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Abstract: The application of miRNA mimic technology for silencing mature miRNA began in 2007.
This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1)
gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA
by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted
to understand the molecular mimic mechanism and to improve the efficiency of this technology.
As a result, several mimic tools have been developed: target mimicry (TM), short tandem target
mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability
and effectiveness in decoying miRNA. This review discusses the application of STTM technology
on the loss-of-function studies of miRNA and members from diverse plant species. A modified
STTM approach for studying the function of miRNA with spatial–temporal expression under the
control of specific promoters is further explored. STTM technology will enhance our understanding
of the miRNA activity in plant-tissue-specific development and stress responses for applications in
improving plant traits via miRNA regulation.

Keywords: microRNA; miRNA decoy; non-coding RNA; plant stress; plant development; short
tandem target mimic; spatial-temporal promoter; target mimic

1. Introduction

The global crop output is perpetually at risk due to ongoing climate change [1–3], with
the impact of climate change expected to increase in the future [4]. Abiotic stresses resulting
from climate change affect various physiological processes in plants, such as increasing
transpiration rate, reducing carbon uptake, and decreasing respiration efficiency, which is
caused by an interruption of the stomatal mechanism. These changes ultimately decrease
crop productivity [5]. Despite these challenges, there is a need to increase agricultural
yields by 70% in the next 30 years to support the global population, which is predicted to
double by 2050 [6]. Thus, there is a dire need to explore and utilize various approaches
to understand gene regulation and manipulation to ensure better plant performance and
productivity [7].

The regulatory gene-expression network in plants involves several layers of regulatory
components that control the biogenesis of genes, including signal transduction, chromatin
remodeling, transcription factors, transcription, post-transcription, and translation [8–13].
MicroRNA (miRNA) is one of the critical components in regulating gene expression at the
post-transcriptional level, playing essential roles in various molecular and developmental
processes [14]. miRNAs are short, non-coding RNAs, approximately 19–24 nucleotides long.

Plants 2023, 12, 669. https://doi.org/10.3390/plants12030669 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12030669
https://doi.org/10.3390/plants12030669
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-7182-5198
https://orcid.org/0000-0002-0101-4143
https://orcid.org/0000-0002-8508-9977
https://doi.org/10.3390/plants12030669
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12030669?type=check_update&version=1


Plants 2023, 12, 669 2 of 25

They confer gene-silencing abilities by cleaving messenger RNA (mRNA) and restricting
the translation of transcripts [15,16]. miRNA has been found to play essential roles in
various biological processes, including plant growth and development as well as biotic
and abiotic stress responses [17–20]. Many miRNAs have been found to influence plant
performance and yield-related agronomic traits, making them attractive targets for crop
improvement [21,22].

Several approaches have been developed to help us understand the functions of
miRNA in regulating gene expression, including the overexpression of MIRNA (MIR)
genes, artificial miRNA (amiRNA), anti-microRNA oligonucleotides (AMOs), RNA inter-
ference (RNAi), transcription-activator-like effector nucleases (TALEN), clustered regularly
interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9),
and target mimics [23–28]. Traditionally, the overexpression and knockdown/knockout
techniques are used in the functional investigations of miRNAs, which result in a gain-of-
function (GoF) or loss-of-function (LoF), respectively. However, miRNA genetic mutants
are less effective as their miRNAs are small in size and have numerous members with
overlapping functions that spread over the intergenic regions [29]. Furthermore, miRNA
overexpression does not completely demonstrate its role, as miRNA can regulate gene
expression when it is upregulated or downregulated [30]. Since the discovery of the IN-
DUCED BY PHOSPHATE STARVATION 1 (IPS1) gene that downregulates miR399 activity
in plants, a new way to inhibit miRNA using a mimicking target transcript strategy has
been invented [31]. This review discusses the development of miRNA downregulating
tools using mimicking techniques. We focus on the short tandem target mimic (STTM) as a
reliable tool for studying the function of miRNA, including its potential to regulate specific
plant traits in a tissue-specific and inducible manner.

2. miRNA Biogenesis and Its Regulation in Plant Transcripts

Initially, MIR genes are transcribed from gene promoters by RNA polymerase II, pro-
ducing single-stranded RNAs that form a coiled-hairpin secondary structure due to near-
perfect complementary repeat sequences. This process produces RNA duplexes known
as primary transcripts (pri-miRNAs) [32]. The length and structure of these pri-miRNAs
vary between miRNAs and typically range between 100 and 400 nucleotides [33,34]. These
synthesized pri-miRNAs are then stabilized by the RNA-binding protein Dawdle (DDL).
The conversion of pri-miRNA to the precursor miRNA (pre-miRNA) is carried out in
plants by the nuclease-cleaving protein Dicer-Like 1 (DCL1) [35]. This conversion is con-
ducted with the joint action of double-stranded RNA-binding protein Hyponastic Leaves 1
(HYL1) and the zinc-finger protein Serrate (SE) [36,37]. The DCL1, HYL1, and SE proteins
can form dicing complexes and process pri-miRNAs into pre-miRNAs in dicing bodies
(D-bodies) [38–40].

After the conversion of pri-miRNA into pre-miRNA, a miRNA/miRNA* duplex con-
sisting of the guide strand (miRNA) and the passenger strand (miRNA*) will be produced
through the action of DCL1. DCL1 cleaves the pre-miRNA, which is then methylated
at the 3′ ends by sRNA methyltransferase Hua Enhancer 1 (HEN1) to protect it from
exonuclease-mediated degradation [32,41]. The methylated miRNA/miRNA* duplex is
then transported into the cytoplasm by the plant homolog of cytoplasmic exportin-5 pro-
tein, Hasty (HST) [42]. The miRNA duplex will be loaded into Argonaute 1 (AGO1) to
form the RNA-induced silencing complex (RISC). The AGO protein is considered the
most crucial structural protein in the RISC complex. It has four domains: namely, the
N-terminal domain (N), the PIWI/Argonaute/Zwille (PAZ) domain, the MID domain,
and the P-element-induced wimpy testis (PIWI) domain. The PAZ domain binds RNA,
while the PIWI domain possesses RNase H activity [14]. The formation then turns the
guide miRNA into a single strand while the passenger miRNA* is degraded. After that,
miRNA-RISC carries out the mRNA-silencing interaction through translation inhibition
or mRNA cleavage [38]. Subsequently, the RISC complex with guide miRNA (3′–5′) will
recognize and bind to the target mRNA by complementary base pairing [43].
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In plants, miRNAs usually show sequences that are almost perfectly complementary
to target transcripts. Many miRNAs facilitate RISCs to target mRNA by the direct cleavage
of mRNA that strongly represses gene expression. In addition, this process of repression
can also be achieved by interfering with mRNA after its assembly with ribosomes in the
cytosol or endoplasmic reticulum, a process called translational inhibition [44,45]. The
miRNA-RISC cleaving targets usually depend on the complementarity of the 10–11th
nucleotides from the 5′ end of the miRNA. Complementary-sequence base pairing in this
region will cleave the mRNA, while non-complementary bases pairing sequences will
inhibit mRNA at translation stages [14]. However, the findings on how miRNAs affect
plant phenotypes are still not fully understood, as individual miRNAs can regulate the
expression of many genes under different conditions [46].

3. Inhibition Mechanism of Target Mimic That Confers Mature miRNA Repression
in Plants

Many approaches have been developed to better understand the specific role of
miRNAs in regulating plant processes. The expression of miRNA genes usually depends
on exogenous or endogenous stimuli toward the plant, while miRNA is also one of the
essential components of plant regulatory networks. The roles of specific miRNAs can be
studied either through miRNA GoF or LoF. To elucidate the miRNA GoF, overexpression
is one of the approaches used to enhance the activity of the miRNA of interest. In this
case, amiRNA overexpression is designed to increase the abundance of target miRNA in
the cells. It is also possible to overexpress either precursor miRNAs (pre-miRNAs) or the
cDNA of MIR genes identified from transcriptome sequencing [47,48]. Moreover, a vector
that overexpresses miRNA in Arabidopsis thaliana and carries a constitutive promoter can
effectively increase the expression of internal miRNAs. This method amplifies naturally
occurring miRNAs using a primer designed and cloned into a vector [49]. However,
the overexpression of miRNA alone may not accurately reflect the actual function of the
miRNA, and it may result in undesirable plant performance. In Chrysanthemum indicum,
the overexpression of cin-miR399a led to reduced salt and drought tolerance [48].

Thus, various LoF approaches have been developed to downregulate miRNA activity,
such as targeting the MIR gene, pri/pre-miRNA, and mature miRNA [50–52]. However,
to fully understand the function of individual miRNAs, it is important to investigate
the role of mature miRNA activity in suppressing specific target transcripts. The LoF of
specific, mature miRNA activities can be achieved by mimicking the mRNA transcript and
sequestering the mature miRNAs from mRNA [53]. The miRNA mimic has been used
to block miRNA activity by imitating the target transcript sequence. It also provides a
mechanism that is resistant to cleavage by miRNA and degrades transcripts complementary
to it at the 10–11th nucleotides [31,54]. The miRNA mimic also has a complementary
sequence of the mature miRNA that will bind to the miRNA, avoiding the binding of the
miRNA to the actual target mRNA. The miRNA mimic will protect the target transcript from
suppression by acting as a decoy for the miRNA. This will increase the expression of target
transcripts by reducing miRNA inhibition activities toward the target transcripts. This
technology, known as a “target mimic,” was developed with exogenous and endogenous
approaches to downregulating miRNA. An exogenous method is also known as anti-
microRNA oligonucleotides (AMOs) (Figure 1a). Typically, AMOs rely on complementary
base pairing between the oligonucleotide sequence and its target miRNA [55]. AMOs are
chemically modified antisense oligonucleotides that have a sucrose-mediated delivery to
plants. The inhibition of miRNA function can be achieved by immersing plant tissue in
solutions containing AMOs and sucrose, with a more severe effect observed when the plant
is treated with high concentrations of sucrose [56]. Previous research has demonstrated
that AMOs have the ability to suppress the expression of particular miRNAs (miR156a–j,
miR820a–c, and miR169f,g) in leaves. Depending on the sucrose concentration of the AMO
solution, these downregulations display three distinct levels of expression: high, medium,
and low. AMOs have also been observed to result in phenotypic effects when specific
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miRNAs (miR160a–d, miR167d–h, miR171g and miR390) are downregulated, including
reduced root length and decreased root branching. Additionally, the application of AMOs
can suppress miRNA in members of the same family without affecting members of other
families. This offers a tool to research miRNA functions in a sequence-specific way, as well
as to investigate the phenotypic effects mediated by miRNAs [56].
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Figure 1. Exogenous mimicking approaches by using (a) anti–microRNA oligonucleotides (AMO)
while endogenous approaches include (b) target mimicry (TM), (c) molecular sponges (SP) and
(d) short tandem target mimic (STTM). The mechanism used to mimic the miRNA varies from its
secondary structure and the number of miRNA binding sites.

Other than these exogenous methods, several endogenous target mimic approaches
have also been developed to mimic miRNA targets. These approaches utilize long, non-
coding RNA within the plant genome that is complementary to the miRNA and functions
through the IPS1 mechanism of miRNA silencing, also known as the competing endogenous
RNAs (ceRNAs) in mammals [31,57,58]. In addition, these endogenous, target-mimic
transcripts also have properties similar to other non-coding RNAs (ncRNAs), which do
not encode proteins but play a role in regulating the transcripts involved in developmental
processes or stress responses [59]. However, endogenous miRNA target mimics intend
to regulate miRNA activities instead of the gene transcript expression inside the cell.
The discovery of the miR399-inhibiting non-protein-coding gene IPS1 contributed to this
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finding in 2007. The IPS1 and PHOSPHATE 2 (PHO2) genes are involved in inorganic
P (Pi) homeostasis, sharing a 23-nucleotide binding site that competes with miR399 for
pairing [31]. However, IPS1 contains three mismatch nucleotides that form a “central
bulge” opposite the miRNA cleavage site, preventing it from being cleaved by miR399
activity [60]. This finding has led to the development and commercialization of miRNA-
decoying techniques. Target mimicry (TM) is one of the first developed mimic tools, an
artificial construct design based on IPS1 (Figure 1b). Like IPS1, it has one binding site, but
it has been designed with an amiRNA binding-site sequence for different decoy miRNAs.
When constructed as an endogenous miRNA target mimic, it is known as MIMICS (MIM).
Its mechanism is similar to IPS1, representing an miRNA target transcript and pairing with
miRNA without the TM being degraded [31,61].

In addition to endogenous target mimics, RNA sponges—also known as molecular
sponges (SP)—have been found in animals and plants that sequester miRNA, resulting
in LoF (Figure 1c) [62]. Circular RNA (circRNA) was first observed in human and mouse
brains. Its mechanism acts as a sponge by mimicking the miR671 target transcript, but
it can be cleaved by miRNA [63]. However, with modifications, SP technology can have
up to fifteen miRNA binding sites, including two mismatches that provide cleavage re-
sistance to miRNA and four nucleotide spacers between the miRNA binding sites [64,65].
However, mimicking technology has demonstrated various levels of structural stability
when transcribed, efficiency in decoying miRNA families or their members, and miRNA
degradation [65].

To address this variability, A mimicking tool called STTM was developed (Figure 1d).
STTM is an artificial, non-coding RNA technology that is expressed through genetic en-
gineering techniques. It is a short RNA of less than 100 nucleotides. This tool is now the
most well-understood and well-developed miRNA mimic. Furthermore, this technology
was designed to be more stable in cells. It has more binding sites to decoy highly abundant
miRNA. Thus, STTM was developed with modifications to the TM approach to increase
effectiveness. STTM was designed with the most extended nucleotide spacer and a weak
stem–loop structure, increasing its stability. In contrast, TM has no spacer, and SP only
has a short spacer. STTM consists of two miRNA binding sites that can decoy different
miRNAs, whereas TM only has one binding site, which may lower its effectiveness in highly
abundant miRNAs [28]. In comparison, the SP targeting of certain miRNAs is complex
to design and lacks a complete understanding of its mechanism, unlike STTM, which is
easier to construct. Until recently, STTM has demonstrated its suitability to be studied with
different miRNAs in model and crop plants, especially the conserved miR165/166 and
miR156/157 with combined strategies [66].

4. STTM Application in miRNA LoF Studies

STTM was developed based on the concept of TM, which has constantly been evolving
to better assist in the exploration of the role of miRNAs in plants and mammals. Among
various artificial target mimics, STTM has been found to be the most effective and stable
molecular mimic for regulating miRNAs in Arabidopsis [67]. Previously, the constitutive
cauliflower mosaic virus (CaMV) promoter was used to develop both the STTM and TM
constructs to observe the severity of the phenotype caused by miRNA silencing [61]. This
STTM construct was compared with conventional, transgenic TM to observe the effect
on the phenotype; it was found that the STTM induced a greater downregulation of
miR166 [67]. This STTM was designed with several components that play an essential role
in ensuring that the targeted miRNA is successfully silenced, such as small RNA binding
sites, a spacer, three-nucleotide bulges, and the utilization of different promoters [52,66,68].
Thus, the development of STTM contributes to its application in targeting stress-triggered
miRNA and other important crops (Figure 2) [66,68,69].
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The spacer component serves to stabilize the STTM transcripts. This region consists of
48 to 88 nucleotides that form a secondary structure similar to a hairpin loop. Intermediate
to this space is the SwaI site, which is used for the gene construction [52]. This spacer must
have at least 48 nucleotides to ensure the stability of the construct and its effectiveness.
Shorter spacers, such as those with 31 nucleotides, have been used, but decreased efficacy
and stability have been observed when they are compared to spacers with more nucleotide
length. However, the nucleotide length can be increased up to 96 nucleotides, showing a
more significant phenotype towards silencing the miR165 and miR166 activities [28]. In
addition, mutation on the nucleotide sequence of the spacer may disturb the formation of
the STTM’s secondary structure, thus lowering the effectiveness of the STTM in miRNA
suppression and STTM stability in cells [28,70]. Therefore, the spacer component has a
minimum length of 48 nucleotides, and no mutation of the secondary structure is neces-
sary to ensure the stability of the STTM construct to avoid self-binding and maintain the
accessibility of the miRNA binding site [28,68].

Furthermore, STTM consists of two small RNA binding sites. These sites can use two
different mimic sequences for targeting miRNA because they are separated by a spacer
that forms a weak hairpin loop. These small RNA binding sites consist of 21 nucleotide se-
quences that are complementary to the mature miRNA. This miRNA binding site sequence
masks or mimics the target transcript that is complementary to the mature miRNA [52,68].
A loop sequence is inserted around the 10th and 11th positions of the mature miRNA
binding sites, causing the binding site of the miRNA complex to be resistant to cleavage,
similar to the above-mentioned IPS1 mechanism. The CUA and CAA sequences, as well as
any other sequence that will produce a bulge loop when binding to miRNA, are frequently
employed. However, these sequences must not exhibit any significant plant phenotype
to optimize the severe phenotype of miRNA inhibition [68]. Additionally, these three
nucleotides must not be complementary to the target miRNA at the 11th to 13th STTM
sequences from the 5′ end in the middle or bulge sequence because miRNA can cleave
other sequences that are complementary with the 10th to 11th nucleotides from the 5′ end
of miRNA sequence [14,68]. Thus, this improvement in STTM constructs led to increased
phenotypic alteration caused by miRNA inhibition when compared to previous STTM
construct versions (Table 1).



Plants 2023, 12, 669 7 of 25

Table 1. Comparison of advancements in the development of STTM components and their correlation
with changes in plant phenotypes.

Component No/Weak Phenotypic Alteration Strong Phenotypic Alteration

Spacer construct Absence Present

STTM expression Low expression High expression

Spacer lengths Lengths of 8 and 31 nucleotides Lengths of 48, 88 and 96 nucleotides

Stem region structure Stem region disrupted via mutation, even
though a long spacer was used Stable stem region with no mutation

Number of miRNA binding sites One binding site Two binding sites

Mutation of miRNA binding sites Mutation occurs No mutation occurs

Tri-nucleotide bulge Complementary to 10th to 11th Not complementary to 10th to 11th

5. Effectiveness of STTM in Regulating miRNA

STTM is a popular technology as it can target various miRNAs. It is well-established
that miRNAs are transcribed from a wide range of non-coding genomic regions. The
miRNA biogenesis pathway is a complex process that involves multiple enzymes and
proteins, and mostly miRNA is transported into the cytoplasm for gene silencing (Figure 3a).
Blocking one MIR gene transcript through gene deactivation by mutation methods will not
be able to explain the entire functioning of the miRNA, as miRNAs have multiple members
with overlapping functions over the intergenic region [71]. One of the highly conserved
miRNA families in Arabidopsis, such as miR156, contains eight MIR genes that encode
miR156a to miR156h. Thus, it is difficult to study its function through gene suppression [72].
STTM can inhibit miRNAs in various conditions by mimicking complementary to mature
miRNA transcripts, inhibiting their gene-silencing activity (Figure 3b,c). In this approach,
two short sequences mimic the target site of a small RNA separated by a linker nucleotide
sequence and lead to the degradation of the small RNA to help understand the role of
miRNA in regulating specific miRNA targets [28]. The degradation of miRNA by STTM
involves the activity of Small RNA Degrading Nuclease (SDN). Although the mechanism
of SDN in degrading targeted miRNA is still not fully known, a mutation towards SDNs
(SDN1-1 and SDN2-1) has shown no change in the abundance of target miRNAs and
plant phenotypes that express STTM [28]. Additionally, the F-box protein Hawaiian Skirt
(HWS) is triggered to degrade the miRNA that binds to the STTM mismatch loop which
forms a non-optimal RISC in ubiquitin-dependent degradation [73]. The HWS has also
been found to regulate the IPS1 transcript at an upstream level that may correlate with
the activation of STTM transcript biogenesis [74]. Despite this, there is still a gap in the
complete comprehension of miRNA–STTM degradation involving SDNs and the HWS.

Additionally, four factors place STTM among the most effective tools for researching
miRNA function in plants; these are supported by recent findings [28]. First, various
miRNA families targeted by STTM have displayed a sharp and steady downregulation.
Such miRNA suppression illustrates the potential of STTM for miRNA functional identifi-
cation, including conserved miRNA families. However, the efficiency of STTM on different
miRNA families can be affected by the three-nucleotide mismatch loop, which is designed
to avoid the cleavage of STTM. Still, it can lower the free energy of binding if an excessive
mismatch occurs [65]. Second, it appears that STTM and miRNA levels are inversely
connected. When the STTM level increases, the targeted miRNA level decrease, and vice
versa. For example, STTM interacted with miR165/166 quite effectively, reaching a 90%
reduction of miR166 expression in STTM166-expressing plants, which usually led to the
cleavage repression of HOMEODOMAIN CONTAINING PROTEIN4 (OsHB4). Meanwhile,
the abundance of miR160, which generally inhibits auxin response factor (ARF) genes
such as SlARF16A, was decreased by 78% in STTM160-expressing plants via translational
inhibition [28,75,76]. Thirdly, STTM only targets mature miRNAs and does not interfere
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with any pri/pre-miRNA, which lowers the likelihood of interfering with other processes
in plants. STTM silencing also shows highly specific, desired phenotypes in monocotyle-
don and dicotyledon plants [69]. The fourth factor is that STTM targets miRNA from the
3′ end, indicating part of the mature miRNA’s mechanism in suppressing the mRNA target
transcript. Mature miRNAs are complementary to the 5′ end of the targeted mRNAs.
Therefore, an STTM mimicking the 5′ end sequence of the targeted mRNA is the most
effective at silencing mature miRNA [28].
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The effectiveness of the STTM approach has an advantage for various miRNA mem-
bers and families. The miRNA in plants can be categorized into different members, each
of which can be used to determine the relative abundance of a particular miRNA fam-
ily member with different nucleotides. For example, the miR159 family has members
a, b, and c, which differ in the last two nucleotides [70]. The conserved miRNA family
contributes to more members such as miR169, which also can be manipulated by STTMs
such as STTM169q and STTM169o, and can therefore downregulate specific miRNA mem-
bers [77,78]. Therefore, a greater abundance of the member is adequate for the STTM
study since it has two miRNA binding sites to comprehensively investigate the various
targets of different members [79,80]. Furthermore, some members of the miRNA family
have vastly different sequences, which prevents them from being mimicked by the same
binding sites [79]. At the same time, STTM exhibits a high specificity without affecting
the abundance of other miRNAs such as STTM156, which does not interrupt miR159 and
miR160 abundance, making it suitable for targeting miRNAs from different families with
specific binding sites [69].

6. Diverse Plant miRNA Functions Uncovered Using STTM

Although STTM has been applied to various plant species, its efficiency at miRNA
inhibition is constantly being studied at the genetic and genomic levels, using Arabidopsis as
a model plant [66,81]. Arabidopsis can be used to explore the effectiveness of a specific STTM
before its application in a plant of interest to study gene functions or homolog interac-
tions [82]. Based on the literature, the crops with the highest number of STTM applications
are tomatoes (Solanum lycopersicum L.) and rice (Oryza sativa) (Figure 4). The tomato is a
self-pollinated crop in the Solanaceae family with around 3000 species, and is the second
highest in global vegetable production, after the potato [83]. Tomato plants become more
resistant to powdery mildew if treated with drought, indicating plant resistance crosstalk
to be more resistant toward other stresses [84]. In addition, STTM1916-transformed tomato
plants are made more resistant to two bacterial infections, Phytophthora infestans and Botrytis
cinerea, by upregulating strictosidine synthase (STR-2), UDP-glycosyltransferase (UGT),
and MYB transcription factor MYB12 [85].
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Various phenotypes and traits expressed by model or crop plants can be modified
by manipulating the miRNA activities using STTM. The STTM method has been widely
used to examine the roles of various miRNAs across many different plant species, as is
shown in Table 2. It was observed that the first STTM could influence the gene transcript of
PHABULOSA (PHB), PHAVOLUTA (PHV), REVOLUTA (REV), and members of a small
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homeodomain-leucine zipper family, ATHB8 and ATHB15, by inhibiting miR165/166
activities in Arabidopsis [28]. Subsequent studies showed that STTM could efficiently
manipulate diverse families of miRNAs for the discovery of miRNA functions [52,69].

Table 2. Diverse plant species and STTM targets for miRNA functional discovery.

Plant STTM
Target(s) Target Gene(s) Trait Observed Effects References

Rice miR398 CSD1–2, CCS Abiotic resistance Tolerance to salinity but growth inhibited
under normal conditions [86]

Maize ZmmiR169q ZmNF-YA8 Abiotic resistance Enhanced plant salt resistance [78]

Rice miR172 IDS1 Abiotic resistance Reactive oxygen species (ROS) regulation [87]

Wheat miR164 TaNAC14 Abiotic resistance Impacted root development and growth and
stress (drought and salinity) [88]

Apple MdmiRln20 Md-TN1-GLS Biotic resistance Reduced Glomerella leaf spot (GLS)
incidence [89]

Apple MdmiR156ab
MdmiR395 MdWRKYN1MdWRKY26 Biotic resistance

WRKY-regulated pathogenesis-related (PR)
protein-encoding genes boost plant biotic

resistance
[90]

Arabidopsis miR825/825 AT5G40910
AT5G38850AT3G04220AT5G44940 Biotic resistance Increased resistance to Botrytis cinerea B1301

strain [91]

Arabidopsis miR472 NBS-LRR Biotic resistance Increased resistance to Pseudomonas syringae
Pv. tomato (Pst) DC3000 [92]

Cucumber miR164d miR396b
NovelmiR1NovelmiR7 NAC, APE, 4CL, PAL Biotic resistance Increased resistance to Corynespora cassiicola [93]

Potato miR397 IbLACs Biotic resistance

Upregulates lignin content that provides
physical defence and reduces the

accumulation of sweet potato virus disease
(SPVD)

[94]

Soybean miR1510 GmTNL16 Biotic resistance
Plant hormone signaling and secondary

metabolism interact with Phytophthora sojae
infection

[95]

Soybean
miR1507a, miR1507c,
miR482a, miR168a,

miR1515a
Five NBS-LRR family genes Biotic resistance Increased resistance towards soybean mosaic

virus (SMV) [96]

Tomato miR482, miR2118b NLR Biotic resistance Enhanced resistance toward oomycete and
bacterial pathogens [97]

Tomato miR482b NBS-LRR Biotic resistance Enhancement of tomato resistance to
Phytophthora infestans [98]

Tomato sly-miR1916 STR-2, UGTs, MYB12 Biotic resistance Accumulation of α-tomatine and
anthocyanins confers biotic stress tolerance [85]

Tomato miR166b SlHDZ34/45 Biotic resistance Reduced pathogen accumulation in
P. infestans-infected plants [99]

Tomato miR482/2118 NLR Biotic resistance Improved resistance to oomycete and
bacterial pathogen infection [97]

Citrus CsmiR399a.1 CsUBC24 Flower development
Abnormal floral development, suppression

of anther dehiscence, and diminished pollen
productivity

[100]

Arabidopsis miR396 GRF1, GRF2, GRF3, GRF4, GRF7,
GRF8, GRF9 Flower development Rescues abnormal pistils and siliques [101]

Cotton Gh-miR156 CHLI Flower development Early flowering [102]

Tomato miR1917 SlCTR4 Fruit development
Increased biomass, longer terminal leaflet,

bigger floral organ and better fruit and seed
size

[103]

Tomato Sly-miR164a NAC1, NAM3 Fruit development
The amount of hydrogen peroxide (H2O2) in

the fruit decreased, and its firmness
increased in post-harvest chilling

[104]

Tomato Sly-miR171e GRAS24, CBF1, GA2ox1, COR,
GA3, GA20ox1, GA3ox1 Fruit development

Reduced chilling injury (CI) index, lower
hydrogen peroxide (H2O2) level, and greater

fruit firmness after harvest
[105]

Kiwi miR164 AdNAC6, AdNAC7 Fruit development Faster fruit ripening [106]

Tomato sly-miR159 SlGA3ox1, SlGA3ox2 Fruit morphology Larger fruit [107]
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Table 2. Cont.

Plant STTM
Target(s) Target Gene(s) Trait Observed Effects References

Arabidopsis miR169d YUC2, PIN1, ARF1, ARF2 Leaf development More and larger leaves [108]

Arabidopsis miR827 GPLα Leaf development Reduced PTP1 gene expression, decreased
leaf phosphate [109]

Silver
birch BpmiR164 BpCUC2 Leaf development Reduced internodes and irregular leaf forms [110]

Rice miR394 LC4 Leaf development Increased leaf angles [111]

Arabidopsis miR164 GhCUC2 Plant architecture Decreased length and number of lateral
branches [82]

Cotton miR164 GhCUC2 Plant architecture Decreased length and number of lateral
branches [82]

Cucurbit miR159 GAMYB Plant architecture Dwarf with smaller leaves [112]

Potato miR160a/b StARF10,
StARF16 Plant architecture Shorter roots, more lateral roots, and less

fresh root weight [80]

Rice OsmiR166 OsHox32 Plant architecture Increased thickness of cell wall and culm
strength [113]

Rice miR166 OsHB4 Plant architecture
More drought tolerance with rolled-leaf

phenotype and reduced xylem vessel
diameter

[76]

Rice miR159 OsGAMYB, OsGAMYBL1 Plant architecture
Reduced height and stem diameter, flag leaf

length, main panicle, spikelet hulls, and
grain size

[53]

Rice miR528 DWARF3 (D3) Plant architecture Higher plant height due to lower abscisic
acid and higher gibberellin [114]

Wheat miR319 TaPCF8,
TaGAMYB3 Plant architecture

Increased plant height, reduced tiller number,
spikes and flag leaves, thicker culms, and

higher grain output
[115]

Poplar miR828 MYB171, MYB011 Plant architecture Increased expression of lignin biosynthesis
genes and lignin accumulation [116]

Arabidopsis miR165/166 HD-ZIP III Plant development Increased auxin content and decreased auxin
sensitivity [117]

Tomato sly-miR171a-b SlHAM,
SlHAM2 Plant development

Delayed anther development, increased
shoot branching and compound leaf

morphogenesis
[118]

Poplar miR393 FBL family members Plant development
Taller, thicker, more internodes, broader
phloem, xylem, and cambium cell layers,

higher lignin content
[119]

Soybean GmSTTM166 ATHB14-LIKE Plant development Stunted growth [120]

Arabidopsis AtMIR396a bHLH74 Root development Longer roots [121]

Arabidopsis miR397b LAC2OX Root development
Elevated LAC2 transcript, decreased

lignification in root xylem, and lengthened
primary roots

[122]

Rice miR390 ARFs Root development Decreased salt tolerance with inhibited
lateral root growth [123]

Tomato miR858 SlMYB7-like Secondary metabolite Increased anthocyanin biosynthesis gene
expression under normal conditions [124]

Tobacco nta-miRX27 QPT2 Secondary metabolite Increased nicotine biosynthesis [125]

Persimmon DkmiR397 DkLAC2 Secondary metabolite Increased accumulation of proanthocyanins [126]

Citrus miR171 CsSCL Somatic
embryogenesis (SE)

Weakened somatic embryogenesis (SE)
competence [127]

Rice miR319 OsTCP21, OsGAmyb Yield Improved tiller number and grain yield [128]

Rice miR398 Os07g46990 Yield Smaller panicles with fewer grains and late
flowering [69]

Rice miR1432 OsACOT Yield Increased grain weight by increasing grain
filling rate [129]

On the other hand, rice is a major staple food crop in most countries [130]. Therefore,
it is desirable for rice performance to have the ability to tolerate different stresses as the
most important characteristic in crop improvement for increased yield. STTM helped
to reveal the interaction between rice miR172 and INDETERMINATE SPIKELET1 (IDS1)
in salt stress;miR319 improved yield through an increase in tiller bud and grain with
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upregulated TEOSINTE BRANCHED1/CYCLOIDEA/PCF (OsTCP21) and GIBBERELLIN
AND ABSCISIC ACID REGULATED myb (OsGAmyb) [87,128]. These studies demonstrated
the important applications of miRNA in improving phenotypes, especially in crops [22,131–134].

6.1. Plant Development and Architecture

STTM is an effective tool for functional genomics studies in plant development, espe-
cially plant morphology and growth throughout different developmental stages. STTM
generates a clear phenotype in plant architecture to elucidate miRNA function in plant
development. STTM-miR165/166, (STTM165/166)-transformed Arabidopsis with upregu-
lated class III homeodomain/Leu zipper (HD-ZIP III) transcription factors (PHB, PHV and
REV), showed an abnormal phenotype resulting from the loss of apical dominance and leaf
asymmetry [28]. In addition, the miR165/166 copy number decreased to almost zero due
to the inhibitory effect of STTM165/166 [52].

STTM has also been used to uncover miRNA’s involvement in stem cell formation. The
biosynthesis of lignin in poplar plants could be manipulated using STTM to downregulate
miR828, which directly targeted two MYB genes (MYB171 and MYB011). This led to an
increased lignin deposition by activating PHENYLALANINE AMMONIA LYASE 1 (PAL1)
and CINNAMOYL-COA REDUCTASE2 (CCR2), both of which were highly abundant in
the stem during secondary vascular formation [116]. STTM also increased the number of
axillary branches of a tomato plant by silencing sly-miR171 [118]. The functional genomics
of root miRNA revealed that miR160a/b in potatoes affected specific tissue regulations of
transcripts. Potato plants with STTM mimicking the target for miR160a/b showed shorter
lateral roots and an increased lateral root number, but also demonstrated a decreased root
weight [80].

STTM319 targeting miR319 in wheat increased the transcripts of TCP (TaPCF8) and
GAMYB (TaGAMYB3) transcription factors, affecting plant heights, tiller numbers, spike
leaves, and wheat-grain yield [115]. STTM319 is also effective in rice to obtain a higher
number of tiller buds and a greater yield despite different species [128]. In soybeans,
GmSTTM166 demonstrated the function of miR166 in regulating plant height by targeting
the ATHB14-LIKE that directly represses the expression of the gibberellin biosynthesis
gene. GmSTTM166 silenced miR166, which caused the plant to dwarf because of an
upregulated ATHB14-LIKE transcript [120]. A correlation between miR166b and the START
domain-containing protein gene (OsHox32) in determining the rice plant structure has also
been shown. STTM166b demonstrated the downregulation of the miR166b interaction
with OsHox32, which affected the overexpression of OsHox32 (OEHox32). OEHox32 plants
have shorter internodes and a reduced cellulose content and lignin thickness, similar to
STTM166b-transformed plants. The lack of cellulose and lignin makes the leaf droop and
easily break when bending, showing less strength than wild-type or RNAi-OsHox32 plants.
However, STTM166b did not interrupt rice plant height like in soybeans [113].

In the poplar plant, the STTM393 transformant had ten times less miR393 than the
controls. After three months, the STTM393 plants grew 20% taller, 15% thicker, and had
two to four more numbers of internodes than the control plants. Cross-sections of the
STTM393 transgenic plant stems showed broader phloem, xylem, and cambium cell layers
than the control plants. Additionally, their lignin content was higher than in non-transgenic
plants [119]. In addition, STTM393 plants displayed an increased expression of an auxin
signaling pathway, cell cyclin, cell expansion, and lignin production genes. Higher FBL
expression levels showed that the STTM393 plants had a more active auxin signaling
pathway to stimulate plant development [119]. In switchgrass, miR396 was found to
target the growth-regulating factor (GRF) gene module (PvGRF1, 3, and 9) involved in
regulating plant height and lignin content. The overexpression of miR396 (OEMIR396)
produced plants with reduced height, internode length, and stem dry biomass. Thus,
miR396 downregulation could maintain plant architecture and strength [135].
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6.2. Leaf Development

Leaf morphology and physiology can significantly influence photosynthetic perfor-
mance. The total area of the leaf, xylem, and phloem influence the rate of photosyn-
thesis [136]. Various STTM designs revealed the miRNA function in leaf development.
Transgenic Arabidopsis with STTM169d showed an increased number of rosettes and leaf
size with the upregulation of auxin response factors (ARF1 and ARF2) [108]. STTM827 sup-
pressed miR827 to less than 10% in regulating leaf senescence and phosphate homeostasis.
STTM827 delayed leaf senescence in natural and dark-induced conditions by enhancing the
expression of the GLABRA1 enhancer-binding protein (GeBP)-like (GPLα) that suppresses
senescence and NITROGEN LIMITATION ADAPTATION (NLA), which is a suppressor
for senescence transcriptional activator gene, ORE1. Meanwhile, phosphate homeostasis
was reduced by the negative regulation of GPLα or NLA on PHOSPHATE TRANSPORTER
1 (PHT1), which encodes for a plasma-membrane-localized phosphate transporter [109].
STTM can also be used to explore the function of leaf miRNA in both woody and rice
plants. STTM-BpmiR164 was used in Betula pendula, leading to an increase in the expression
of CUP-SHAPED COTYLEDON 2 (BpCUC2), which was targeted by miR164, resulting in
abnormal leaf shapes and shorter internodes. In rice, STTM364 suppressed the miR364 that
targeted LEAF INCLINATION 4 (LC4), leading to an elevation in leaf inclination [110,111].
The Overexpression of SlymiR208 in transgenic lines suppressed the cytokinin biosyn-
thesis genes (SlIPT2 and SlIPT4), which induced leaf senescence at an early stage. Thus,
downregulating the abundance of SlymiR208 potentially reduces young-leaf senescence in
tomatoes [137].

6.3. Root Development

The spatial layout of the root system (number or length of lateral organs) varies
significantly based on plant species, soil composition, and especially the availability of
water and mineral nutrients. It involves abiotic and biotic environmental cues [138]. The
function of miRNA in root development, such as the root length, is revealed through the
application of STTM. For example, silencing the miR396a, which regulates BASIC HELIX-
LOOP-HELIX TRANSCRIPTION FACTOR 74 (bHLH74), showed longer root systems in
Arabidopsis. Additionally, miR156 was found to target SQUAMOSA PROMOTER BIND-
ING PROTEIN-LIKE (SPL) that affects the root meristem by altering auxin and cytokinin
responses [139]. Arabidopsis plants with low amounts of miR156 had a smaller meristem
size, resulting in a shorter primary root (PR). On the other hand, it was found that the
repression of miR390 by STTM390 negatively impacted the lateral root development and
salinity tolerance in rice [123]. In poplar, the overexpression of miR167a that suppressed
PeARF8.1 enhanced lateral root growth, while the overexpression of PeARFs reduced lateral
root development [140]. The STTM-mediated downregulation of miR167a increased the
activity of PeARFs, resulting in increased adventitious root development.

6.4. Flower Development

The physiological function of a flower is to facilitate reproduction, which is often
accomplished by the joining of sperm and eggs with fruit growth. Floral abnormalities,
anther dehiscence inhibition, and low pollen fertility can influence this function. Flower
development can be manipulated to enhance fruit production, especially under sub-optimal
conditions. In citrus, CsmiR399a.1-STTM plants grown under conditions with an adequate
supply of inorganic phosphate (Pi) showed a reduced total phosphorus content in their
leaves due to the upregulation of PHO2, a ubiquitin-conjugating E2 enzyme (UBC24) that
interacts with the floral regulator genes from the SEPALLATA family (CsSEP1.1, CsSEP1.2,
and CsSEP3), and the anther dehiscence regulator INDUCER OF CBF EXPRESSION1
(CsICE1), which mimics a plant Pi-deficiency condition. Thus, CsmiR399a.1-STTM plants
displayed the typical symptoms of Pi deficit to plant floral development, such as aberrant
floral development, suppression of anther dehiscence, and reduced pollen fertility [100].
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STTM156 induced early flowering in transgenic cotton plants by upregulating the
floral development gene. The miR156 targeted SQUAMOSA-PROMOTER BINDING PRO-
TEINLIKE (SPL), which activated LEAFY (LFY), FRUITFULL (FUL), and APETALA1 (AP1).
Thus, the downregulation of miR156 silenced SPL and upregulated other genes for floral
development [102]. Other miRNAs identified to be involved in flower development include
miR172-APETALA2 (AP2) in black goji. The downregulation of miR172 by STTM172 will
upregulate its target AP2, a repressor for FLOWERING LOCUS T (FT). Subsequently, this
activates the expression of the flowering integration factor (SOC1) that was inhibited by FT,
thus induced an early flowering time [141].

6.5. Fruit Development

STTM has also been applied to demonstrate the modulation of fruit shape and
size through the alteration of miRNA. STTM159-silencing of the sly-miR159 that targets
SIGAMYB2 produced larger and heavier tomato fruits. The role of sly-miR159 in fruit for-
mation was also confirmed by the CRISPR/Cas9 mutation of pre-sly-miR159 [107]. Notably,
sly-miR159 overexpression did not significantly affect gibberellin levels in tomato-fruit
formation [107,142]. This study demonstrated the quantitative effect on organ development
from the manipulation of a small, non-coding RNA.

Additionally, STTM is also useful in investigating the functional genomics of post-
harvest. The knockdown of Sly-miR164a by STTM164a revealed that the hardness of
tomato fruit increased with a lower content of hydrogen peroxide; while an increased
ABA content conferred a higher tolerance to chilling harm during periods of low tem-
perature [104]. Attempts have been made to identify miRNAs that affect fruit devel-
opment in plants. In tomato plants, miR157 overexpression resulted in the downregu-
lation of COLOURLESS NON-RIPENING (CNR), the genes that turn young, immature
fruits into ripe fruits. Hence, miR157 downregulation could delay fruit ripening and im-
prove fruit harvesting time [143]. Other findings on the correlation of miRNA with fruit
development include miR393/miR160/miR167-TRANSPORT INHIBITOR RESISTANT
(TIR)/AUXIN SIGNALING F-BOX (AFB)/ARF and the miR477-antisense long non-coding
RNA, ABCB19AS [144,145].

6.6. Secondary Metabolite

STTM397 was used to study the function of DkmiR397 in the biosynthesis of proan-
thocyanins (PA) in persimmon fruits. DkmiR397 targets the laccase gene DkLAC2, which is
a key enzyme in the biosynthesis of PA. The presence of higher levels of DkLAC2 in persim-
mon plants transformed with STTM397 resulted in an increased PA accumulation [126]. In
tomatoes, STTM858 showed an increased anthocyanin under normal conditions, whereas
SlMYB7-like transcripts considerably increased when miR858 was downregulated. The
concurrent increased expressions of several anthocyanin downstream biosynthesis genes,
including PHENYLALANINE AMMONIALYASE (PAL), CHALCONE SYNTHASE (CHS),
DIHYDROFLAVONOL REDUCTASE (DFR), ANTHOCYANIDIN SYNTHASE (ANS), and
FLAVONOL-3-GLUCOSYLTRANSFERASE (3GT), caused a heavy accumulation of antho-
cyanins in the leaves, stems, and leaf buds of transgenic plants [124]. Recently, miR172
overexpression showed a decreased red coloration and anthocyanin accumulation in apples
and, similarly, in Arabidopsis. This was due to the downregulation of the AP2 gene, which
acts as a positive regulator for the anthocyanin biosynthesis [146].

6.7. Biotic and Abiotic Stresses

STTM has the potential to increase plant stress tolerance. The downregulation of
miR164 by STTM164 conferred a tolerance of iron (Fe) deficiency by increasing the primary
root length, the number of lateral roots, and the transcripts of IRON-REGULATED TRANS-
PORTER 1 (IRT1) and FERRIC REDUCTION OXIDASE 2 (FRO2) when the Fe nutrient
was scarce in the soil [147]. STTM can also increase plant tolerance to high salinity by
suppressing certain miRNAs [78,86]. STTM169q suppresses ZmmiR69q, which is normally
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downregulated during salinity stress to regulate reactive oxygen species (ROS) accumu-
lation by activating PEROXIDASE1 (POD1) via the NUCLEAR FACTOR Y SUBUNIT A 8
(ZmNF-YA8) module in maize [78]. The STTM169q-transformed plants showed a higher
survival rate (40–47%) than the wild type, which was higher than the overexpression
of the ZmmiR169q target gene ZmNF-YA8 (24–45%). Meanwhile, the overexpression of
ZmmiR169q resulted in low survival rates and smaller plants than the wild type. Another
study reported that cin-miR396a was involved in the regulation of drought and salt stresses
in chrysanthemum. The overexpression of cin-miR396a reduced the plant tolerance toward
both abiotic stresses, causing decreased leaf water content and leaf-free proline content.
Additionally, cin-miR396a targets the stress-induced growth regulatory factors (CiGRF1
and CiGRF5) [48].

On the other hand, STTM can also help to improve biotic stress resistance. STTM482b
and STTM482 have been demonstrated to confer plants with a greater resistance to pathogen
attack [97,98]. Phytophthora infestans poses a major threat to tomato plants and interacts with
miR482b, NUCLEOTIDE-BINDING SITE (NBS), and the disease-resistance gene LEUCINE-
RICH REPEATS (LRRs). Overexpression of miR482b reduced the resistance of tomato plants
toward P. infestans with darkened leaves and gradual cell death. STTM482b successfully
reduced miR482b abundance and activated NBS-LRR genes to make the plants more
resistant to this pathogen [98]. This was further confirmed using STTM482- and STTM2118b-
targeting miR482 and miR2118b, respectively, upon Pseudomonas syringae and P. infestans
infection in tomatoes; these are the regulators for the disease-resistance gene NUCLEOTIDE-
BINDING LEUCINE-RICH REPEAT (NLR) [97]. There are various miR482 subfamilies, such
as miR482e downregulation by STTM482e, which also enhanced tomato resistance against
pathogen attack with the manipulation of NBS-LRR; this can be further explored using
STTM [148]. There are still many unexplored miRNAs that could increase plant resistance to
disease attack. In tomatoes, miR6024 targets the NLR gene in Alternaria solani necrotrophic
disease infection. The overexpression of miR6024 resulted in plants showing more lesions,
higher ROS generation, and a hypersusceptibility to A. solani than wild-type plants [149].

6.8. Yield

The agronomic characteristics of crop plants or yield can be measured through grain
weight, the number of panicles produced by each plant, and the total amount of grains
produced by each panicle [150]. Using STTM, rice agronomic traits regulated by miRNA
can be manipulated. For example, the overexpression of STTM-miR398 in rice uncovers its
function in rice-yield traits. The STTM-miR398 suppression of miR398 affected yield traits,
such as decreasing the seed size, tiller number, and plant height, indicating the important
role of miR398 in rice productivity [69]. Furthermore, OsTCP21 and OsGAmyb overexpres-
sion lines with STTM319 increased the length and weight of tiller buds [128]. miR1432
showed a higher expression in inferior grain, i.e., a higher yield of superior grains with
a lower expression of miR1432 during seed development [151,152]. The downregulation
of miR1432by STTM1432 increased the overall grain output by increasing the grain filling
rate and weight in rice [129]. This was achieved through the suppression of miR1432 in
seeds, leading to an upregulation of the ACYLCOA THIOESTERASE (OsACOT) gene mod-
ule, which plays a role in the metabolism of fatty acids and phytohormone biosynthesis,
specifically auxin and abscisic acid.

On the other hand, photosynthesis also plays an important role in plant yield via
biomass production. Photosynthesis is a complex pathway in plants that causes plants
to be autotrophic. Generally, it consists of reactions involving light, water, and carbon
dioxide that produce glucose and oxygen [153]. There has only been a limited amount
of validation to prove the involvement of miRNA in the regulation of photosynthesis;
however, a wide range of bioinformatic or computational techniques showed the potential
of miRNA in regulating photosynthesis [154]. Studies have been performed in rice on
its tolerance to low light and its photosynthesis. The osa-miR2102-targeting chlorophyll
a-b binding protein (CAB), which is a part of the protein in the antenna complex, and



Plants 2023, 12, 669 16 of 25

an osa-miR530-targeting ubiquinone biosynthesis protein (COQ4) involved in electron
transport, were downregulated in tolerance rice. These miRNAs, which are involved in
low-light responses in tolerance rice, were upregulated in the sensitive plants, resulting
in a constant chlorophyll a content and an increase in chlorophyll b content for a greater
extent of capturing solar energy and maintaining the photosynthesis process. Hence, STTM
could be applied to manipulate the downregulation of these miRNAs to enhance desired
traits, such as the maintaining of photosynthesis or increasing photosynthesis efficiency
through the upregulation of chlorophyll b content or electron transport efficiency [155].

7. Application of STTM as a Constitutive and Spatial–Temporal miRNA Repressor

Promoters, enhancers, and silencers are gene-regulatory elements. They are involved
in activating or suppressing gene transcription, including instances involving an artificial
gene. In nature, gene regulation plays a critical function in cell division, growth, and devel-
opment, and the plant defense system. This regulatory system is triggered by endogenous
or exogenous stimuli. Cis-regulating modules control gene transcription and can act as
a promoter, enhancer, silencer, insulator, or multifunctional sequence element [156,157].
The promoter is a cis-regulating element that begins and regulates the transcription at the
upstream site of an associated gene as a part of major-type cis-regulatory modules [158].
These promoter DNA sequences often are found in the 5′ region of a functioning gene.
There are two crucial areas in a promoter: (1) the core area in which RNA polymerase
II attaches and initiates transcription at the base level, and (2) proximal and the distal
regions that harbor multiple cis-regulatory motifs for the spatial–temporal control of gene
expression [159].

Furthermore, STTM is an effective tool for analyzing the LoF with negative-regulatory
miRNA [61]. Most STTM research design uses constitutive promoters to gain severe
phenotypes caused by inhibiting miRNA activities [68]. Constitutive promoters enhance
the continuous and high expression of STTM in plants, such as CaMV35S (Figure 5a) [52].
These CaMV promoters have high activity under normal and stressful conditions in almost
all tissues. The AtSCPL30 promoter (PD7) is an alternative constitutive strong promoter to
CaMV35S as it is an endogenous plant promoter [160]. Constitutive promoters reveal the
miRNA function indiscriminately in any plant organs, developmental stages, or growth
conditions. Furthermore, a CaMV35S promoter may not be active in certain organs or
plant stages [161]. The activation of a gene in a specific tissue or organ (spatial) and in
specific developmental stages or stimuli (temporal) can be achieved with the tissue-specific
(Figure 5b) and inducible (Figure 5c) promoters [66,129]. Therefore, STTM applications can
be manipulated with specific promoters. These different promoters allow for the spatial
and temporal analysis of miRNA functions with the precise manipulation of desired crop
attributes. Homologs of promoter and transcription factors could be useful for having the
same functions in different plant species [162].

In a study by Peng et al., STTM167 and STTM1432 were constructed with Gt13a
promoters to activate the gene in a seed-specific manner, specifically in the endosperm
cell of rice [66]. The STTM1432 was used to suppress the OsmiR1432, leading to a high
expression of OsACOT [129]. The downregulation of the miR1432-OsACOT module via
STTM1432 resulted in a superior phenotype, including higher yield and disease resistance,
when compared to the constitutive overexpression of OsACOT that only enhanced the
yield with an unchanged blast disease resistance [163]. Many promoter sequences can be
explored for tissue specificity, such as seed or fruit, flower, tuber, anther, root, and leaf,
which can be utilized to express STTM in a particular organ [162,164–168].

Many genes can also be activated by the process of inducible expression, which is
based on reactions by triggers of physical, chemical, or environmental stimuli as an external
factor [169–171]. Furthermore, previous studies have shown that the expression of STTM
can be regulated using inducible promoters, such as the β-estradiol promoter. For example,
iSTTM165/166 is activated when treated with β-estradiol, allowing for the regulation of
STTM transcript expression [66]. The activated construct with the application of β-estradiol
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to the plant showed a similar phenotype as the constitutive promoter. In addition, this
phenotype was not caused by the β-estradiol chemical, as wild-type plants treated with
β-estradiol did not show any different phenotype when compared to the untreated plants.
It is also worth noting that the use of STTM constructs driven by inducible promoters
allows for more precise control over the timing and duration of miRNA suppression,
which can be useful in certain experimental contexts. Additionally, using an inducible
promoter may help to minimize any potential off-target effects that may occur with the
constitutive expression of the STTM. The phenotypes exhibited by both STTM165/166 and
iSTTM165/166 were similar, including curling leaves and a loss of adaxial-abaxial polarity
due to the high levels of anthocyanin. Furthermore, this inducible knockdown used pER8
and pCXGUS-P vectors, which is different from a common, constitutive STTM [171]. Most
of these inducible promoters can help induce plant tolerance to abiotic stress, which is
mostly concerned with water deficit and salt stress [172]. In another miRNA study, biotic
stress promoters such as AGO18 were used, which activated the expression of construct
when they were induced by viral infection [173].
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Figure 5. Activation of STTM expression in three different spatial–temporal types of miRNA silencing:
(a) a constitutive promoter for continuous expression in cell to various tissues and conditions;
(b) as a tissue-specific promoter expressing STTM in the endosperm cell but not in other tissues;
and (c) as an inducible promoter that expressed STTM only when plants were treated by a chemical
trigger (β-estradiol). The red color indicates STTM expression, while the blue color indicates no
STTM expression.
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8. Future Direction of STTM as Alternative Ways to Explore miRNA in Different
Spatial–Temporal Expressions

STTM has been shown to be an effective method for investigating the function of
miRNA at the molecular level or in the context of trait analysis. This technique can be used
to examine different miRNA activities in other plant species at different growth phases.
It can also show desirable features in various potential candidate miRNAs that regulate
genes in specific tissues [14]. However, there is still a lack of data regarding miRNA
roles in various plant species and plant adaptation to stresses that can be discovered
through STTM application. The discovery of miRNA functions in regulating key genes may
provide an additional perspective on how we may maintain our food security in the face of
climate change.

The activity of miRNA can be manipulated in different ways, mainly through the
overexpression and downregulation of miRNA [80]. An miRNA functional study in regu-
lating gene expression using inducible or tissue-specific promoters opens up new ways to
study and manipulate miRNA for desired traits in essential crops such as rice [66]. Under-
standing gene regulation in grain crops can improve disease resistance, drought or salinity
tolerance, and grain yield. Using STTM, which regulates miRNA activity under suitable
spatial and temporal conditions, provides ways to improve traits without interfering with
normal phenotypes and reduces the off-target effects in inhibiting non-conserved miRNA.
However, it is challenging to identify targeted miRNA activations as some are expressed
differently in different organs and mainly by stress triggers [174,175]. There are known
strategies to help in the identification and expression of known and novel miRNAs, such
as miRNA profiling with the various techniques combined, including high-throughput
sequencing technology and the analysis of differentially expressed genes (DEGs) [176,177].
MicroRNA profiling can facilitate a greater understanding of the regulation of miRNAs in
various organs and their response to different stresses, as some miRNAs are only expressed
in the presence of stressors [178,179]. Thus, understanding specific miRNA expressions
will open up new strategies for STTM application to improve plant traits with desired gene
expressions through the targeted downregulation of miRNA.

9. Conclusions

The study of miRNA function in plants has been aided by the development of various
mimicking tools which can potentially improve plant traits. It is important to carefully
consider the effectiveness and stability of these tools when choosing a strategy for decoying
miRNA in post-transcription stages. STTM is a promising tool for suppressing miRNA
expression in various plant species, tissues, and developmental stages. The versatility of
STTM enables the exploration of the conserved and novel functions of miRNAs in model
and crop plants. Many miRNAs regulate transcripts in specific plant tissues or different
stress conditions. STTM technology can be customized to achieve expression in specific
tissues or in response to specific stimuli by manipulating the STTM promoter region. This
manipulation can help to reduce off-target effects. The expression of STTM at specific
stages can be useful for elucidating miRNA function without confounding effects on plant
yield or phenotype.
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