzae adults, at the
termination of the trials.

Concerning maize, the tested insecticides exhibited the lowest efficacy among the
other tested grain commodities (Table 4). The highest mortality was recorded after the
exposure for 7 days at pirimiphos-methyl treated maize, reaching 57.8%. Only 1000 ppm C.
acaulis EO-based NE were able to kill 17.8% of the exposed S. oryzae, while the remaining
five insecticides did not exceed 7.8% mortality 7 days post-exposure. The lowest mortality
was observed for M. longifolia EO-based NE, not exceeding 1.1 and 3.3% at the termination
of the bioassays, for 500 ppm and 1000 ppm, respectively.
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Table 2. Mean (%) mortality ± standard error (SE) of Sitophilus oryzae adults after 4 h, 8 h, 16 h, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, and 7 days in
barley treated with 6% (w/w) Carlina acaulis, 10% (w/w) Mentha longifolia, and 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsions at two different
concentrations. Pirimiphos-methyl was the positive control.

Tested Product 4 h 8 h 16 h 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days F p

C. acaulis NE 500 ppm 0.0 ± 0.0 D 0.0 ± 0.0 D 0.0 ± 0.0 D 0.0 ± 0.0 Db 0.0 ± 0.0 Dc 5.6 ± 1.8 Cb 8.9 ± 2.0 Cbc 16.7 ± 1.7 Bb 28.9 ± 2.0 ABbc 45.6 ± 1.8 Abc 72.9 <0.01

C. acaulis NE 1000 ppm 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 Eb 6.7 ± 1.7 Dab 23.3 ± 2.9 Ca 33.3 ± 4.1
BCa 61.1 ± 4.6 ABa 80.0 ± 2.9 Aa 94.4 ± 1.8 Aa 206.5 <0.01

M. longifolia NE 500 ppm 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 0.0 ± 0.0 Bc 0.0 ± 0.0 Bc 2.2 ± 1.5 Bd 4.4 ± 1.8 Bc 15.6 ± 3.4 Ad 22.2 ± 5.2 Ad 17.1 <0.01
M. longifolia NE 1000 ppm 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0 Cb 0.0 ± 0.0 Cc 0.0 ± 0.0 Cc 2.2 ± 1.5 Cd 12.2 ± 1.5 Bb 22.2 ± 4.9 ABcd 35.6 ± 4.4 Ac 110.7 <0.01
H. voyronii NE 500 ppm 0.0 ± 0.0 D 0.0 ± 0.0 D 0.0 ± 0.0 D 0.0 ± 0.0 Db 0.0 ± 0.0 Dc 0.0 ± 0.0 Dc 8.9 ± 3.1 Ccd 20.0 ± 3.3 Bb 25.6 ± 3.8 ABbcd 46.7 ± 5.0 Abc 80.6 <0.01

H. voyronii NE 1000 ppm 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 E 3.3 ± 1.7
DEab 5.6 ± 1.8 Db 20.0 ± 2.9 Ca 27.8 ± 4.7

BCab 44.4 ± 3.4 ABCa 56.7 ± 3.3 ABab 83.3 ± 3.3 Aab 81.1 <0.01

Pirimiphos-methyl 0.0 ± 0.0 F 0.0 ± 0.0 F 0.0 ± 0.0 F 4.4 ± 1.8 Ea 14.4 ± 2.9 Da 25.6 ±3.4
CDa

34.4 ± 3.8
BCa 53.3 ± 5.0 ABCa 72.2 ± 6.0 ABa 88.9 ± 3.9 Aab 100.0 <0.01

F - - - 4.4 16.2 69.8 17.6 32.7 13.6 15.7
p - - - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Within each row, means followed by the same uppercase letter are not significantly different (DF = 9, 89; Tukey’s HSD test at p = 0.05). Within each column, means followed by the same
lowercase letter are not significantly different (DF = 6, 62; Tukey’s HSD test at p = 0.05). Where dashes exist, no analysis was conducted.

Table 3. Mean (%) mortality ± standard error (SE) of Sitophilus oryzae adults after 4 h, 8 h, 16 h, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, and 7 days in oats treated
with 6% (w/w) Carlina acaulis, 10% (w/w) Mentha longifolia, and 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsions at two different concentrations.
Pirimiphos-methyl was the positive control.

Tested Product 4 h 8 h 16 h 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days F p

C. acaulis NE 500 ppm 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 2.2 ± 1.5 Bb 3.3 ± 1.7 Bb 13.3 ± 2.4 Ab 18.9 ± 2.0 Abc 41.1 <0.01
C. acaulis NE 1000 ppm 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 1.1 ± 1.1 B 1.1 ± 1.1 Bb 3.3 ± 1.7 Bb 3.3 ± 1.7 Bb 3.3 ± 1.7 Bb 21.1 ± 2.6 Aab 43.3 ± 5.8 Aab 26.7 <0.01

M. longifolia NE 500 ppm 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 1.1 ± 1.1 Bb 3.3 ± 2.4 Bb 11.1 ± 3.1 Abc 14.4 ± 3.4 Ac 16.6 <0.01
M. longifolia NE 1000 ppm 0.0 ± 0.0 C 0.0 ± 0.0 C 1.1 ± 1.1 C 2.2 ± 2.2 C 3.3 ± 2.4 BCb 3.3 ± 2.4 BCb 6.7 ± 2.9

ABCb
10.0 ± 3.7 ABCb 16.7 ± 5.0 ABbc 20.0 ± 5.5 Ac 6.5 <0.01

H. voyronii NE 500 ppm 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0 Cb 0.0 ± 0.0 Cb 1.1 ± 1.1 BCb 2.2 ± 2.2 BCb 5.6 ± 2.4 Bc 11.1 ± 2.0 Ac 11.6 <0.01
H. voyronii NE 1000 ppm 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 Eb 2.2 ± 1.5 DEb 5.6 ± 1.8

CDb
7.8 ± 2.2 BCb 16.7 ± 2.4 ABb 27.8 ± 3.6 Abc 25.0 <0.01

Pirimiphos-methyl 0.0 ± 0.0 E 0.0 ± 0.0 E 0.0 ± 0.0 E 4.4 ± 2.4 DE 10.0 ± 2.9
CDa

22.2 ± 4.0
BCa

30.0 ± 4.4
ABa

50.0 ± 4.1 ABa 62.2 ± 5.2 Aa 76.7 ± 3.7 Aa 54.9 <0.01

F - - 1.0 2.0 7.0 12.1 9.3 9.9 7.8 9.8
p - - 0.44 0.09 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Within each row, means followed by the same uppercase letter are not significantly different (DF = 9, 89; Tukey’s HSD test at p = 0.05). Within each column, means followed by the same
lowercase letter are not significantly different (DF = 6, 62; Tukey’s HSD test at p = 0.05). Where no letters exist, no significant differences were recorded. Where dashes exist, no analysis
was conducted.
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Table 4. Mean (%) mortality ± standard error (SE) of Sitophilus oryzae adults after 4 h, 8 h, 16 h, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, and 7 days in
maize treated with 6% (w/w) Carlina acaulis, 10% (w/w) Mentha longifolia, and 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsions at two different
concentrations. Pirimiphos-methyl was the positive control.

Tested Product 4 h 8 h 16 h 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days 7 Days F p

C. acaulis NE 500 ppm 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0 C 0.0 ± 0.0C 0.0 ± 0.0 Cb 0.0 ± 0.0 Cb 0.0 ± 0.0 Cb 2.2 ± 1.5 BCb 5.6 ± 1.8 ABbc 7.8 ± 1.5 Abc 10.8 <0.01
C. acaulis NE 1000 ppm 0.0 ± 0.0 B 0.0 ± 0.0B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 2.2 ± 1.5 Bb 2.2 ± 1.5 Bb 8.9 ± 2.6 Ab 17.8 ± 4.0 Aab 14.4 <0.01

M. longifolia NE 500 ppm 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0 b 0.0 ± 0.0b 0.0 ± 0.0c 1.1 ± 1.1d 1.0 0.45
M. longifolia NE 1000 ppm 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 b 0.0 ± 0.0b 0.0 ± 0.0 b 0.0 ± 0.0 b 1.1 ± 1.1 c 3.3 ± 2.4 cd 1.7 0.10
H. voyronii NE 500 ppm 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 2.2 ± 1.5 ABbc 4.4 ± 2.4 Acd 3.0 <0.01

H. voyronii NE 1000 ppm 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 0.0 ± 0.0 Bb 2.2 ± 1.5 ABb 3.3 ± 2.4 ABb 5.6 ± 2.4 ABbc 6.7 ± 2.4 Abcd 4.1 <0.01
Pirimiphos-methyl 0.0 ± 0.0 D 0.0 ± 0.0 D 0.0 ± 0.0 D 0.0 ± 0.0 D 7.8 ± 2.8 Ca 11.1 ± 3.5 Ca 14.4 ± 4.8

BCa
27.8 ± 4.0 ABa 41.1 ± 4.6 Aa 57.8 ± 3.2 Aa 34.3 <0.01

F - - - - 9.7 15.0 7.3 22.0 13.6 13.7
p - - - - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Within each row, means followed by the same uppercase letter are not significantly different (DF = 9, 89; Tukey’s HSD test at p = 0.05). Within each column, means followed by the same
lowercase letter are not significantly different (DF = 6, 62; Tukey’s HSD test at p = 0.05). Where no letters exist, no significant differences were recorded. Where dashes exist, no analysis
was conducted.
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3. Discussion

Our results pointed out the high efficacy of C. acaulis EO-based NE distributed at
1000 ppm on barley against S. oryzae adults. Currently, this pest has developed resistance to
several synthetic insecticides used as grain protectants, fumigants, or contact insecticides,
i.e., chlorpyrifos-methyl, cypermethrin, spinosad, permethrin, phosphine, malathion, and
pirimiphos-methyl [53–55]. For instance, a geographical strain of S. oryzae from Rostov was
2.5-fold more phosphine resistant than the laboratory strain to achieve 99.9% mortality [54].
Furthermore, earlier research has indicated that this species is hard to manage using
alternative, eco-friendly insecticides. For example, plant powders from nine plant species,
applied on wheat, provided 0.0–40.0% mortality after a 7-day exposure [56]. Furthermore,
bay leaf, custard apple, neem, and tobacco leaf powders, as well as citronella EOs applied
on wheat, maize, and paddy rice, killed 0.0–25.0% of S. oryzae, 7 days post-exposure [57].
Five plant extracts applied on wheat exhibited low to moderate mortalities, ranging from
20.00 to 56.66% after 7 days of exposure [58]. In this scenario, the insecticidal activity caused
by 1000 ppm of C. acaulis EO-based NE (94.4%) and 1000 ppm of H. voyronii EO-based
NE (83.3%) represent an important outcome in the framework of finding a sustainable
insecticidal tool for managing this species.

The EO-based NEs tested here have been used against several stored-product pest
species as wheat protectants, leading to significant mortalities. As a general trend, it
should be noted that all these insecticides exhibited variable efficacy depending on their
concentration as well as the target species/developmental stage [49–51]. For example,
500 ppm of M. longifolia EO-based NE killed 24.4% of Acarus siro L. adults, a significantly
lower killing percentage than 1000 ppm which caused the death to 82.2% individuals,
7 days post-exposure [51]. Furthermore, 1000 ppm of H. voyronii EO-based NE killed
100% of Tenebrio molitor L. adults but only 10.3% of the larvae [49]. Carlina acaulis and M.
longifolia EO-based NEs did not provide total (100%) mortality on T. molitor adults, but
85.2 and 91.1%, respectively [50,51]. The differences in the NEs’ efficacy could be linked
to the different EOs encapsulated and, consequently, to their diverse modes of action.
Firstly, C. acaulis EO, which already demonstrated its great potential on a wide spectrum
of stored-product pests [35], was mainly characterized by the presence of carlina oxide
(94.6% of the total composition). The mode of action of this polyacetylene is still obscure.
However, this class of compounds is characterized by high instability and reactivity, linked
to the presence of C-C triple bonds. In detail, these molecules are particularly sensitive
to variations of pH and are subjected to fast oxidation when exposed to UV light [59].
Regarding this feature, these compounds are considered photosensitizers since they are
activated by sunlight wavelengths smaller than 400 nm with a consequent enhancement
of their toxicity also achieved by photodynamic disruption of membranes [60,61]. This
mechanism of action has been proposed also for carlina oxide, whose C-C triple bond seems
to lead to the formation of radicals after UV-light exposure [62]. Furthermore, M. longifolia
EO was characterized by the presence of piperitenone oxide and myrcene (61.1 and 10.8%
respectively). Piperitenone oxide, which is a monoterpenoid bearing an epoxide group,
is a characterizing component of different Mentha L. EOs and already displayed a strong
action on stored-product pests [51,63], but also on mosquitoes as Anopheles stephensi Liston,
on which it had reproduction retardant, repellent, and toxic effects [64]. The biological
activities of piperitenone oxide have been linked to the epoxide moiety, which is responsible
for the interaction with neurotransmitters, proteins, and nucleic acids [65]. In addition,
myrcene has also been reported as active against some stored-products pests [66], and its
mode of action seems to be linked to a neurotoxic effect [67]. Lastly, H. voyronii EO was
mainly constituted by limonene (13.0%), 1,8-cineole (33.2%), and perilla aldehyde (43.0%).
Perilla aldehyde showed contact and fumigant toxicities [68], which are linked to its
acetylcholinesterase (AChE) inhibitory activity, already reported also on S. oryzae [69]. The
action of perilla aldehyde could be enhanced by 1,8-cineole, whose toxic action on stored-
product pests has already been reported as probably linked to the AChE inhibition [70,71].
Regarding limonene, this compound seems to act through a neurotoxic action [67].
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Interestingly, 1000 ppm of C. acaulis EO killed all S. oryzae in a 6-days period [4]. Given
that the C. acaulis EO-based NE used in the current study contained 6% (w/w) C. acaulis
EO, the actual concentration of the EO contained into the NE was ~17 times lower than
into the C. acaulis EO. This is one other important finding since such a small amount of EO
could almost suppress S. oryzae adults on barley. Concerning M. longifolia, when the EO
was applied on wheat, it killed more T. molitor, Tribolium castaneum (Herbst), Oryzaephilus
surinamensis (L.), Tribolium confusum Jacquelin du Val, and A. siro individuals than its
EO-based NE, but it should be noted that the EO concentration in the NE was 10 times
lower [51].

The grain species plays a key role when it is directly treated with insecticides, but to
the best of our knowledge, no records are available about EO-NE. Earlier research has doc-
umented this phenomenon for different insecticides and stored-product pests. For example,
Kavallieratos et al. [72] tested spinosad, deltamethrin, silicoSec, and pirimiphos-methyl,
against T. molitor adults and larvae on maize, barley, and wheat. All tested insecticides pro-
vided higher mortalities on barley, followed by wheat and maize. Similarly, when spinosad,
pirimiphos-methyl, cypermethrin, silicoSec, and deltamethrin were applied on rough rice,
maize, wheat, and barley against Trogoderma granarium Everts adults and larvae [73], they
provided variable mortalities. Arthur [74] found that methoprene treated on brown and
rough rice could significantly reduce the number of Sitotroga cerealella (Olivier) progeny,
contrary to methoprene treated on maize. Treated wheat killed more individuals, followed
by barley, maize, and rough rice, for both developmental stages. Concerning S. oryzae,
etofenprox treated on barley provided the highest mortality in comparison with maize,
wheat, whole rice, and oats [75]. The grain texture may be responsible for this variation of
results. Stored-product insects, such as Rhyzopertha dominica (F.), face difficulties walking
on smooth surfaces [76]. The fact that maize is considerably smoother than other types of
grains [77] could partially explain the lower mortalities of S. oryzae on maize vs. barley or
oats, since insects may not walk so easily, reducing the probability of their contact with
the insecticide. Furthermore, grains may exhibit different insecticide-adherence capabil-
ity [78]. For example, triticale, maize, peeled barley, whole barley, rye, wheat, rice, and oats
could adhere variably diatomaceous earths (DEs) [79]. Maize had the lowest adherence
ability (<10%), while whole barley and oat had relatively high adherence ability (~85% and
~78%, respectively), and subsequently resulted in higher mortality rates if compared to the
maize [80]. Whether the efficacy of the tested EO-based NEs is linked with their adherence
and/or the level of ability of insects to walk on kernels merits further investigation.

4. Materials and Methods
4.1. Encapsulation of Essential Oils into Nanoemulsions

Carlina acaulis, M. longifolia, and H. voyronii EOs employed in the formulations were
obtained and characterized as in the previous study of Kavallieratos et al. [52]. They were
encapsulated into NEs using high-pressure homogenization method (French pressure cell
press; American Instrument Company, Silver Spring, MY, USA). Their compositions were:
(i) 6% (w/w) C. acaulis, 4% (w/w) polysorbate 80, 90% (w/w) water; (ii) 10% (w/w) M.
longifolia, 2% (w/w) ethyl oleate, 3% (w/w) polysorbate 80, 85% (w/w) water; (iii) 6% (w/w)
H. voyronii, 4% (w/w) polysorbate 80, 90% (w/w) water. The NEs were prepared and
characterized as reported in the literature [49–51].

4.2. Insect Species

A Greek strain of S. oryzae was cultured on whole wheat grains at 30 ◦C and 65%
relative humidity (RH), without the presence of a light source [80,81]. Unsexed S. oryzae
adults, not older than two weeks, were tested [80,81].

4.3. Grains

Maize, Zea mays L. (var. Dias), barley, Hordeum vulgare L. (var. Persephone), and
oats, Avena sativa L. (var. Cassandra), kernels were free from impurities, infestations
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and pesticides. Their moisture content was adjusted at 13.5% (by heating or adding
distilled water) via a calibrated moisture meter (mini GAC plus, Dickey-John Europe S.A.S.,
Colombes, France), prior to trials [72].

4.4. Bioassays

The tested concentrations of M. longifolia (10% w/w), C. acaulis (6% w/w), and H.
voyronii EO-based NEs (6% w/w) were selected prior the experiments at 500 µL/kg grains
(=500 ppm) and 1000 µL/kg grains (=1000 ppm), through preliminary tests. A total 750 µL
volume of insecticides was formed by mixing 125 µL of NE with 625 µL of water (for
500 ppm) and 250 µL of NE with 500 µL of water (for 1000 ppm). To conduct the spraying,
thin layers of barley, oats, or maize (0.25 kg), were laid on disks, and, subsequently, each of
the insecticides were applied with a unique BD-134K airbrush (Fengda, UK). Concerning
controls, extra grain lots treated with (i) water, (ii) carrier control 1 (4% w/w surfactant
dispersed in water), (iii) carrier control 2 (water 97% and polysorbate 80 3%), (iv) carrier
control 3 (water 95%, ethyl oleate 2%, and polysorbate 80 3%), and (v) positive control
i.e., pirimiphos-methyl, at the label dose of 5 µL/kg grains (=5 ppm) (label dose) (Actellic
EC, containing 50% active ingredient (a.i.), Syngenta, Anthousa, Greece), were treated on
different grain lots, on separate disks with unique BD-134K airbrushes for each control
formulation. Afterwards, treated grain lots were transferred separately on 1-L containers
made of glass for 10 min of handshaking to disperse the insecticides/controls further
evenly onto the entire grain mass. Filter papers were utilized to weigh three samples
(10 g each) with a compact balance (Precisa XB3200D, Alpha Analytical Instruments,
Gerakas, Greece). The samples were conveyed into glass vials (7.5 cm diameter × 12.5 cm
height), with hole-bearing caps (1.5 cm diameter). The holes were cloth-covered and
enabled the aeration of their spaces. The top internal sides of the vials were polished by
polytetrafluoroethylene (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) to stop
beetles leaving the vials. Thereupon, 10 beetles were transferred into the vials containing
the grains. Incubators set at 30 ◦C and 65% RH held the prepared vials for the whole period
of the experiment. Data of mortality were noted daily after 4, 8, and 16 h for a period of
a week. Inspection was conducted under a stereomicroscope (Olympus SZX9, Bacacos
S.A., Athens, Greece) with a brush that lightly nudged the insect individuals. Upon no
movement, the beetle was declared dead. Each insecticide and control had its unique
brush to avoid cross contamination. All above-reported procedures were repeated again
twice using new grains, vials, and insect individuals. The total number of the participated
individuals was 2.970 (10 individuals × 3 replicates × 3 subreplicates × 3 types of grain ×
11 insecticides/controls).

4.5. Data Analysis

Negative controls (water and carrier controls) provided <5% mortalities; therefore, no
corrections were applied to mortality data. For variance normalization, data were log (x + 1)
transformed before analysis [82,83]. Repeated measures model was used in the analysis [84].
Mortality corresponded to response variable. Grain and insecticide corresponded to main
effects. Associated interactions of grain and tested insecticide were included into the
analysis. The JMP 16.2 software was utilized to conduct the entire analysis [85]. Means
were separated at 0.05 level of significance by the Tukey–Kramer honestly significant
difference test [86].

5. Conclusions

In conclusion, this work firstly shed light on the insecticidal efficacy of EO-based NEs
when distributed on different stored grains. The C. acaulis EO-based NE was highly effective
against S. oryzae adults, but only when applied on barley. Its efficacy was correlated to
the presence of the polyacetylene carlina oxide. This is a promising insecticide owing to
its likely capacity to give rise to radical species producing damages in the insect tissues,
especially under the UV light. Hazomalania voyronii EO-based NE distributed on barley
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could adequately control S. oryzae, while mortality on oats and maize was low to moderate.
Its insecticidal effects are linked with the presence of perilla aldehyde, 1,8-cineole, and
limonene, that, taken together, might produce neurotoxic effects. In general, M. longifolia
EO-based NE provided lower mortality rates when distributed on all types of grains, if
compared to the other tested EO-based NEs. Although this EO was characterized by the
neurotoxic piperitenone oxide, it is likely that its activity could be weakened by the presence
of other harmless components. The NE effectiveness rate from the most to the least effective
insecticides was C. acaulis > H. voyronii > M. longifolia. The three types of grains tested
here are classified from an effectiveness point of view against S. oryzae as follows: barley >
oats > maize (from the highest to the lowest documented mortalities). Although EO-based
NEs represent an effective pest management tool against some noxious arthropods, further
research is still needed to understand how to enhance their pesticidal properties on a wide
spectrum of stored foodstuffs, to unravel their full potential against key stored-product
pests. It should be noted that the application of NE on grains leaves no residues on the
final product due to standard milling procedure of the raw commodities [87]. Last, but
not least, the toxicological profile of natural substances needs additional research efforts.
Interestingly, C. acaulis EO is safe to non-target mammals [88].
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