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Abstract: The severity of salt stress is alarming for crop growth and production and it threatens food
security. Strategies employed for the reduction in stress are not always eco-friendly or sustainable.
Plant-growth-promoting rhizobacteria (PGPR) could provide an alternative sustainable stress re-
duction strategy owning to its role in various metabolic processes. In this study, we have used two
strains of PGPR, Pseudomonas fluorescens (NAIMCC-B-00340) and Azotobacter chroococcum Beijerinck
1901 (MCC 2351), either singly or in combination, and studied their effect in the amelioration of salt
toxicity in mustard cultivar Pusa Jagannath via its influence on plants’ antioxidants’ metabolism,
photosynthesis and growth. Individually, the impact of Pseudomonas fluorescens was better in reducing
stress ethylene, oxidative stress, photosynthesis and growth but maximal alleviation was observed
with their combined application. MDA and H2O2 content as indicator of oxidative stress decreased
by 27.86% and 45.18% and osmolytes content (proline and glycine-betaine) increased by 38.8% and
26.3%, respectively, while antioxidative enzymes (SOD, CAT, APX and GR) increased by 58.40, 25.65,
81.081 and 55.914%, respectively, over salt-treated plants through the application of Pseudomonas
fluorescens. The combined application maximally resulted in more cell viability and less damage to the
leaf with lesser superoxide generation due to higher antioxidative enzymes and reduced glutathione
formation (GSH). Considering the obtained results, we can supplement the PGPR in combination to
plants subjected to salt stress, prevent photosynthetic and growth reduction, and increase the yield
of plants.

Keywords: bioactive compounds; ethylene; oxidative stress; reduced glutathione

1. Introduction

Any type of environmental factor that hampers plant growth and development can be
considered an abiotic stress. Salinity stress is one of the prime abiotic stresses that causes
huge productivity loss every year [1]. It affects around 954 million ha of land, which is
approximately 25–30% worldwide land and about half of the total arable land irrigated
globally [2].

The impact of salinity on plant growth is primarily through hyper-osmotic conditions;
as stress progresses, the plant faces ion toxicity. This ionic and osmotic imbalance impairs
plant growth and development [3,4], causing destructive effects on the morphological,
physiological, and biochemical parameters of plants [5]. Wilting, necrosis, chlorosis, poor
root and shoot growth, and eventually patchy and stunted plant growth are morphological
changes that occur when plants are exposed to saline conditions [6]. Photosynthetic machin-
ery inhibition, changes in transpiration and gaseous exchange via decreasing chlorophyll
and carotenoids concentration, modifying chloroplast ultrastructure and PSII system, low-
ering stomatal conductance, increased Na+ transport and decreased K+ transport causing
ion toxicity are some of the physiological and biochemical impacts on plants exposed to
saline conditions [7]. High salinity causes excessive generation of reactive oxygen species
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(ROS), which are either partially reduced (such as superoxide radicals, hydrogen perox-
ide, and hydroxyl radicals) or excited (such as singlet oxygen) forms that cause oxidative
modifications such as lipid peroxidation, protein oxidation and nucleic acid damage [8].
To resist cytosolic ROS toxicity, plants require an effective antioxidant defence mechanism
(enzymatic and non-enzymatic antioxidants) that increases plant tolerance [9–11]. Strategic
improvement of the antioxidant metabolism together with other stress busters, which
include osmolytes and various secondary metabolites, could provide an effective method
for salt tolerance. Major studies focus on the use of the plant growth regulators (PGRs)
treatment, 24-epibrassinolide [12] or abscisic acid (ABA) analogs [13], improvement of
mineral fertilization [14], and modification of gene expression [15,16] for plant salt toler-
ance. However, incorporating beneficial microbes, such as arbuscular mycorrhizal fungi or
plant growth-promoting rhizobacteria (PGPR), to improve stress resistance is a trending
concept [17] that is more eco-friendly and sustainable.

PGPR are bacteria that colonise the roots surrounding the rhizosphere, enhancing plant
growth and development through a variety of different mechanisms. These PGPR stimulate
the release of osmolytes such as proline, choline, trehalose, and increase nutrients’ avail-
ability through nitrogen fixation [18], phosphorous and potassium solubilisation [19,20]
and iron sequestration [21]. Moreover, PGPR induce root growth and nutrient uptake
by releasing phytohormones and secondary metabolites into the rhizosphere [22], and
increase bacterial 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity in the
rhizosphere by reducing ACC levels and ethylene in plant tissues [23–25].

Mustard (Brassica juncea) is an annual herb [26] occupying third place among the
various oilseed species due to its considerable economic and nutritional value. Glucosi-
nolates, flavonoids, anthocyanins, ß-carotene, and ascorbic acid are some of the bioactive
compounds that contribute to its nutritional value [27]. Not only the leaves, but its seeds are
also rich in protein, carbohydrates, dietary fibre, fats as well as vitamins (C and K), several
trace minerals (Ca, Fe, Zn, Se, Cu, Mn, Mg) and electrolytes [28,29]. Maximum oilseed
production area is centered in the North–West agro-climatic zone, where the majority of
soil and groundwater sources are highly saline (1.6–17%) and have sodicity problems [30],
which reduce its growth and grain yield.

Incorporating PGPR for salt tolerance and exploring the potential mechanism involved
through the study of various physiological and biochemical parameters would provide
a new insight into the mechanistic approach. In this research, we took mustard cultivar
and exposed them to 100 mM NaCl stress. Further, these salt-stressed plants were treated
with two different strains of PGPR either singly or in combination. Among the different
PGPR that are widely reported for growth [31], we took Azotobacter, and Pseudomonas
for our experimental work. Both these PGPR are salt-tolerant and we tested their salt
tolerance before proceeding for our experiments. In addition, these salt-tolerant PGPR
were synergistic in their action and in the presence of salt, they did not inhibit each other’s
growth. The synergism was also tested before experimentation. On the basis of their
salt-tolerant and growth-promoting activity, we studied the impact of Pseudomonas and
Azotobacter either singly or in combination on salt-stressed plants. The impact of these two
PGPR under salt stress was studied on total glucosinolate content (TGC), total flavonoid
content (TFC), total phenolic content (TPC), carotenoid, osmolytes, ethylene evolution,
antioxidative enzymes and GSH content, together with photosynthesis and growth.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Mustard (Brassica juncea L. var. Pusa Jagannath VSL-5) seeds were obtained from the
Indian Agricultural Research Institute (IARI), New Delhi. Healthy seeds similar in shape
and size were surface-sterilized with 0.01% HgCl2, followed by rinsing four times with
double-distilled water. Washed seeds were sown into earthen pots containing 8 kg of soil
(alluvial sandy clay loam, sand 660 g kg−1, silt 188 g kg−1, clay 140 g kg−1, organic carbon
1.64 g kg−1, available N 0.41 g kg−1, Nitrate-N 17.21 mg kg−1, available P 0.08 g kg−1,
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available K 0.27 g kg−1, pH 7.23, soil organic carbon is 1.63 g kg−1, cation exchange capacity
is 20.1 cmol kg−1) containing 8 kg of soil during the spring season of 2021 at the herbal
garden of Jamia Hamdard, New Delhi, India (extending from 28.51344 N and 77.2475 E at
an elevation of 782 feet above sea level). According to Köppen’s classification, the climate
was humid continental (Dfb), with an average temperature of 25 ◦C and mean annual
precipitation of 990.9 mm, mostly falling from June to September. The experiment’s design
used a randomized block layout. Using the recommended basal dosages of N, P, and K for
120 kg ha−1, 80 kg ha−1, and 60 kg/ha, respectively, the soil used in pots was uniformly
blended with NPK at the time of pre-sowing and 15 days after the emergence of leaves.
Urea, potash, and single superphosphate (SSP) were used as the sources of N, P and, K.

2.2. Procurement of Bacterial Strains

Plant-growth-promoting rhizobacteria (PGPR); Pseudomonas fluorescens (NAIMCC-B-
00340) and Azotobacter chroococcum Beijerinck 1901 (accession No. MCC 2351) were obtained
from the National Bureau of Agriculturally Important Microorganisms (NBAIM) Mau, and
National Centre for Cell Science (NCCS), Pune, respectively. The selection of these strains
was based on their growth-promoting properties. A nutrient broth was used for making an
overnight culture of these strains.

2.3. Inoculation of PGPR, NaCl Treatment and Experimental Design

Healthy and sterilized seeds were dipped in two strains, Pseudomonas fluorescens,
Azotobacter chroococcum, and a combination of both strains for two hours using 1% guar
gum powder as adhesive to deliver roughly 108 cells per seed. In addition, the uninoc-
ulated seeds were just immersed in nutrient broth serving as control. The inoculated
and uninoculated seeds (25 seeds/pot) were sown in earthen pots. After the emer-
gence of leaves, salt stress (100 mM) was given with 600 mL per pot. Thereby, the
experiment comprised eight treatments with three replicates each: T1 (control, with
nutrient broth but without salt and PGPR), T2 (100 mM salt), T3 (P. fluorescens), T4
(A. chroococcum), T5 (P. fluorescens + A. chroococcum), T6 (100 mM salt + P. fluorescens), T7
(100 mM salt + A. chroococcum), and T8 (100 mM salt + P. fluorescens + A. chroococcum).

2.4. Study of Plant-Growth-Promoting Attributes of Bacterial Strains
2.4.1. Indole Acetic Acid (IAA), ACC Deaminase and Siderophore Production

Indole acetic acid production was estimated using the method of [32]. Pink colour
development indicated IAA production and measured its concentration at 530 nm. Pure
IAA (Himedia, India) was used as the standard curve (10–100 µg mL−1). ACC deami-
nase was quantified by [33] with slight modifications. Breakdown of ACC produces α

–ketobutyrate and was measured at 540 nm by comparing against the standard curve of pure
α –ketobutyrate. Siderophore production was estimated by applying the method of [34],
where chrome azurol S (CAS) agar plates were prepared and bacterial strains were spotted.
Siderophore production was confirmed by the appearance of a yellow-to-orange-coloured
halo around the bacterial growth.

2.4.2. Ammonia Production, HCN Production and Phosphate Solubilization

Ammonia production (NH3) was measured using the method described in [35]. Brown
to yellow colour development is considered a positive test for ammonia production. Pro-
duction of HCN was detected using the method established by Bakker and Schipper [36],
where King’s B Agar plates were prepared and the development of yellow colour is an
indication of Ammonia production. P-solubilisation using both the strains was determined
through the method of Pikovskaya [37] and Sindhu [38], using the spot test method on
Pikovskaya medium plates. Solubilization zone formation around the bacterial colony
indicated the presence of phosphate solubilization.
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2.5. Analysis of Morphological Parameters

Biological samples from all treatments were taken randomly at 30 days after sowing
(DAS) to measure root–shoot length, plant height, fresh and dry weight of root and shoot,
number of leaves, leaf area. The plants were uprooted gently and the root–shoot length
was measured with a metric scale and vernier calliper. The fresh weights of root and shoot
were recorded utilizing an electric analytical balance (Vibra DJ 1505/Denver Instrument,
APX 200). The samples were then kept in an oven (Scientific Systems 1.01) at 65 ◦C for 72 h
to dry out before their constant weight and dry weights were calculated using an electronic
balance (Denver Instrument, APX 200).

2.6. Biochemical Parameters
2.6.1. Determination of Photosynthetic Parameters and Soluble Protein

Chlorophyll a, b and total chlorophyll were measured in fresh leaves by adopting the
Hiscox and Israelstam [39] method and recording absorbance at 645, 663 using a UV–vis
spectrophotometer (Model 119, Systronics, India). The chlorophyll content was expressed
as mg g−1 FW.

Chlorophyll a (mg g−1 FW) = [12.7 (OD 663) − 2.69 (OD 645)] × V/1000 ×W

Chlorophyll b (mg g−1 FW) = [22.9 (OD 663) − 4.68 (OD 645)] × V/1000 ×W

Total chlorophyll (mg g−1 FW) = [20.2 (OD 645) + 8.02 (OD 663)] × V/1000 ×W

where V, volume and W, weight. The soluble protein was measured in fresh leaves using
Bradford’s method [40]. Using the bovine serum albumin (Sigma-Aldrich) as a standard
and taking the absorbance at 595 nm, the amount of soluble protein was calculated and
expressed as mg g−1 FW.

Plants’ net photosynthesis, stomatal conductance and intercellular CO2 were measured
with infrared gas analyser (IRGA, LICOR-6400XT) in proper expanded leaves under proper
bright sunlight. During the measurement, photosynthetically active radiation (PAR) was
780 µmol m−2 s−1 and atmospheric CO2 concentrations was 390 ± 5 µmol mol−1 (i.e., at
light-saturating intensity).

2.6.2. Estimation of Proline, Total Soluble Sugar and Glycinebetaine

Proline was estimated by applying the method described by Bates et al. [41]. L-proline
(Sigma Aldrich, India) was used as a standard and absorbance was taken at 520 nm and
expressed as mg g−1 FW. Details are provided in the Supplementary File. Total soluble
sugar (TSS) was estimated using Dey’s method [42]. D-Glucose (Sigma-Aldrich) was used
as a standard and absorbance was taken at 485 nm and expressed as mg g−1 FW. Details of
the method can be obtained from the Supplementary File.

Glycine betaine (GB) content was estimated using Grieve and Grattan’s [43] method
and absorbance was recorded at 365 nm.

2.6.3. Estimation of Phenol, Flavonoid, Carotenoids and Glucosinolate Content

Total phenolic content (TPC) was measured by Ainsworth and Gillespie [44] using
Folin–Ciocalteu (F-C) reagent. A standard curve was prepared by taking different con-
centrations of Gallic acid. The prepared extract was used for absorbance at 765 nm and
phenolic content was expressed as mg GAE g−1 FW.

Total flavonoid content (TFC) was estimated via aluminium trichloride complex
forming assay. A standard curve was prepared using different concentration of Rutin
(10–100 µg mL−1); absorbance was taken at 510 nm and expressed as mg rutin g−1 FW.

The Hiscox and Israelstam [39] method was used to quantify the carotenoid content
in fresh leaves. It measured absorbance at 480 and 510 nm and presented the results as
mg g−1 FW. Details of the methods can be obtained from the Supplementary File.
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Total glucosinolate content was estimated using previously published protocols with
slight modifications [45,46]. Fresh leaf samples (1 g) were weighed and macerated in 5 mL
of (70:30) methanol:water. To stop the activity of myrosinase, the extract was then heated on
a water bath for 25 min at 70 ◦C. The extract was transferred into falcon tubes followed by
centrifugation at 8000 rpm for 15 min. The collected supernatant containing total glucosi-
nolate was then evaporated to dryness at 500 ◦C in a rotavapour. To 100 µL of methanolic
extract, 0.3 mL of double-distilled water and 3 mL of 2 mM sodium tetrachloropalladate
was added. The mixture was left for incubation for 60 min at 25 ± 50 ◦C. The extract was
taken for absorbance at 425 nm and expressed as µmole g−1 FW.

2.6.4. Estimation of Antioxidant Enzymes
Enzyme Extraction

Fresh leaves weighing 0.5 g were homogenized in 50 mM sodium phosphate buffer
(pH 7.0) containing 1 mM ethylenediaminetetraacetic acid (EDTA) and 2% PVPP
(polyvinylpolypyrrolidone) using a pre-chilled mortar and pestle. This homogenate was
centrifuged at 13,000× g at 4 ◦C for 20 min and the supernatant collected was carried out
for antioxidant enzyme assays: SOD, CAT, APX and GR.

Antioxidative Enzymes

Superoxide dismutase (SOD) activity was measured by Beuchamp and Fridovich [47].
Enzyme activity was measured at 560 nm and expressed as U mg−1 Protein min−1.

Catalase (CAT) activity was estimated by Beers and Sizeir [48]. A total of 3 mL catalase
reaction mixture containing (100 mM phosphate buffer (pH 7.0), 0.1 mM EDTA, 20 mM
H2O2) was mixed with 50 µL of enzyme extract. Monitor the decrease in the absorbance
at 240 nm and quantify according to its extinction coefficient of 0.036 mM−1 cm−1 and
expressed as U mg−1 Protein min−1.

Ascorbate peroxidase (APX) activity was determined by Nakano and Asada [49]
(1981). First, 3 mL of assay mixture consisting (50 Mm phosphate buffer (pH 7.0), 500 mM
ascorbic acid, 1 mM H2O2) was mixed with 100 µL enzyme extract. Then, APX activity was
measured as decrease in absorbance at 290 nm and expressed as U mg−1 Protein min−1.

Glutathione reductase (GR) activity was assayed by Jablonski and Anderson [50]
method. To 3 mL of reaction mixture comprising 100 mM phosphate buffer (pH 7.5), 1 mM
oxidized glutathione, 1 mM EDTA, and 0.1 mM NADPH, 50 µLl enzyme extract was added.
Oxidation of NADPH was followed by monitoring the decrease in absorbance per min at
340 nm. Enzyme activity was expressed as U mg−1 Protein min−1.

Content of Reduced Glutathione

The content of GSH in leaves was determined using the methods of Anderson [51].
The absorbance was recorded at 412 nm after 2 min of incubation. The Supplementary File
contains details.

2.7. Determination of Lipid Peroxidation and H2O2 Content and Ethylene Evolution

MDA content (measure of lipid peroxidation) was determined using the method
provided by Zhou and Leul [52] and absorbance was recorded at 532 nm, 450 nm, and 600
nm. Hydrogen peroxide content was measured by Velikova et al. [53]. Fresh leaves (0.5
g) were homogenized in 5 mL of 0.1% TCA in a pre-chilled mortar and pestle followed
by centrifugation at 12,000× g for 15 min. To 0.5 mL of supernatant, 0.5 mL of 10 mM
potassium phosphate buffer (pH 7.0) and 1 mL of 1 M potassium iodide (KI) solution were
added. H2O2 content was measured at 390 nm.

Ethylene evolution was measured using a gas chromatograph. The detailed procedure
is described in Sehar et al.’s work [54].
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2.8. Cellular Damage Detection and Viability Measurement in Mustard Roots Using Confocal
Laser Scanning Microscopy

Confocal laser scanning microscopy (CLSM) for salt and PGPR-treated roots was
performed to check membrane damage and cell viability. Fresh roots were cut into small
pieces, followed by dual staining with 30 µM propidium iodide (PI; HiMedia, India) and
10 µM acridine orange (AO; HiMedia, India) solution for 15 min. After being treated with a
dye mixture, mustard roots were then rinsed with phosphate buffer (0.1 M, pH 7.0), and
finally mounted on glass slides. Stained roots were inspected for both live and dead tissues
under confocal laser scanning microscope Leica Microsystems TCS-SP5. Dead and live
tissues showed PI and AO staining, respectively. Control roots were used for assessing the
difference between treated and untreated roots.

2.9. Determination of Visible Leaf Damage via Superoxide through Histochemical Staining

Histochemical staining of superoxide ion (O2
−) was performed in the leaves of the

mustard plant using the method established by Kumar et al. [55] with a few modifications.
To stain leaves, nitro blue tetrazolium (NBT) was used. A freshly prepared NBT solution
was used for detecting (O2

−). A total of 0.2 g of NBT was dissolved in 100 mL of sodium
phosphate buffer to prepare the NBT solution (50 Mm, pH 7.5). Leaf samples were then
immersed in NBT solution and incubated for an overnight period at room temperature. The
samples were then boiled in absolute ethanol for 20 min and photographs were then taken.

2.10. Compatibility Assay

A compatibility assay was performed using the well diffusion method. To check
their compatibility under in vitro conditions, 50 µL culture of P. fluorescens was spread
on a nutrient agar (NA) plate and 50 µL culture of A. chroococcum was filled in the well
formed on the plate; later, the NA plate was kept at 28 ± 2 ◦C for 24 h in an incubator.
Presence or absence of an inhibition zone around the well would confirm the antagonism
and synergism, respectively, between two PGPR.

2.11. Salt Tolerance Assay for PGPR Strains

Rhizobacterial strains, i.e., Pseudomonas fluorescens (NAIMCC-B-00340) and Azotobacter
chroococcum Beijerinck 1901 (MCC 2351), were characterized for salinity tolerance. The
ability of both strains to tolerate 100 mM salt concentration was evaluated by growing
(streaking) both strains on a nutrient agar (NA) plate amended with 0 mM, 50 mM and
100 mM salt concentration. For this purpose, nutrient agar containing the desired amount
of NaCl was autoclaved and poured into plates. After solidifying the plates, both strains
were streaked on plates to check their growth under salt conditions.

2.12. Statistical Analysis

Data collected from the completely randomized block design experiments were anal-
ysed statistically using analysis of variance (ANOVA) by SPSS 17.0 for windows and
presented as mean ± SE (n = 4). The least significant difference was calculated for the
significant data at p < 0.05. Bars with the same letter were not significantly different using
the least significant difference (LSD) test at p < 0.05. The PCA and Pearson correlation were
carried out using OriginPro software. To create biplots, the first two components (PC1 and
PC2) showing the maximum variance in the datasets were considered.

3. Results
3.1. Properties of Pseudomonas fluorescens and Azotobacter chroococcum

Both these strains were Gram-negative, produced indole acetic acid (IAA), ACC
deaminase, siderophore, ammonia, HCN and phosphate solubilisation, as shown in Table 1.
They were salt-tolerant at 100 mM NaCl concentration, as shown in Figure 1.
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Table 1. Properties of Pseudomonas fluorescens and Azotobacter chroococcum.

Bacterial
Strains Gram Reaction Cell Shape IAA

(µg mL−1)

ACC Deaminase
Production (µM α
Ketobutyrate mg−1

Protein h−1)

Siderophore
Production

CAS Agar Plate
Assay

Zone Formation
and Zone

Production in
(mm)

Ammonia
Production

HCN
Production

Phosphate
Solubilisation

Pseudomonas
fluorescens Gram-negative Short rod

shaped 86.8 ± 1.79 210 ± 0.42 +ve
21.4 ± 1.3 + + +

Azotobacter
chroococcum Gram-negative Oval shaped 79.4 ± 2.17 193 ± 1.65 +ve

13.2 ± 1.7 + + +
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Figure 1. (A,B) are Pseudomonas fluorescens and Azotobacter chroococcum, respectively, streaked on
0 mM NaCl NA plate, (C) is Pseudomonas fluorescens and Azotobacter chroococcum streaked on 50 mM
NaCl nutrient agar plate and (D) on 100 mM nutrient agar plate.

3.2. Application of PGPR Strains alleviated Growth Characteristics under Salt Stress

Growth characteristics, such as root length, shoot length, plant height, root–shoot
biomass, number of leaves and leaf area, were significantly decreased with the salinity
(Table 2). This inhibiting effect of salinity may result from a variety of physiological
mechanisms, including a decline in meristematic activity and/or cell expansion. The data
revealed that all the attributes declined with the salt stress. Contrary to this, application of
PGPR strains significantly enhanced growth parameters, thus mitigating the effects of salt
stress. Both PGPR strains alleviated plant growth in control as well as stressed conditions;
however, the trend observed was maximum in Pseudomonas + Azotobacter, followed by
Pseudomonas, and then in Azotobacter. Salt-stressed plants inoculated with Pseudomonas,
Azotobacter and Pseudomonas + Azotobacter enhanced root length (RL) by 47.8, 42.5 and
78.4%; shoot length (SL) by 21.61,16.08 and 38.2%; height of plant by 30.7, 25.2 and 52.1%;
leaf number by 63.6, 54.5 and 109%; and leaf area by 33.3, 25.8 and 46.7%, respectively, in
comparison to control.

3.3. Impact of PGPR on Photosynthetic Pigments

Salt stress significantly decreased pigment content (chlorophyll a, b, total chloro-
phyll) and protein content. However, inoculation with two bacterial strains (P. fluorescens,
A. chroococcum and combination of two) reduced the harmful effects of NaCl and increased
the evaluated parameters. In salt-stressed plants with Chl a content, 1.323 mg g−1 FW
was increased to 1.492, 1.434 and 1.555 mg g−1 FW when inoculated with Pseudomonas,
Azotobacter and Pseudomonas + Azotobacter, respectively, in comparison to control. The same
trend was observed in Chl b, total Chl and protein content; Chl b shot up from 0.458 mg g−1

FW to 0.489, 0.468 and 0.548 mg g−1 FW; total Chl surged from 1.749 mg g−1 FW to 1.943,
1.865 and 2.066, respectively. The highest values for Chl a, b and total chlorophyll content
were found in the plants inoculated with the combination of two strains which increased
by 17.5, 19.6 and 18.1%, respectively, over the course of salt-stressed plants’ (T2) treatment
(Figure 2).
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Table 2. Effect on root length, shoot length, height of plant, root fresh and dry biomass, shoot fresh and dry biomass, number of leaves and leaf area in mustard
cultivar Pusa Jagannath exposed to control or salt stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either singly or in
combination. Data are presented as treatments mean ± SE (n = 4). Data followed by same letter are not significantly different by LSD test at p < 0.05.

Treatment Root Length
(cm)

Shoot Length
(cm)

Height of Plant
(cm)

Root Biomass
(g Plant−1)

Shoot Biomass
(g Plant−1) No. of

Leaves

Leaf
Area
(cm2)Fresh Dry Fresh Dry

Control 6.667 ± 0.37 d 10.23 ± 0.77 d 16.900 ± 0.84 d 0.08 ± 0.00 4 d 0.017 ± 0.001 c 0.849 ± 0.065 d 0.110 ± 0.012 d 8.333 ± 4.49 d 7.10 ± 0.63 d

100 mM NaCl 3.530 ± 0.281 g 6.633 ± 0.58 g 10.163 ± 0.62 g 0.04 ± 0.002 g 0.009 ± 0.0009 g 0.38 ± 0.0335 g 0.047 ± 0.0056 g 3.667 ± 1.700 g 4.63 ± 0.105 g

PGPR1 7.683 ± 0.56 b 13.40 ± 0.94 b 21.063 ± 0.99 b 0.10 ± 0.006 b 0.027 ± 0.002 b 1.287 ± 0.046 b 0.203 ± 0.019 b 12.667 ± 3.300 b 10.6 ± 0.304 b

PGPR2 7.013 ± 0.486 c 12.1 ± 0.85 c 20.003 ± 0.91 c 0.09 ± 0.005 c 0.012 ± 0.001 c 1.03 ± 0.071 c 0.172 ± 0.0176 c 10.000 ± 2.449 c 9.19 ± 0.961 c

PGPR (1 + 2) 8.560 ± 0.662 a 15.90 ± 0.99 a 24.460 ± 1.055 a 0.19 ± 0.008 a 0.038 ± 0.003 a 1.56 ± 0.072 a 0.357 ± 0.0246 a 17.333 ± 2.494 a 14.03 ± 0.74 a

100 mM NaCl + PGPR1 5.220 ± 0.362 e 8.067 ± 0.66 e 13.287 ± 0.71 e 0.07 ± 0.004 e 0.013 ± 0.001 c 0.654 ± 0.07 e 0.077 ± 0.0064 e 6.000 ± 2.160 e 5.810 ± 0.76 e

100 mM NaCl + PGPR2 4.633 ± 0.415 f 7.100 ± 0.58 f 11.933 ± 0.67 f 0.06 ± 0.003 f 0.010 ± 0.001 d 0.51 ± 0.057 f 0.064 ± 0.0074 f 4.667 ± 3.859 f 4.83 ± 0.348 f

100 mM NaCl + PGPR (1 + 2) 6.300 ± 0.505 d 9.167 ± 0.72 d 16.07 ± 0.92 d 0.08 ± 0.04 d 0.016 ± 0.002 c 0.807 ± 0.041 d 0.102 ± 0.09 d 7.667 ± 4.497 d 6.797 ± 0.9 d
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Figure 2. Effect on chlorophyll a (A), chlorophyll b (B), and total chlorophyll (C) in mustard culti-
var Pusa Jagannath exposed to control or salt stress with or without Pseudomonas fluorescens 
(PGPR1) or Azotobacter chroococcum (PGPR2) either singly or in combination. Data are presented as 
treatment mean ± SE (n = 4). Data followed by same letter are not significantly different using LSD 
test at p < 0.05. 
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intercellular CO2 (Ci) expressed considerable decline under salt stress. Studied parame-
ters PN, Gs and Ci showed a decrease of 2.1-, 1.4- and 1.5-fold, respectively, when com-
pared with the control. Bacterial inoculation enhanced gas exchange parameters in 
treated and as well as untreated plants. Considering the comparative performance of 
bacterial strains, a mixture of Pseudomonas + Azotobacter proved best for the parameters 
studied, whereas Azotobacter showed minimal increase. With respect to salt treatment 
(T2), Pseudomonas + Azotobacter improved PN, Gs and Ci by 0.5-, 0.6- and 0.6-fold, re-
spectively (Figure 3). 

Figure 2. Effect on chlorophyll a (A), chlorophyll b (B), and total chlorophyll (C) in mustard cultivar
Pusa Jagannath exposed to control or salt stress with or without Pseudomonas fluorescens (PGPR1) or
Azotobacter chroococcum (PGPR2) either singly or in combination. Data are presented as treatment
mean ± SE (n = 4). Data followed by same letter are not significantly different using LSD test at
p < 0.05.

3.4. Gas Exchange Parameters

Gas exchange parameters (net photosynthesis (PN), stomatal conductance (Gs) and
intercellular CO2 (Ci) expressed considerable decline under salt stress. Studied param-
eters PN, Gs and Ci showed a decrease of 2.1-, 1.4- and 1.5-fold, respectively, when
compared with the control. Bacterial inoculation enhanced gas exchange parameters
in treated and as well as untreated plants. Considering the comparative performance of
bacterial strains, a mixture of Pseudomonas + Azotobacter proved best for the parameters
studied, whereas Azotobacter showed minimal increase. With respect to salt treatment (T2),
Pseudomonas + Azotobacter improved PN, Gs and Ci by 0.5-, 0.6- and 0.6-fold, respectively
(Figure 3).
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centration (C) in mustard cultivar Pusa Jagannath exposed to control or salt stress with or without 
Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either singly or in combina-
tion. Data are presented as treatment mean ± SE (n = 4). Data followed by same letter are not sig-
nificantly different using LSD test at p < 0.05. 

Figure 3. Effect on net photosynthesis (A), stomatal conductance (B), and intercellular CO2 con-
centration (C) in mustard cultivar Pusa Jagannath exposed to control or salt stress with or without
Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either singly or in combination.
Data are presented as treatment mean ± SE (n = 4). Data followed by same letter are not significantly
different using LSD test at p < 0.05.

3.5. Osmolytes Accumulation Increased under Salt Stress and Helped in Stress Tolerance

Bacterial strains increased the accumulation of proline and glycine betaine under
control and stressed conditions. Salt stress markedly enhanced proline and glycine betaine
content by 2- and 1.4-fold, respectively, over control plants. Inoculation of salt-stressed
plants with Pseudomonas significantly enhanced proline and glycine betaine content by
38.8% and 26.3%, respectively, over salt treatment (T2). Azotobacter inoculation increased
proline and GB content by 31.4 and 19%, respectively, when compared to T2 treatment.



Plants 2023, 12, 705 11 of 29

In contrast, the combination of both Pseudomonas and Azotobacter boosted proline and GB
content maximum by 60.3 and 32.4%, respectively, with respect to salt-stressed plants.

A pronounced increase in total soluble sugar content was noted under salt treatment.
In contrast to the control, sugar content increased by 68.9% under salt stress. Application of
bacterial strains, however, resulted in sugar decline in both stressed as well as unstressed
conditions. Plants exposed to salt that were inoculated with Pseudomonas, Azotobacter, and
Pseudomonas + Azotobacter revealed reductions in sugar content of 26.5, 17.3, and 6.1%,
respectively (Figure 4).
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Figure 4. Effect on proline content (A), glycine betaine content (B), and total soluble sugar content
(C) in mustard cultivar Pusa Jagannath exposed to control or salt stress with or without Pseudomonas
fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either singly or in combination. Data are
presented as treatment mean ± SE (n = 4). Data followed by same letter are not significantly different
using LSD test at p < 0.05.
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3.6. Impact on Total Phenol, Total Flavonoid, Carotenoids and Total Glucosinolate Content

The control plants supplemented with bacterial strains exhibited an increase in phenol
and flavonoid content over the control plants. Salt (100 mM) application also enhanced
phenol and flavonoid content by 44.4% and 48.3%, respectively, over control plants. Salt-
treated plants inoculated with Pseudomonas, Azotobacter and Pseudomonas + Azotobacter
amplified phenol and flavonoid content by 15.4, 10.2, 26.7% and 11.6, 9.5, 17.5%, respectively,
when compared to T2 treatment.

A considerable decrease in carotenoid content was recorded in salt-stressed sam-
ples with respect to control. Application of bacterial strains increased their carotenoid
content both in control as well as stressed plants. Maximum increase was observed in
Pseudomonas+ Azotobacter, followed by Pseudomonas, and then Azotobacter in both stressed
and unstressed plants.

The amount of total glucosinolate increased in all of the treatments compared to control
T1, but salt stress had the highest amount at 57.4%. Bacterial strains increased the amount
of glucosinolate in control plants while lowering it in salt-stressed plants. In control plants,
Pseudomonas, Azotobacter and Pseudomonas + Azotobacter enhanced glucosinolate content
by 27.8, 23.7 and 45.4%, respectively. In contrast, in the salt-stressed plants, glucosinolate
content decreased by 15.2, 20 and 4.5%, respectively (Table 3).

Table 3. Effect on total glucosinolate content, total phenolic content, total flavonoid content and
carotenoids content in mustard cultivar Pusa Jagannath exposed to control or salt stress with or
without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either singly or in
combination. Data are presented as treatments mean ± SE (n = 4). Data followed by same letter are
not significantly different by LSD test at p < 0.05.

Treatments
Total Glucosinolate Content

Total Glucosinolate
(µmol g−1 FW)

Total Phenolic
Content

(mg GAE g−1 FW)

Total Flavonoid
Content

(mg Rutin g−1 FW)

Carotenoids
(mg g−1 FW)

Control 19.189 ± 1.18 g 07.211 ± 0.33 f 08.799 ± 0.43 f 0.885 ± 0.045 d

Salt 31.204 ± 2.12 a 10.415 ± 0.76 e 12.056 ± 0.82 e 0.408 ± 0.011 g

PGPR1 24.538 ± 1.44 e 13.158 ± 0.84 c 15.694 ± 0.91 b 1.052 ± 0.090 b

PGPR2 23.746 ± 1.26 f 12.189 ± 0.73 d 13.444 ± 0.77 d 0.949 ± 0.082 c

PGPR(1 + 2) 27.906 ± 1.69 c 15.416 ± 1.09 a 18.653 ± 1.16 a 1.217 ± 0.181 a

Salt + PGPR1 25.608 ± 1.53 d 12.025 ± 0.73 d 14.883 ± 0.79 c 0.610 ± 0.061 e

Salt + PGPR2 24.142 ± 1.31 e 10.480 ± 0.81 e 13.606 ± 0.71 d 0.526 ± 0.033 f

Salt + PGPR(1 + 2) 28.817 ± 1.78 b 14.204 ± 0.94 b 15.347 ± 1.01 b 0.838 ± 0.043 d

3.7. Impact of PGPR on Lipid Peroxidation and H2O2 Content and Ethylene Evolution

Lipid peroxidation and H2O2 content are important indicators of oxidative stress. The
mustard plants under salinity stress (100 mM) showed a remarkable increase in MDA and
H2O2 content by 1.7- and 1.8-fold, respectively. On the other hand, bacterial inoculation un-
der saline and non-saline treatments considerably reduced its content. Maximum reduction
in MDA and H2O2 content was observed in the plants inoculated with the combination
of Pseudomonas + Azotobacter, by 35.3 and 59.0%, respectively, in comparison with the salt
treatment (T2) (Figure 5).
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Figure 5. Effect on MDA (A) and H2O2 (B) content in mustard cultivar Pusa Jagannath exposed to 
control or salt stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum 
(PGPR2) either singly or in combination. Data are presented as treatment mean ± SE (n = 4). Data 
followed by same letter are not significantly different using LSD test at p < 0.05. 

Ethylene content was maximum under salt stress and decreased with the application 
of PGPR. Maximum reduction in ethylene content was observed with combined PGPR 
application (Figure 6). 

Figure 5. Effect on MDA (A) and H2O2 (B) content in mustard cultivar Pusa Jagannath exposed
to control or salt stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum
(PGPR2) either singly or in combination. Data are presented as treatment mean ± SE (n = 4). Data
followed by same letter are not significantly different using LSD test at p < 0.05.

Ethylene content was maximum under salt stress and decreased with the application
of PGPR. Maximum reduction in ethylene content was observed with combined PGPR
application (Figure 6).
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tivity in salt-stressed as well as unstressed plants. Interestingly, among bacterial strains 
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nas + Azotobacter maximized the content of SOD, CAT, APX, and GR by 0.5-, 0.7-, 0.4- and 
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stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either
singly or in combination. Data are presented as treatment mean ± SE (n = 4). Data followed by same
letter are not significantly different using LSD test at p < 0.05.

3.8. Alleviating Effect of PGPR on Antioxidative Enzymes and GSH

Antioxidant activities in mustard plants were higher under salinity stress than they
were under normal growth conditions. The content of antioxidative enzymes (SOD,
CAT, APX, and GR) enhanced by 61.6, 17.8, 68.1 and 62.4%, respectively, with respect
to control plants. However, inoculation of plants with bacterial strains increased antiox-
idants’ activity in salt-stressed as well as unstressed plants. Interestingly, among bacte-
rial strains (Pseudomonas, Azotobacter and Pseudomonas + Azotobacter), the combination of
Pseudomonas + Azotobacter maximized the content of SOD, CAT, APX, and GR by 0.5-, 0.7-,
0.4- and 0.5-fold, respectively, over salt-treated plants (T2) (Figure 7).

GSH content was increased under salt stress but supplementation of PGPR further
increased GSH content and, when in combination, it was maximal (Figure 8).
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Figure 7. Effect on SOD (A), CAT (B), APX (C) and GR (D) activity in mustard cultivar Pusa Jagannath
exposed to control or salt stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter
chroococcum (PGPR2) either singly or in combination. Data are presented as treatment mean ± SE
(n = 4). Data followed by same letter are not significantly different using LSD test at p < 0.05.
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Figure 8. Effect on reduced GSH content in mustard cultivar Pusa Jagannath exposed to control or
salt stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum (PGPR2) either
singly or in combination. Data are presented as treatment mean ± SE (n = 4). Data followed by same
letter are not significantly different using LSD test at p < 0.05.
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3.9. Cellular Damage to Mustard Roots under Salt Stress as Determined via CLSM and
Overcoming the Damage Using PGPR

Roots of mustard plants treated with 100 mM NaCl experienced oxidative stress
leading to tissue death. When plants were subjected to salinity, the increased PI red
fluorescence from the mustard roots cells indicated cell death owing to cellular membrane
breakdown. PI dye (a DNA intercalating dye) only penetrates the membranes of dead
cells; hence, the cells accumulate the red colour and due to this reason, the PI dye is
considered a good indicator for stressed conditions. However, roots inoculated with PGPR
displayed less cell membrane damage than un-inoculated roots. Roots inoculated with
Pseudomonas + Azotobacter accumulated minimal red colour (PI dye) in stressed as well as
unstressed conditions. In contrast to this, the roots of untreated plants showed strong green
fluorescence from (AO) acridine orange and much less PI fluorescence, indicating limited
cellular damage (Figure 9).
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Figure 9. Effect on cellular damage to mustard roots in mustard cultivar Pusa Jagannath exposed
to control or salt stress with or without Pseudomonas fluorescens (PGPR1) or Azotobacter chroococcum
(PGPR2) either singly or in combination.

3.10. Visible Damage Due to Superoxide Formation in Salt-Stressed Leaves and Its Alleviation
Using PGPR

Histochemical staining was conducted to determine in situ accumulation of (O2
−),

which represents damage caused by ROS. On leaves of a plants treated with 100 mM NaCl
(T2), more dark blue spots corresponding to O2

− were seen as NBT was converted to
formazan when compared to control (T1). However, no obvious prominent dark blue spots
were observed in bacterial-inoculated leaves. Rhizobacterial inoculations with Pseudomonas,
Azotobacter and combination of both (Pseudomonas + Azotobacter) showed no dark blue spot
as PGPR enhanced antioxidant activity (Figure 10).
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Figure 10. Effect on visual damage to mustard leaves due to superoxide formation in mustard cultivar
Pusa Jagannath exposed to control or salt stress with or without Pseudomonas fluorescens (PGPR1) or
Azotobacter chroococcum (PGPR2) either singly or in combination.

3.11. Synergism between Two PGPR

The results of the compatibility assay indicated that both the strains could grow
together since there was no inhibition zone around the well as there was no interference
with one another’s ability to grow. A photo is provided in the Supplementary File.

3.12. Principal Component Analysis

The scores of PCA to evaluate the effects of PGPR 1 and PGPR 2 on mustard plants
under salt stress are presented in Figure 10. PC1 and PC2 accounted for 91.9% of the
total variance in the dataset. Between them, PC1 contributed 64.5% and PC2 contributed
27.4% total variation. All the treatments were distributed successfully by the first two
principal components (Figure 10). The salt stress treatment was distributed along with
the oxidative stress biomarkers (H2O2 and MDA content) and ethylene content. The
various parameters observed in PCA biplot were divided into three clusters. Parameters
such as H2O2 and MDA content, ethylene content, and sugar content were close to those
of the salt stress treatment. The parameters of growth and photosynthesis were close
to those of the PGPR treatments without stress. On the other hand, antioxidants (SOD,
CAT, APX, GR, GSH), proline, glycine betaine, TFC and TPC were close to the values of
the combined treatment of PGPR 1 + PGPR 2 in the presence of salt stress (Figure 11).
The oxidative stress biomarkers and ethylene biosynthesis showed a negative correlation
with plant growth and photosynthesis parameters. From the biplot, it is clear that the
antioxidants, osmolytes and secondary metabolites were in between the oxidative stress,
plant growth and photosynthesis, suggesting their role in combating heat stress. Therefore,
the correlation biplot portrays a close association between PGPR in the salt acclimation of
mustard plants (Figure 11).
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Figure 11. The PCA was applied to study the interaction between variables (parameters studied) and
observation (treatments) with or without salt stress.

3.13. Pearson Correlation

A Pearson correlation heatmap was drawn to study the relationship between the
studied parameters (Figure 11). A significant (p ≤ 0.05; p ≤ 0.01 and p ≤ 0.001) positive
correlation was observed among the observed attributes of growth, photosynthesis, antiox-
idant and secondary metabolites. Salt stress-induced oxidative stress showed a negative
correlation with the plant growth and photosynthetic attributes. Ethylene production
showed a strong correlation with H2O2, MDA content, showing stress-specific production
of ethylene. Antioxidant enzymes (SOD, CAT, APX and GR) were negatively correlated
with H2O2 and MDA content. Moreover, TPC, TFC and Car showed a positive correlation
with PDM, LA, PN, gs, Ci, signifying the positive role of these metabolites in improving
growth and photosynthesis under salt stress (Figure 12).
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4. Discussion
4.1. Impact of Combined PGPR on Mustard Morphological Characteristics under Salt Stress

Increasing salinity stress in agricultural soil is a serious concern since it hinders plant
growth and causes large yield losses [56]. However, the use of PGPR in crop plants grown
in salty environments can counteract the negative effects of salinity and promote plant
growth and survival [57–61]. In the present study, salt-stressed mustard plants inoculated
with two types of rhizobacterial strains showed an increase in root length (RL), shoot length
(SL), fresh weight (FW), dry weight (DW), leaf area (LA), leaf number and height when
compared to un-inoculated ones. The elevated growth parameters in PGPR-treated plants
could be possible due to the production of different phytohormones [62] in the rhizosphere
of plants, causing cellular division and elongation [63]. PGPR causes root proliferation
and increased root length through the secretion of IAA, which causes an increase in root
surface area and ultimately leads to better nutrient absorption, for improved plant growth
under stressed condition as reported by Yasmin et al. [64] in the case of Pseudomonas sp.
and by Kalaiarasi and Dinakar [65] in the case of Azotobacter. These nutrients are crucial to
the expansion of the leaf area [66,67]. In the previous studies, an increase in biomass and
height was documented in rapeseed [68], soybean [69], and tomato [70] with PGPR. Both
PGPR Pseudomonas [71] and Azotobacter [72] have ACC deaminase activity. Under salinity
stress, ACC deaminase reduces stress-induced ethylene synthesis by converting ACC into
ammonia and α ketoglutarate, promoting the development of longer root systems. It is
well-documented in the previous studies that the supplementation of PGPR with ACC
deaminase activity helps in reducing salinity stress [56,61,71]. Under salinity stress, PGPR
regulate osmotic balance and ion homeostasis either through the modulation of phytohor-
mone or by impacting metabolite and antioxidant activity or osmolyte accumulation to
reduce osmotic stress and ion toxicity [73]. We have reported this result in light of the traits
that are known for these PGPR and we also analysed these traits in Table 1. Both PGPR
strains are able to produce IAA, which could be the reason for salt stress-induced growth
reduction as the decrease in endogenous hormone levels was responsible for the deleteri-
ous effect of salinity on plant growth [74,75], while addition of bacterial auxins benefited
plant development in environments with high salt concentrations [76,77]. PGPR releases
metal-chelating substances, such as siderophores, which help in the uptake of various
metals such as Zn, Fe, Cu [78–80]; interestingly, both bacterial strains in our study are able
to produce siderophores. In addition to this, HCN production promotes plant growth and
development by arresting the growth of pathogens and serving as a biocontrol agent [81].
The growth of salt-stressed plants is also affected by limited phosphate nutrition [82] and
both the strains are able to solubilize phosphate, leading to its availability to plants, thereby
increasing growth.

4.2. Impact of PGPR on Photosynthetic Traits in Mustard under Salt Stress

Photosynthesis is a fundamental plant physiological activity that maintains plant
development and improves the plant’s tolerance to external challenges [83]. Overall, Chl a,
b, total Chl, and carotenoids decreased with the salt stress in our study. Exposing mustard
plants to salt stress leads to the induction of changes in the pigment–protein complex [84].
Elkelish et al. [85] and Ahanger et al. [86] concluded that salinity enhances chlorophyllase
activity and reduces N-uptake, leaf water potential, and photosynthetic efficiency. Plants
inoculated with root-colonizing rhizobacteria enhanced chlorophyll content because the
iron (Fe3+) present in the Fe3+-siderophore complex on the bacterial membrane is decreased
in order to make iron available to both the plant and the bacteria [87,88]. Chlorophyll-
containing iron that serves as a chelating agent and PGPR make iron available to plants,
increasing their photosynthetic activity and general growth. PGPR improves the solubi-
lization and uptake of nutrients, thus modulating plant growth and development [89].
Various studies have proved that inoculation with PGPR improves chlorophyll content
under salt stress [90,91]. Our results also show the enhancement of chlorophyll content
with inoculation of bacterial strains under salt-stressed conditions. Inoculation with PGPR
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increases stomatal conductance [92] and water and ion absorption [93], which, in turn, pro-
motes the production of photosynthetic pigments and net photosynthesis. Habib et al. [94]
explained that ACC deaminase activity of PGPR improved photosynthetic efficiency by
reducing ethylene biosynthesis. In addition to this, the phosphate solubilization trait of
PGPR improves nutrient absorption activity, which is essential for the biosynthesis of
photosynthetic pigments needed for the light harvesting complex [95].

4.3. PGPR in Combination Maximally Alleviated Oxidative Stress through an Increase in
Antioxidative Enzymes and Antioxidant GSH

Reactive oxygen species are formed in response to salt exposure, causing extreme
oxidative damage to nucleic acids, lipids and proteins [96]. Antioxidant systems have a
crucial role in shielding plants from oxidative stress [97]. Superoxide dismutase, as the
name suggests, causes the dismutation of superoxide anion to H2O2 [98]. CAT plays an
important function in lowering the level of H2O2 in peroxisomes and detoxifying them [99],
APX scavenges H2O2 by regulating their signals [100], and GR balances the high cellular
glutathione/glutathione disulfide (GSH/GSSG) ratio by prompting a reduction reaction of
glutathione disulfide (GSSG) to glutathione (GSH) taking part in H2O2 detoxification [101].
The PGPR-induced antioxidative enzymes are considered to be good contributor to the
salt stress tolerance in plants by reducing H2O2 [102]. In our current study, the activities
of antioxidant enzymes are significantly higher in PGPR-inoculated plants and maximal
in combination of both P. fluorescens + A. chroococcum strains. Pseudomonas fluorescens
strains have been found to improve the sweet corn antioxidant system against salinity
stress [103]. Increased activity of antioxidant enzymes and osmoprotectants were also
observed in E. cloacae PM23-inoculated plants under salt stress in maize compared to
control plants [104]. GSH content increases with salt stress and is at its maximum in
the salt plus PGPR combination. The increase in GSH under salt stress is reported in
wheat [105], which was responsible for salt tolerance. The interactions of ethylene with
GSH and that of S with GSH are also reported and the associated stress tolerance has
been studied [54,106]. Sofy et al. [107] reported increased GSH and antioxidative enzymes’
content with endophytic bacteria producing ACC deaminase in Pisum sativum.

4.4. PGPR When Applied Together Maximally Increased Osmolytes Accumulation to Protect
against Salt-Induced Osmotic Stress

The salt ions’ accumulation around the plant’s root causes osmotic stress under saline
conditions, eventually leading to osmotic imbalance [108]. Accumulation of osmoprotec-
tants such as proline, glycine betaine, and soluble sugar is an adaptive response of plants to
various stresses, such as salinity, as they have a role in the osmotic adjustment and alleviate
cellular oxidative damage [57,73]. A significant increase in proline and glycine betaine
was observed in our present study on PGPR treatment. This may be due to the reason of
synthesis and accumulation of free amino acids under stressed conditions [109]. The most
prominent reason behind alleviated proline levels by PGPR may be proline-synthesizing
enzymes and the downregulation of catabolizing enzymes as described by the authors
of [110]. Osmoprotectants increase the resistance of plants against salt stress by stabilizing
the protein conformation, cytosolic pH, balancing redox condition of cell, PSII and mem-
brane integrity, and the activity of various enzymes [111,112]. Total soluble sugar (TSS) is
an important parameter and is synthesized and accumulated in cytosol under salt stress. In
our results, TSS content was higher in stressed conditions to improve osmotic adjustment
and maintain turgor under salinity. Sugars have essential roles in maintaining various
physiological processes such as carbohydrate metabolism, secondary metabolism, and
certain other activities involving osmotic balance under stressed conditions [113]. However,
supplementation of PGPR caused a decline in TSS content. This could be attributed to the
better utilization of TSS by PGPR that prevented its accumulation. The increased sugar
acts as an osmolyte to prevent stress-induced ionic and osmotic stress; however, PGPR
application results in decreasing the stress through an increase in antioxidative enzymes
that led to the scavenging of ROS and the utilization of TSS to promote growth under stress.
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Iqbal et al. [101] reported a decrease in glucose content with nitric oxide application under
stress due to a reduction in stress. Sehar et al. [54] found that in wheat, optimum ethylene
reduces glucose sensitivity by enhancing stress tolerance under salt stress; glucose was
highest under stress and decreased with a reduction in stress.

4.5. PGPR Application Reduced Ethylene Evolution under Salt Stress and Maximally When
Supplemented in Combination

Ethylene is a phytohormone that is produced endogenously by the plant for the
control of plant development. When a plant is under salinity stress, it produces more
ethylene, which raises its endogenous level [114]. Various PGPR with ACC deaminase
activity have been shown to improve the growth of numerous crops as well as plant
tolerance to various abiotic stresses by lowering stress hormone ethylene levels through
a reduction in ACC content [115–117]. ACC played a negative role under salinity in
regulating tomato seedling’s growth [118]. Lowering ethylene production under salt
stress resulted in better growth in wheat [54]. In our report, inoculation of mustard seeds
with bacterial strains singly or in combination both reduced ethylene levels. However,
combination of both strains (P. fluorescens + A. chroococcum) maximally reduced ethylene
levels. Reduced ethylene levels in both strains, P. fluorescens [119] and A. chroococcum, occurs
because both strains have ACC deaminase activity, which limited the deleterious effects
of ethylene on plant growth and development under salinity stress (Table 1). Salt stress
increases the synthesis of ROS (H2O2 and MDA content) and ethylene as observed in this
study. Both ROS and ethylene damage plants when at high level. Stress ethylene synthesis
is the plant’s inherent ability to adapt to stress situations but at the expense of reduced
photosynthesis and growth. In a strategy to overcome this compromise, PGPR might play
a major role as they reduce ACC content through their ACC deaminase activity. Ethylene
production increases under salinity stress and its signalling is required for the plant’s
immediate response to salinity and adjustment in order to cope with stress. However,
continuous stress leads to excessive ethylene production, which inhibits plant growth and
development and eventually leads to the death of plants [120]. In rice, ethylene production
increased due to salinity stress via the MAPK cascade that stabilizes ACS, which promoted
ROS accumulation and growth inhibition [121,122]. Thus, excessive ethylene leads to
ROS accumulation as observed in this study, which causes a deleterious effect on plant
growth. Ethylene reduction using PGPR via a decrease in ACC content is, therefore, one
strategy for ROS reduction and plant survival. Moreover, when ethylene is reduced to
an optimum level, it enhances growth through an increased antioxidative metabolism. In
fact, ethylene level is a controlling factor for growth promotion or inhibition depending on
concentration [123].

4.6. PGPR Application Enhanced Secondary Metabolite Production but Decreased Glucosinolate
Content under Salt Stress

PGPR supplementation under salt stress increased the accumulation of secondary
metabolites but decreased glucosinolate content. Brassica is rich in various bioactive phyto-
chemicals such as glucosinolates and phenolic compounds, including phenols, flavonoids,
and carotenoids [124–126]. These phenolic compounds have a crucial role in absorbing and
neutralizing free radicals, quenching singlet oxygen, and detoxifying peroxides [59,127].
The mustard variety (Pusa Jagannath) with 100 mM salt stress showed enhanced TPC
and TFC for promoting defensive mechanisms and regulating the normal cellular func-
tioning [128]. By interacting with a variety of protein kinases, such as mitogen-activated
protein kinases, flavonoids are thought to play a role in signalling systems that reflect the
onset of cellular differentiation and growth in plants [129]. It has been considered that
flavonoids act as chelators under salinity stress [130]. Maximum elevated content of TPC
and TFC was found in the combination of both strains (P. fluorescens + A. chroococcum). An
increase in TPC and TFC content was also observed with the inoculation of Pseudomonas
and Azotobacter in reports of Kandoliya and Vakharia [131] and Warwate et al. [132]. In
addition to polyphenols, glucosinolates (a sulphur-containing compound) also increases
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under salinity stress. Yuan et al. [133] reported that total glucosinolate content increased
under 100 mM NaCl treatments in radish sprouts due to the activation of genes involved
in glucosinolate production. We observed that total glucosinolate content increased with
root-colonizing bacterial strains singly (Pseudomonas and Azotobacter) and maximally in
combination (Pseudomonas + Azotobacter). Increased glucosinolate content on inoculation
with P. fluorescens strain (SS102) occurs under biotic stress through an increase in sulphur
assimilation [134]. Supplementation with PGPR in Arabidopsis activated glucosinolate
accumulation in herbivore damage as well as in insect feeding [134,135]. Contrarily, we
observed a decrease in glucosinolate level with PGPR supplementation compared to salt-
stressed plants, although it was higher than the control. The possible reason for increased
glucosinolates under stress may be that plants’ demand for increased sulphur and glu-
cosinolate fulfils this requirement [134]. On PGPR application, the stress is alleviated and
results in a decrease in glucosinolate level. Various reports are available on the impact
of PGPR on glucosinolate content or glucosinolate and abiotic stress. However, it is the
first time when we are reporting glucosinolate with combined PGPR under salt stress.
Glucosinolate production enhances under abiotic and biotic stress in Brassicaceae and helps
in mitigating the negative effect of stress [103,136]. A study reported high glucosinolate
content at low nitrogen supply and reduced glucosinolate levels at increased nitrogen
supply [137]. Plants inoculated with PGPR showed lower amounts of glucosinolates
when young and had higher nitrogen requirements, while in the older plants, which have
a lower nitrogen requirement, increased glucosinolate levels were observed. Thus, the
stress plants had a maximum requirement of glucosinolates; however, with the decrease
in stress, glucosinolates content also decreased. In addition, as shown in Figure 12, the
PGPR application increases S-assimilation and, thus, the formation of cysteine. Cysteine
acts as precursor of both GSH and methionine. Methionine via S-adenosyl methionine
(SAM) leads to excess ethylene but PGPR through ACC deaminase activity reduces ACC
formation and, consequently, ethylene. Possibly, SAM could be diverted to polyamines’
formation, which can, again, lead to salt tolerance. In our study, GSH content increases
maximally with PGPR application, suggesting the diversion of cysteine more towards
GSH than to glucosinolate. However, we are predicting this based on the linkage in the
pathway between S-assimilation, ethylene and GSH; a thorough molecular study needs to
be carried out to further understand the process associated with the interaction between
glucosinolates, ethylene and glutathione.

5. Conclusions

The severity of salt stress in plants can be reduced through the application of PGPR,
which is a more eco-friendly and sustainable approach for better plant growth and yield.
These PGPR are salt-tolerant and have properties that help in promoting growth in plants.
Their synergistic nature under salt stress with growth-promoting properties helped the
salt-stressed plants to increase photosynthesis and growth via enhancement in the antioxi-
dant metabolism, secondary metabolites and osmolytes’ content. We have shown the role
of PGPR in salt stress alleviation and growth through a model that predicts the possible
interaction under stress. The reduction in stress ethylene and enhanced GSH synthesis
helps in stress alleviation, which possibly explains the reduced glucosinolate content under
salt stress. Further molecular studies, however, need to be conducted to unravel the glucosi-
nolates biosynthesis pathway and more reasons for its decreased content under dual PGPR
application in order to obtain a complete understanding of the scenario under salt stress.
However, undoubtedly, PGPR is involved in regulating antioxidant metabolism, proline,
glycine betaine, TFC and TPC for enhancing photosynthesis through ROS scavenging and
ultimately increasing growth, thus providing a more sustainable approach under stress
(Figure 13) The impact of PGPR is visible in Figure 14 showing plants photo at 30 DAS.
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