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Abstract: Glucosinolates (GSLs) are secondary plant metabolites that are enriched in rapeseed
and related Brassica species, and they play important roles in defense due to their anti-nutritive
and toxic properties. Here, we conducted a genome-wide association study of six glucosino-
late metabolites (mGWAS) in rapeseed, including three aliphatic glucosinolates (m145 gluconapin,
m150 glucobrassicanapin and m151 progoitrin), one aromatic glucosinolate (m157 gluconasturtiin)
and two indole glucosinolates (m165 indolylmethyl glucosinolate and m172 4-hydroxyglucobrassicin),
respectively. We identified 113 candidate intervals significantly associated with these six glucosinolate
metabolites. In the genomic regions linked to the mGWAS peaks, 187 candidate genes involved in
glucosinolate biosynthesis (e.g., BnaMAM1, BnaGGP1, BnaSUR1 and BnaMYB51) and novel genes
(e.g., BnaMYB44, BnaERF025, BnaE2FC, BnaNAC102 and BnaDREB1D) were predicted based on the
mGWAS, combined with analysis of differentially expressed genes. Our results provide insight
into the genetic basis of glucosinolate biosynthesis in rapeseed and should facilitate marker-based
breeding for improved seed quality in Brassica species.

Keywords: Brassica napus; glucosinalates; mGWAS; candidate genes

1. Introduction

Glucosinolates (GSLs) are secondary metabolites comprising sulfur and nitrogen
that are specially produced in Brassica species, providing these plants with their pungent
odor [1–3]. GSLs also play important roles in plant defense against pests and in human
health [4,5]. However, high levels of GSLs affect the quality of seed oil and the nutritional
value of seed meal from rapeseed. In addition, some hydrolysates produced from GSLs,
such as oxazolidin-2-thione, have toxic effects on human and animal health [6–10]. Thus,
further reducing glucosinolate levels in seed meal is an important goal in rapeseed breeding.

Generally, GSLs share the same basic structure, including β-D-thiosaccharide and (Z)-
n-hydroxamic sulfate, but have variable R-side chain groups due to the precursor amino
acids [11]. The lengths and modifications of these variable R-side chain groups determine
the chemical properties of each GSL. Correspondingly, GSLs can be divided into three types
based on the source of precursor amino acids, for example, aliphatic GSLs derived from
alanine (Ala), leucine (Leu), isoleucine (Ile), methionine (Met) and valine (Val); indole GSLs
derived from tryptophan (Trp); and aromatic GSLs derived from phenylalanine (Phe) and
tyrosine (Tyr) [12–14]. To date, over 200 GSLs have been discovered [15,16], which were
usually synthesized through three steps. The first step is the lengthening of the progenitor
amino acid side chain. This mainly occurs during the biosynthesis of aliphatic and aromatic
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GSLs, in which amino acids form 2-oxic acids via the action of branched-chain amino acid
transaminase (BCAT) and then undergo elongation by enzymes, such as methylthinomalate
synthase (MAM), isopropyl malate isomerase (IPMI) and isopropyl malate dehydrogenase
(IMD). The extended 2-oxic acid molecule is converted into the corresponding amino acid
by BCAT [5,17–19]. The second step forms the glucosinolate core structure. The extended
amino acid is converted via the action of cytochrome P450 79s (CYP79s) to aldoxime, which
is oxidized into the activated forms by CYP83s. These activated forms could bind to
glutathione that is converted to first thiohydroxamic acid by glutathione S-transferases
(GSTFs), γ-glutamyl peptide (GGP1) and C-S lyase (Super root 1 (SUR1)), and then to the
GSL core structure by glucosyltransferases (UGT74s) and sulfotransferases (SOTs) [5,20–24].
The last step involves side chain modification of the core structure, primarily through
hydroxylation, sulfation, glycosylation, desaturation and methylation of R groups [25].
The core structures of aliphatic GSLs are oxidized and hydroxylated by a series of en-
zymes, including flavin monooxygenase (FMOGS-OX) and alkenyl hydroxalkyl-producing
proteins (AOPs) for aliphatic GSLs, 2-oxoglutarate-dependent dioxygenase (GS-OH) for
aromatic GSLs and CYP81Fs and indole glucosinolate O-methyltransferases (IGMTs) for
indole GSLs [26–28].

In Arabidopsis, the glucosinolate biosynthesis pathway is one of the best characterized
specialized metabolite pathways [12]. Progress has also been made in mining many genes
associated with the GSL pathway. Many catalytic enzymes that function in the biosynthesis
of different GSLs have been identified, such as CYP79A2, CYP83B1, SUR1, UGT74B1, sulfo-
transferase (ST5A) and so on [29–34]. In addition, some MYB transcription factors have also
been shown to regulate the expression of genes encoding enzymes in the GSL biosynthesis
pathway. For example, AtMYB51 activates the transcription of GSL-biosynthesis-related
genes (AtTSB1, AtCYP79B2, AtCYP79B3, AtCYP83B1 and AtST5a and so on), leading to
the accumulation of GSLs [35]. The aliphatic GSL pathway is regulated by MYB28 and
MYB29 [36,37], while indole GSL biosynthesis is jointly regulated by MYB34, MYB51 and
MYB122 [38,39]. Several MYC transcription factors also function in GSL biosynthesis by
regulating the jasmonic acid metabolism pathway [40]. Furthermore, MYC2, MYC3 and
MYC4 interact with multiple MYB transcription factors (e.g., MYB28, MYB29, MYB34,
MYB51 and MYB76), thereby contributing to GSL biosynthesis [40,41]. A recent study
showed that WRKY33 not only directly targets the promoters of the gene MYB51 and the
GSL biosynthesis gene CYP83B1 to regulate the de novo biosynthesis of indole GSLs, but
also regulates the expression of genes involved in side chain modification (CYP81F2, IGMT1
and IGMT2), thereby increasing the biosynthesis of indole GSLs [42].

Rapeseed (Brassica napus L.) is used worldwide as an oil crop and source of edible
vegetable oil and feed meal. Therefore, breeding rapeseed varieties with low GSL levels
in seeds is an important breeding goal. To date, many rapeseed resources with low seed
GSL contents have been developed in polyploid rapeseed [43–45]. However, due to the
complexity of the rapeseed genome, identifying the GSL biosynthesis pathway in rapeseed
and the mechanism leading to low GSL content in B. napus seeds has been challenging. In
this study, we performed a genome-wide association study for six glucosinolate metabolites
in 143 rapeseed accessions using 239,945 SNP markers obtained by resequencing [46–48].
Our goals were to identify candidate genes to enrich the metabolic regulatory network of
the GSL biosynthesis pathway, and to lay a foundation for the breeding of B. napus with
improved quality.

2. Results
2.1. Identification and Statistical Analysis of Glucosinolate Metabolites in B. napus

Based on ultrahigh-performance liquid chromatography-heated electrospray ionization-
tandem mass spectrometry (UPLC-HESI-MS/MS) analysis, we obtained six glucosinolate
metabolites with high content in rapeseed at 35 days after flowering (DAF), including
three aliphatic GSLs (m145 gluconapin, m150 glucobrassicanapin and m151 progoitrin),
one aromatic GSL (m157 gluconasturtiin) and two indole GSLs (m165 indolylmethyl-
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glucosinolate and m172 4-hydroxyglucobrassicin) (Figure 1a,b). Correlation analysis showed
that the levels of three aliphatic GSLs (m145, m150 and m151) and aromatic GSL (m157)
were positively correlated (|r| ≥ 0.8, p < 0.001), whereas the level of m172 showed a higher
correlation with those of three aliphatic GSLs (|r| ≥ 0.6, p < 0.001) than with that of
m165 (Figure 1c, Table 1 and Table S6 and Figure S4), indicating the consistency of these
traits across various environments. Subsequently, we calculated the range, average, stan-
dard deviation, coefficient of variation, diversity index and heritability of the levels of the
six glucosinolate metabolites (Table 1). The coefficient of variation among these metabolites
ranged from 0.42 to 1.97, with an average of 1.31, and varied greatly under different years.
The coefficient of variation of six glucosinolate metabolites in high glucosinolate content
rapeseed was generally lower than those in low and medium glucosinolate content rape-
seed (Table S7). Furthermore, genotype (G) × environment (E) interaction was also highly
significant (Table 1), indicating that the accumulation levels in seeds are easily affected by
environmental conditions. In addition, the order of the metabolites based on diversity index
was m165 > m172 > m145 > m151 > m150 > m157, while the order based on heritability
was m150 > m165 > m145 > m151 > m157 > m172 (Table 1). Therefore, all six glucosinolate
metabolites not only exhibited obvious differences between BnHG and BnLG (Figure 2a),
but also showed continuous variation in 2017cq and 2018cq (Figure 2b).
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Figure 1. Characterization of six glucosinolate metabolites in B. napus seeds. (a) Ion peaks of six 
GSLs in seeds at 35 DAP, including MS and MS/MS spectra. BnHG represents the rapeseed acces-
sion Zhongyou 821 with high total GSL contents, and BnLG represents rapeseed accession 
Zhongshuang 11 with low total GSL contents. (b) Heatmap showing the variable accumulation of 
six glucosinolate metabolites in the population at 35 DAP. (c) Correlation analysis among the lev-
els of the six glucosinolate metabolites. The asterisks indicate significant difference (***, p < 0.001). 

Figure 1. Characterization of six glucosinolate metabolites in B. napus seeds. (a) Ion peaks of
six GSLs in seeds at 35 DAP, including MS and MS/MS spectra. BnHG represents the rapeseed
accession Zhongyou 821 with high total GSL contents, and BnLG represents rapeseed accession
Zhongshuang 11 with low total GSL contents. (b) Heatmap showing the variable accumulation of
six glucosinolate metabolites in the population at 35 DAP. (c) Correlation analysis among the levels
of the six glucosinolate metabolites. The asterisks indicate significant difference (***, p < 0.001).
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Table 1. Phenotypic variations for six glucosinolate metabolite contents in an association panel of B. napus.

Name No. 1 Env. 2 Min. 3 Max. 4 Avg. 5 SD 6 CV 7 Skew. 8 Kurt. 9 H’ 10 Fge
11 Her. 12

aliphatic
GSLs

m145
2017cq 0.00 3007.14 456.59 584.04 1.28 1.59 2.33 1.37 57.46 **

0.632018cq 0.00 943.99 125.82 222.02 1.76 2.21 4.12 1.07
mean 0.00 1975.56 291.20 403.03 1.52 1.90 3.23 1.22

m150
2017cq 0.00 2538.57 278.17 473.62 1.70 2.41 6.06 1.09 59.12 **

0.802018cq 0.00 1407.20 146.98 276.58 1.88 2.56 6.58 1.04
mean 0.00 1972.88 212.58 375.10 1.79 2.48 6.32 1.06

m151
2017cq 0.01 2418.94 374.82 534.24 1.43 1.63 1.94 1.20 86.47 **

0.522018cq 0.00 659.77 70.16 138.30 1.97 2.48 5.68 0.97
mean 0.00 1539.35 222.49 336.27 1.70 2.06 3.81 1.08

aromatic
GSL m157

2017cq 0.00 594.24 59.27 108.99 1.84 2.95 9.57 0.87 87.95 **
0.492018cq 0.00 152.39 18.24 31.70 1.74 2.32 5.06 1.06

mean 0.00 373.31 38.75 70.35 1.79 2.64 7.31 0.96

indole
GSLs

m165
2017cq 0.00 1071.04 435.89 231.28 0.53 0.57 0.23 2.09 18.36 **

0.662018cq 1.24 763.78 248.89 183.86 0.74 0.54 −0.33 1.88
mean 0.62 917.41 342.39 207.57 0.63 0.56 −0.05 1.98

m172
2017cq 0.00 840.19 357.75 152.00 0.42 0.20 0.10 1.97 17.62 **

0.422018cq 8.66 370.66 159.13 74.23 0.47 0.31 0.11 1.90
mean 4.33 605.42 258.44 113.12 0.45 0.26 0.10 1.93

cq, Chongqing environment; 1 No., metabolite ID; 2 Env., environment; 3 Min., minimum; 4 Max., maximum;
5 Avg., average; 6 SD, standard deviation; 7 CV, coefficient of variation; 8 Skew., Skewness; 9 Kurt., Kurtosis;
10 H’, Shannon–Wiener diversity index; 11 Fge, the F-values for G × E for glucosinolate content. Asterisks indicate
significant differences (**, p < 0.01). 12 Her., heritability. Metabolite content is expressed in µg/g FW.
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Figure 2. Variation in the contents of six glucosinolate metabolites in the rapeseed panel in different
years (2017cq and 2018cq). (a) Differences in the contents of six glucosinolate metabolites in BnHG
and BnLG. Asterisks indicate significant differences (*, p < 0.05; **, p < 0.01; and ***, p < 0.001).
(b) Frequency distributions of the six glucosinolate metabolites for 143 rapeseed accessions in the
two years (2017cq and 2018cq).
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2.2. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS)

To avoid identifying the false-positive associations in mGWAS, we selected six models
to identify significant associations between phenotypes and genotypes. Based on the QQ
plots of the six models (Figure S1), we performed GLM with Q model and MLM with
Q+K model for the GWAS to mine more candidate genes of GSL metabolites, respectively.
Herein, we used 239,945 high-quality SNPs (minor allele frequency (MAF) > 0.05 and the
call frequencies <0.8) for the association analysis. The association signals were determined
using a p-value < 4.17 × 10−6. The results of mGWAS for the six glucosinolate metabolites in
two years (2017cq and 2018cq) and BLUP (best linear unbiased prediction) values (Figure 3,
and Tables S1–S3) are summarized below.

Plants 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 

cq, Chongqing environment; 1 No., metabolite ID; 2 Env., environment; 3 Min., minimum; 4 Max., 
maximum; 5 Avg., average; 6 SD, standard deviation; 7 CV, coefficient of variation; 8 Skew., Skewness; 9 
Kurt., Kurtosis; 10 H’, Shannon–Wiener diversity index; 11 Fge, the F-values for G × E for glucosinolate 
content. Asterisks indicate significant differences (**, p < 0.01). 12 Her., heritability. Metabolite con-
tent is expressed in µg/g FW. 

2.2. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) 
To avoid identifying the false-positive associations in mGWAS, we selected six 

models to identify significant associations between phenotypes and genotypes. Based on 
the QQ plots of the six models (Figure S1), we performed GLM with Q model and MLM 
with Q+K model for the GWAS to mine more candidate genes of GSL metabolites, re-
spectively. Herein, we used 239,945 high-quality SNPs (minor allele frequency (MAF) > 
0.05 and the call frequencies <0.8) for the association analysis. The association signals 
were determined using a p-value < 4.17 × 10−6. The results of mGWAS for the six glucos-
inolate metabolites in two years (2017cq and 2018cq) and BLUP (best linear unbiased 
prediction) values (Figure 3, and Tables S1–S3) are summarized below.  

 
Figure 3. Manhattan plots of association analysis for six glucosinolate metabolites. (a) Manhattan 
plot for m145 in 2017cq, 2018cq and BLUP values. (b) Manhattan plot for m150 in 2017cq, 2018cq 
and BLUP values. (c) Manhattan plot for m151 in 2017cq, 2018cq and BLUP values. (d) Manhattan 
plot for m157 in 2017cq, 2018cq and BLUP values. (e) Manhattan plot for m165 in 2017cq, 2018cq 
and BLUP values. (f) Manhattan plot for m172 in 2017cq, 2018cq and BLUP values. Different-
colored spots represent different environments. The horizontal lines indicate the Bonferroni-
adjusted significance threshold (4.17 × 10−6). 

Figure 3. Manhattan plots of association analysis for six glucosinolate metabolites. (a) Manhattan
plot for m145 in 2017cq, 2018cq and BLUP values. (b) Manhattan plot for m150 in 2017cq, 2018cq and
BLUP values. (c) Manhattan plot for m151 in 2017cq, 2018cq and BLUP values. (d) Manhattan plot for
m157 in 2017cq, 2018cq and BLUP values. (e) Manhattan plot for m165 in 2017cq, 2018cq and BLUP
values. (f) Manhattan plot for m172 in 2017cq, 2018cq and BLUP values. Different-colored spots
represent different environments. The horizontal lines indicate the Bonferroni-adjusted significance
threshold (4.17 × 10−6).

For the aliphatic GSL m145, we identified 1597, 2543 and 681 significantly associated
SNPs based on 2017cq, 2018cqs and BLUP values, respectively, 389 SNPs of which were
repeatedly detected in this study (Figure 3a, Figure S2a and Table S1). These significant
SNPs primarily covered 79 candidate intervals located across the entire B. napus genome
(Table S3). Importantly, two significant regions with high SNP densities were located on



Plants 2023, 12, 639 6 of 19

chromosomes A09 (17.88~22.59 Mb) and A06 (10.98~17.71 Mb) at the intervals designated
qGSL-A09-5 and qGSL-A06-3, respectively. We found that the most significant SNPs
(S6_16080408 and S9_18653335) could explain 49.67% and 43.75% of phenotypic variance,
respectively. Therefore, we used these two intervals to predict the candidate genes to
control the accumulation of the aliphatic GSL m145 in seeds (Table S3). In addition,
49 candidate regions were only associated with m145 in one or any two years and BLUP
values. We believe that these remaining candidate regions represent minor-effect intervals
influencing the accumulation of m145 (Table S3). These findings seem to suggest that
m145 accumulation is strongly affected by environmental factors.

For the aliphatic glucosinolate, we identified m150, 2080, 2620 and 3444 significantly
associated SNPs based on 2017cq, 2018cq and BLUP values, respectively, and 1431 SNPs
were repeatedly detected in two years and BLUP values (Figures 3b and S2b and Table S1).
These significant SNPs primarily covered 94 candidate intervals across the entire B. na-
pus genome (Table S3). Most repeated significant SNPs (1168/1431) were located in the
interval qGSL-A09-5 with the most significant SNPs (S9_18653335) that explained 47.71%
of phenotypic variance. In addition, the SNPs in the intervals qGSL-A01-4, qGSL-A06-2
and qGSL-C08-5 were repeatedly detected, which all explained more than 35% of the
phenotypic variance (Table S1). Therefore, we believe that these regions are important
interval regions for identifying the candidate genes for controlling the accumulation of
m150. Furthermore, in total, 51 candidate regions are detected for m150, at least in one or
any two years and BLUP values, suggesting that these remaining candidate regions are
minor-effect intervals influencing the accumulation of m150 (Table S3).

For the aliphatic glucosinolate m151, we identified 977, 629 and 747 significantly asso-
ciated SNPs based on 2017cq, 2018cq and BLUP values, respectively, while only 225 SNPs
were repeatedly detected in this study (Figure 3c and Figure S2c and Table S1). These
significant SNPs primarily covered 67 candidate intervals across the B. napus genome,
except for chromosome A01 (Table S3). Among the 225 SNPs, highly significant SNPs were
repeatedly detected at intervals qGSL-A06-3, qGSL-A09-1, qGSL-A09-5 and qGSL-C07-6,
which all explained more than 30% of phenotypic variance. Therefore, these regions should
be considered as major interval regions controlling the accumulation of m151. In addi-
tion, 46 candidate regions with minor effects are detected for m151, at least in one or any
two years and BLUP values (Table S3).

For the aromatic glucosinolate m157, we identified 311, 550 and 1403 significantly
associated SNPs based on 2017cq, 2018cq and BLUP values, respectively, 19 SNPs of which
were repeatedly detected in this study (Figure 3d and Figure S2d and Table S1). These
significant SNPs primarily covered 99 candidate intervals across the entire B. napus genome
(Table S3). One significant association locus on chromosome C04 (named qGSL-C04-2) was
detected, with the peak SNP S14_6056639, which explained 41.07% of phenotypic variance
and was repeatedly detected in different environments (Table S3). Therefore, we used
this interval region of chromosome C04 (5.85~6.27 Mb) to predict the candidate genes for
controlling the accumulation of m157 in seeds. The interval region on chromosome A09
(named qGSL-A09-5) was also detected in different years, with the peak SNP S9_18294706,
which explained 37.58% of phenotypic variance. Furthermore, S7_8312132 explaining
40.84% of phenotypic variance was identified and located on chromosome A07, named
qGSL-A07-3. Thus, we believe that the interval regions (qGSL-A09-5, qGSL-A07-3 and
qGSL-C04-2) are also closely related to the accumulation of m157 in rapeseed. Correspond-
ingly, 79 candidate regions with minor effects were also detected for m157, at least in one
or any two years and BLUP values (Table S3).

For the indole glucosinolate m165, we identified 50, 79 and 82 significantly associated
SNPs based on 2017cq, 2018cq and BLUP values, respectively, containing 4 SNPs repeatedly
detected in this study (Figure 3e and Figure S2e and Table S1). However, these significant
SNPs primarily covered 22 candidate intervals located on chromosome A01, A02, A03, A05,
A06, A07, A09, C01, C02, C04, C05, C08 and C09, respectively (Table S3). Three of these
interval regions were repeatedly detected and located on chromosomes A06, A09 and C05,
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namely qGSL-A06-3, qGSL-A09-7 and qGSL-C05-3, respectively. The peak SNP mapped
on qGSL-C05-3, qGSL-A06-3 and qGSL-A09-7 explained more than 20% of phenotypic
variance (Table S3). In addition, the remaining intervals were detected for m165, at least in
one or any two years and BLUP values (Table S3).

For the indole glucosinolate m172, we identified 211, 132 and 1035 significantly associ-
ated SNPs based on 2017cq, 2018cqs and BLUP values, respectively, including 47 repeatedly
detected SNPs (Figure 3e and Figure S2f and Table S1). These significant SNPs primarily
covered 50 candidate intervals across the B. napus genome, except the chromosome C09
(Table S3). For 47 SNPs, 6 significant SNPs were mapped on chromosome A01 (named
qGSL-A01-4) with peak SNP S1_19207516, which explained 42.78% of phenotypic variance,
and the peak SNP S9_18611734 was mapped on chromosome A09 (named qGSL-A09-5),
explaining 38.62% of phenotypic variation. Therefore, these interval regions were used to
predict the candidate genes for controlling the accumulation of m172 in seeds (Table S3). In
addition, 43 candidate regions were detected for m172, at least in one or any two years and
BLUP values (Table S3).

Altogether, we identified 113 candidate regions significantly associated with six glu-
cosinolate metabolites, which were widely distributed throughout the B. napus genome. In
particular, candidate interval regions qGSL-A07-3 and qGSL-A09-5 located on chromosome
A07 and A09 were detected for five of the six glucosinolate metabolites (all except m165) in
two years and BLUP values. In addition, qGSL-A01-4, qGSL-A02-2, qGSL-A03-3, qGSL-
A05-2, qGSL-A06-1, qGSL-A06-3, qGSL-A09-6, qGSL-A09-7, qGSL-C04-2 and qGSL-C08-5
were repeatedly detected in at least one year or BLUP value. In these repeatedly detected
interval regions, most of them were simultaneously associated with three glucosinolate
metabolites (m145, m150 and m151) or any two of these (Table S3), perhaps because they
are all aliphatic GSLs. Moreover, m145 is the precursor of m151 in the 4C pathway of
aliphatic GSL biosynthesis in B. napus.

2.3. Candidate Gene Mining

Based on the physical positions of the significant SNPs, we mapped the intervals to
the corresponding chromosomes of the reference genome B. napus Darmor-bzh (v4.1) [49]
and searched for candidate genes for each significant locus based on the mGWAS data
combined with the differentially expressed genes in BnHG vs. BnLG. In total, 187 candidate
genes were identified and predicted for GSLs in this study, including genes encoding
enzymes in the GSL biosynthesis pathway and their homologs, transcription factor genes
and some novel candidate genes, respectively (Table S4).

Based on the known GSL biosynthesis pathway, we identified 64 candidate genes in
the GSL biosynthesis pathway (including genes encoding enzymes in this pathway and
their homologs) among the intervals, which showed differential expression during seed
development in BnHG vs. BnLG (Figures 4 and 5, Table S4).

Among these, key genes encoding enzymes that participate in the GSL biosynthesis
pathway, such as genes encoding isopropyl malate dehydrogenase 1 (IMD1), methylth-
ioalkyl malate synthase (MAM1), bile acid transporter (BAT5), cytochrome P450s (CYP79F1,
CYP79B2, CYP83A1, CYP81F3 and CYP81F4), UDP-glucosyl transferases (UGT74B1,
UGT74C1s and UGT74F1), glutathione S-transferases (GSTU20, GSTF9), γ-glutamyl pep-
tidase 1 (GGP1), S-alkyl thiohydrogen oxidase lyase (SUR1), sulfotransferases (SOT16,
SOT17 and SOT18), flavin-monooxygenase glucosinolate S-oxygenase 5 (FMOGS-OX5),
oxoglutarate-dependent dioxygenase (AOP3) and indole-glucoside O-methyltransferases
(IGMT1, IGMT2, IGMT4 and IGMT5), were identified on the following chromosomes: A01
(GGP1, BnaA01g06540D), A02 (IMD1, BnaA02g02020D), A03 (SUR1, BnaA03g49250D; and
BAT5, BnaA03g24950D), A04 (CYP83A1, BnaA04g24160D; and GSTF9, BnaA04g17910D), A05
(UGT74F1, BnaA05g03590D), A06 (CYP79F1, BnaA06g11010D; IGMT4, BnaA06g14950D; and
SOT17, BnaA06g12720D), A07 (GSTU20, BnaA07g20570D; IGMT1, BnaA07g33600D; IGMT2,
BnaA07g11080D; IGMT5, BnaA07g33060D; SOT16, BnaA07g31260D; SOT18, BnaA07g31230D;
and BnaA07g31250D), A08 (CYP79B2, BnaA08g16100D; CYP81F3, BnaA08g15650D; CYP81F4,
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BnaA08g15660D; and GGP1, BnaA08g13020D), A09 (FMOGS-OX, BnaA09g47360D; SOT18,
BnaA09g14030D; and BnaA09g14040D; SUR1, BnaA09g10030D; UGT74B1, BnaA09g29790D;
and AOP3, BnaA09g01260D), C02 (MAM1, BnaC02g41790D), C04 (CYP83A1, BnaC04g47910D;
GSTF9, BnaC04g41510D; and UGT74C1, BnaC04g42530D), C06 (IGMT1, BnaC06g20950D;
and SOT18, BnaC06g34970D) and C07 (GGP1, BnaC07g42720D; and SUR1, BnaC07g41280D),
respectively (Figure 4, Table S4), indicating that our GWAS approach was successful in
this study.
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Figure 4. The proposed GSL biosynthesis pathway (a) and expression patterns of known can-
didate genes in B. napus (b). The proposed pathway was constructed based on published
data [33,38,42,50–53]. BAT, bile acid transporter [54]; IMD, isopropylmalate dehydrogenase [55];
MAM1, methylthioalkylmalate synthase 1 [56]; CYP, cytochrome P450 [57]; UGT, UDP-glucosyl trans-
ferase [22,58]; GST, glutathione S-transferase [59,60]; GGP1, gamma-glutamyl peptidase 1 [61]; SUR1,
S-alkyl-thiohydroximate lyase [31]; SOT, sulfotransferase [62]; FMOGS-OX, flavin-monooxygenase
glucosinolate S-oxygenase [26]; IGMT, indole glucosinolate O-methyltransferase [63]; AOP3, 2-
oxoglutarate-dependent dioxygenase [64]; BGLU, β-glucosidase [65]; NSP, nitrile specifier protein [66];
NIT, nitrilase [67]; TGG, thioglucoside glucohydrolase [68]. Genes with red color represent the iden-
tified candidate genes for six glucosinolate metabolites (Table S4). The expression levels of the
candidate genes in BnLG and BnHG are listed in Table S5. Further, 20, 30 and 40 DAP represent the
seeds after 20, 30 and 40 days after pollination, respectively.

Previously studies have identified MYB transcription factors that regulate GSL biosyn-
thesis in various plants [36,38,50,69]. In the current study, we identified 39 transcription
factors that were predicted to regulate GSL biosynthesis, including 15 AP2/ERF transcrip-
tion factors (ERFs, ARF3, DREBs and ANT), seven zinc finger proteins (CZF1, STZ, ZHDs,
DOF1, OBP2 and ZFP4), two WRKY transcription factors (WRKY33), one growth regulator
(GRF1), one NAC family protein (NAC102), one E2F transcription factor (E2FC), one nu-
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clear transcription factor Y subunit B (NF-YB10) and 11 MYB transcription factors (MYBs).
Among these, homologous genes of MYB34, MYB51, MYB122 and WRKY33, which are in-
volved in GSL biosynthesis [42,70], were identified on the interval regions of chromosomes
A03, A04, A07, A09, C02, C06, C08 and C09, respectively (Table S4). We also identified
some novel transcription factor genes (e.g., MYB44, ERF025, NF-YB10 and E2FC) associated
with the significant SNPs, with obvious differences in expression in developing seeds of
BnHG and BnLG (Figure 5, Table S4). These transcription factors might play an important
role in the biosynthesis of GSLs in B. napus.
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Figure 5. Expression patterns of the 123 novel candidate genes in B. napus. Genes shown in black are
structural genes and those shown in red are transcription factor genes. The expression levels of these
candidate genes in BnLG and BnHG are listed in Table S5. Further, 20, 30 and 40 DAP represent the
seeds after 20, 30 and 40 days after pollination, respectively.

In addition, we identified 29 candidate genes encoding enzymes responsible for the
hydrolysis of GSLs, including genes encoding three nitrile hydrases (NITs), three nitrile
specifier proteins (NSPs), one glutathione gamma-glutamylcysteine transferase (PCS1),
fifteen β-glucosidases (BGLUs), one ABC transporter family protein (PEN3) and six glucosi-
dolate glucohydrolases (TGGs), respectively (Figures 4 and 5, Table S4). Correspondingly,
we also identified two calmodulin-binding proteins (IQD1), three structural genes (HMGs),
four genes encoding myrosinase-binding proteins (MBP2) and five protein kinase genes
(CPKs and MPK6) located in the interval regions for indole GSLs (Figure 5, Table S4).
Among these, WRKY33, CPK5 and MPK6 were shown to mediate indole GSL biosyn-
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thesis [71], which in consistent with our results. We also identified two glucosinolate
transporters (GTR2) and five TRP family proteins (SDIs) (Figure 5, Table S4).

Altogether, numerous key homologous genes, including known genes (such as IMD1,
MAM1, IGMTs, MYB34, MYB51, MYB122 and so on) and novel genes (MYB44, ERF025,
ARF3, NF-YB10, E2FC and so on) were identified within the confidence intervals of GSLs.
Our findings not only demonstrate the reliability of the association genetics approach, but
also provide new insight into elucidating the biosynthesis of these GSLs in B. napus seeds.

3. Discussion

GSLs are well-known secondary metabolites that play important roles in plant defense
against diseases and insects and in human nutrition/health [1–3,72]. However, some
glucosinolates in seed meal have deleterious effects on poultry and livestock, leading to
efforts to develop low-glucosinolate Brassica crops [43,73]. Based on the functional group
of amino acids, GSLs are divided into three major types, namely aliphatic GSLs, indole
GSLs and aromatic GSLs, respectively [12–14]. Aliphatic GSLs comprise a major proportion
of total GSLs in seeds [74–76]. In this study, we identified six major GSL metabolites
in rapeseed, including three aliphatic GSLs (m145 gluconapin, m150 glucobrassicanapin
and m151 progoitrin), one aromatic GSL (m157 gluconasturtiin) and two indole GSLs
(m165 Indolylmethyl glucosinolate and m172 4-hydroxyglucobrassicin) (Figures 1 and 2,
Table 1), respectively. However, among the six GSLs examined, four showed highly
significant differences in abundance in BnHG vs. BnLG seeds, whereas two indole GSLs
did not (Figure 2a). It seems that aliphatic GSLs account for most of the total GSL content,
comprising an average of 1539.35~1975.56 µg/g FW in both years of the study. We detected
a higher positive correlation between the contents of aliphatic GSLs and aromatic GSLs vs.
indole GSLs (Figure 1c), supporting the notion that aliphatic GSLs and aromatic GSLs are
somewhat correlated in B. napus seeds. However, deeper knowledge of the specific GSLs in
B. napus seeds is required to help breeders improve the current varieties and select plants
with advantageous properties.

Unlike in the model plant Arabidopsis thaliana, many copies of homologous genes in-
volved in the GSL biosynthesis pathway are present in the rapeseed genome, as B. napus is
an allopolyploid plant with a complex genome [49]. However, numerous studies, including
quantitative trait locus (QTL) mapping and candidate gene identification, have investigated
the mechanisms involved in GSL production in rapeseed. For example, numerous QTL for
GSLs in leaves and seeds of B. napus have been detected [77,78]. For seed GSL content, Xu
et al. [79] and Wang et al. [80] also identified the significantly associated sites located on
chromosomes A9, C2 and C9, respectively. We previously identified 11 significant SNPs
associated with seed GSL accumulation in B. napus located on chromosomes A08, A09,
C03 and C09 [81]. Tan et al. [82] recently detected 15 reliable quantitative trait loci (QTLs)
for seed GSL content via a GWAS. With the rapid development of gene chip and genome
sequencing technology, mGWAS combined with genomic and transcriptomic analysis is
suitable for studying the metabolism, genetic characteristics and biochemical properties
of plants, and has been widely used for structural and functional analysis of metabolites
and functional genomics [83–85]. In the current study, we detected 113 candidate inter-
vals with significant associations with glucosinolate metabolites in rapeseed via mGWAS
(Figure 3, Table S3). Of these, 13 candidate intervals were significantly associated with
only a single metabolite, while 100 were associated with multiple metabolites. Importantly,
we repeatedly detected the significant interval regions on chromosomes A02, A08, A09,
C03, C07 and C09, which is consistent with previous studies [77,78,81,82,86–89]. We also
identified many new candidate intervals located on chromosomes A04, C01, C05, C06 and
C08, further demonstrating the power of our approach (Figure 2, Table S3).

Producing seeds with little or no GSL represents an important breeding objective
of B. napus in the past few decades. Indeed, ideal rapeseed has been developed contain-
ing high GSL levels in vegetative tissues and little or no GSL in mature seeds by allele
mining [78,90]. Numerous studies have also revealed many key genes involved in GSL
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biosynthesis in B. napus, such as GTR2 [82], MYB28 [91], MAM1, CYP83A1, UGT74B1 [92]
and LEC1 [93]. In this study, we identified two candidate genes involved in amino acid
side chain extension, BnaMAM1 (BnaC02g41790D) and BnaIMD1 (BnaA02g02020D), which
are located in candidate intervals qGSL-A02-1 and qGSL-C02-11, associated with three
aliphogenic GSLs and one aromatic GSL (Table S4), and showed higher expression pro-
files in BnHG vs. BnLG (Figure 4, Table S5). Furthermore, their homologous genes in A.
thaliana are involved in the biosynthesis of GSLs [56,94]. We also identified BnaFOMGS-
OX5 (BnaA09g47360D) and BanGS-OH (BnaA04g17900D), which participate in the side
chain modification process of aliphatic GSL biosynthesis and showed higher expression
profiles in BnHG vs. BnLG (Figures 4 and 5, Tables S4 and S5) [95,96]. In addition,
several genes encode major enzymes that catalyze the production of the core structures
of GSL, including CYP79 genes [97], CYP83 genes [20], GGP1 [43], SUR1 [31], UGT74
genes [22] and SOT genes [62]. We identified homologs of these genes, such as BnaCYP79F1
(BnaA06g11010D), BnaCYP79B2 (BnaA08g16100D), BnaCYP83A1 (BnaA04g24160D and
BnaC04g47910D), BnaGGP1 (BnaA01g06540D, BnaA08g13020D and BnaC07g42720D), Bna-
SUR1 (BnaA09g10030D), BnaUGT74B1 (BnaA09g29790D), BnaUGT74C1 (BnaC04g42530D),
BnaSOT16 (BnaA07g31260D), BnaSOT17 (BnaA06g12720D) and BnaSOT18 (BnaA07g31230D,
BnaA07g31250D, BnaA09g14030D, BnaA09g14040D and BnaC06g34970D) (Figure 4, Ta-
ble S4 and S5). In addition, understanding GSL metabolites is important for target-
ing genes in the relevant biosynthetic pathways. Here, we identified the homologs of
genes involved in diverse aspects of GSL biosynthesis and accumulation in B. napus,
such as BGLU genes (15), NSP genes (3), CAD1 (1), TGG genes (6) and NIT genes (3)
(Figure 4, Table S4 and S5), which are essential for the catabolism and hydrolysis of
GSL metabolites [66,67,69,98,99]. Importantly, some novel genes in the GSL biosynthe-
sis pathway were also identified. For example, BnaSOT12 (BnaA02g27300D) is homolo-
gous to AtSOT12, which functions in flavonoid, brassinosteroid and salicylic acid activity,
and is involved in plant responses to salt, osmotic stress and phytohormones [100,101].
The candidate genes, BnCYP81D11 (BnaA02g29380D and BnaA02g29390D), BnaCYP81D7
(BnaA03g23030D), BnaCYP81G1 (BnaA07g11900D, BnaA07g11910D and BnaA07g11920D),
BnaCYP81F3 (BnaA08g15650D), BnaCYP81F4 (BnaA08g15660D) and BnaCYP81K1
(BnaC02g36740D), are located in the interval regions associated with glucosinolate metabo-
lites and showed differential expression in BnHG vs. BnLG seeds (Figures 4 and 5, Tables
S4 and S5). Among them, CYP81F1 and CYP81F3 are known to be involved in indole GSL
biosynthesis [102,103], but there are few reports of these genes in B. napus. In addition,
46 related transferase genes, including GSTFs, GSTU and GSTT genes along with GSTZ,
showed different expression levels in BnHG vs. BnLG seeds (Figure 5, Tables S4 and S5).
Similarly, some of these genes are known to be involved in GSL biosynthesis in other
species [1,104].

GSLs play diverse roles in plant defense, and several transcription factors have
been identified as important regulators of GSL biosynthesis. For example, WRKY33
directly regulates indolic glucosinolate (IGS) biosynthesis, specifically the production
of 4-methoxyindole-3-ylmethyl glucosinolate (4MI3G), by directly activating the expres-
sion of CYP81F2, IGMT1 and IGMT2 [42], while the R2R3-MYB transcription factors,
MYB51, MYB34, MYB122 and MYB115, regulate aliphatic and indole GSL biosynthe-
sis [35,50,69,70,105]. In addition, the zinc finger protein OBP2 has been implicated in indole
GSL biosynthesis in A. thaliana [106]. In this study, we identified genes encoding various
transcription factors, such as MYBs (MYB34, MYB51, MYB122 and MYB115), AP2/ERFs
(ERF9), WRKY (WRKY33) and Zinc finger protein (OBP2), located in the interval regions
for GSL metabolites (Figures 4 and 5, Tables S4 and S5). In addition, we identified some
new transcription factors, including MYB44 (BnaA04g13540D), DREB1D (BnaA10g07630D
and BnaC09g28190D), NAC102 (BnaA06g22900D), NF-YB10 (BnaA09g33640D) and E2FC
(BnaA08g03620D), that showed differential gene expression profiles in BnHG vs. BnLG,
suggesting they might be involved in regulating GSL biosynthesis in B. napus (Figure 5,
Tables S4 and S5). Our findings suggest that the different candidate homologous genes
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play conserved roles in GSL biosynthesis, although their biological functions in B. napus
must be confirmed through careful analysis.

In conclusion, we identified 113 interval regions for six glucosinolate metabolites
in B. napus seeds (Figure 3, Table S3). We also identified 187 candidate genes for GSL
biosynthesis and accumulation. Our results enrich our knowledge of the GSL biosynthesis
pathway and provide candidate genes for improving the compositions of specific GSLs in
rapeseed, which could be precisely modified by gene editing in the future.

4. Materials and Methods
4.1. Plant Materials

In total, 143 B. napus accessions were collected from major breeding institutes across
China, including 70 low-glucosinolate content (<45 µmol/g), 46 medium-glucosinolate
content (45~100 µmol/g) and 27 high-glucosinolate content (>100 µmol/g), respectively
(Table S6). All accessions were grown in the growing seasons of 2017–2018 and 2018–2019
(namely 2017Cq and 2018Cq, respectively) in Chongqing, China. The field experiments
are designed as in our previous research [107]. In brief, all field experiments were carried
out by a randomized complete block design, with three biological replications across each
environment. Each accession was grown in a plot with three rows, singling 10–12 plants
each row. At the stage of flower initiation, the individual flowers were marked on each
plant to ensure that seeds are at the same stage of development. The fresh seeds at 35 days
after flowering (DAF) were sampled and pooled from five or more individuals, and quickly
frozen in liquid nitrogen. The representative B. napus accessions with high (Zhongyou 821,
BnHG) and low (Zhongshuang 11, BnLG) seed glucosinolate content were selected from
143 B. napus accessions for transcriptome sequencing (RNA-Seq), respectively. The seeds of
20, 30 and 40 DAF were also collected and pooled from five or more individuals in BnHG
and BnLG plants. All samples were stored at −80 ◦C until further analysis.

The total RNA was extracted from the seeds of 20, 30 and 40 DAF using an EZ-10
DNAaway RNA Mini-Preps kit (Sangon Biotech, Shanghai, China) following the manufac-
turer instructions. Then, the qualified RNA samples were used for libraries construction
and sequenced on Illumina Hiseq 2000 platform with 150 bp paired-end reads (Tianjin
Novogene Bioinformatic Technology Co., Ltd., Tianjin, China). The gene expression profiles
were evaluated using FPKM (fragments per kilo base of exon model per million) values.
Genes were considered as differentially expressed genes (DEGs) with a minimum 2-fold
difference in expression (|log2FC| ≥ 1).

4.2. Glucosinolate Matbolite Extraction

The raw metabolites were extracted from fresh seeds described in our previous re-
search [52], with minor modifications. In short, about 100 mg of fresh seeds was crushed
into powder using high-throughput tissue grinder (Tissuelyser-192, Shanghai, China).
Subsequently, we added the 500 µL extract solution (80% aqueous methanol with 0.1%
formic acid) and homogenized by vortex for 10 s. The homogenized extraction buffer
was extracted using sonication (KQ-100E, Kunshan, China) at 4 ◦C for 1 h, followed by
centrifugation at 12,000× g at 4 ◦C for 10 min. Then, the residues were repeatedly extracted.
Eventually, the mixed liquid supernatants were used for UPLC-HESI-MS/MS analysis
after being filtered by a 0.22 µm nylon filter. All experiments were performed in at least
three replicates for each accession.

4.3. UPLC-HESI-MS/MS Analysis

The UPLC-HESI-MS/MS was performed using Dionex UltiMateTM 3000 UHPLC
system (Thermo Fisher Scientific, Waltham, MA, USA) coupled to a Thermo Scientifific
Q-Exactive System equipped with an S-Lens ionizer source (Thermo Scientifific, Waltham,
MA, USA), including the precolumn (pore size: 1.7 µm, 2.1 × 5 mm, Waters, Wexford,
Ireland) and Acquity UPLCBEH C18 column (pore size: 1.7 µm, 2.1 mm × 150 mm, Waters,
Wexford, Ireland). The parameters were as follows: the mobile phases A (0.1% formic acid)
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and B (0.1% acetonitrile aqueous solution), 37 ◦C column temperature, 0.3 mL/min flow
rate and 10 µL injection volume, respectively. The mobile phase gradients are 0–2 min,
5% B–10% B; 2–10 min, 10–25% B; 10–13 min, 25–95% B; 13–16 min, 95% B; 16–16.5 min,
95–5% B; 16.5–21 min, 5% B. The mass spectrometry was detected in negative ion mode
with a scanning range of 100 to 1200 (m/z), 3.5 kV ion source voltage, 350 ◦C capillary
temperature, 35 sheath gas, 10 auxiliary gas and 0 backblow air, respectively.

4.4. Data Processing and Glucosinolate Metabolite Identification

Raw data of UPLC-HESI-MS/MS were firstly treated with MS-DAIL ver4.1 MSP neg-
ative database (http://prime.psc.riken.jp/compms/msdial/main.htmL#MSP, accessed
on 2 April 2022), and automatically converted by ABF (Analysis Base File) converter
(http://www.reifycs.com/AbfConverter/index.html, accessed on 12 March 2020) [108].
Correspondingly, the glucosinolate metabolites were identified using Xcalibur ver4.1 based
on retention time (RT), MS and MS/MS spectral data, referring to the published informa-
tion [109,110]. Furthermore, the amounts of six glucosinolate metabolites were quantified
by drawing standard curve of sinigrin [110,111], and the calibration curve was constructed
using eight points generated from the sinigrin concentration gradients, ranging from
0.001 to 2 mg L−1 (0.001, 0.005, 0.01, 0.05, 0.20, 0.50, 1.0 and 2.0 mg L−1).

The glucosinolate metabolites were detected in two consecutive years (2017 and
2018) with replications; we further obtained the best linear unbiased prediction (BLUP)
of six glucosinolate metabolites per accession using a linear model using an R script
(http://www.eXtension.org/pages/61006, accessed on 14 October 2020), respectively. The
content of six glucosinolate metabolites in the 2017 and 2018 growing seasons and resulting
values of BLUP were used as phenotypes for GWAS, respectively. The heritability was
calculated by using the multi-year repeated model. In addition, the quantitative data of
glucosinolate metabolites were divided into 10 grades, and Shannon–Wiener Diversity
Index was used to calculate metabolites [112–114]. The Pearson correlation coefficients
among six glucosinolate metabolites were calculated by the R language psych package and
significance tests (Student t-test) were performed [115]. Statistical analysis of glucosinolate
metabolites was performed using Microsoft Office Excel 2009. The G × E analysis of
glucosinolate metabolites was performed using AMMI model by R package “agricolae”.

4.5. GWAS of Glucosinolate Metabolites

Detailed methods used for SNP genotyping and mapping were previously described [46–48].
In brief, DNA libraries with a mean insert size of 350 bp were constructed, and 125 bp paired-end
reads were generated using an Illumina HiSeq 4000 instrument at the Biomarker Technolo-
gies Corporation (Beijing, China). Low-quality bases from paired-end reads were trimmed
using Trimmomatic (version 0.33) and mapped to the rapeseed genome ‘Darmor-bzh’ [49] us-
ing the Burrows–Wheeler Aligner (version 0.7.10-r789). Then, we used Picard (release 2.0.1,
http://broadinstitute.github.io/picard/, accessed on 26 July 2018) and GATK (version 3.2) to
process local realignment and base quality detection for the alignment results, sequentially. Fur-
ther, we then used AMtools mpileup (version 0.1.19–44428cd) and GATK to perform SNP calling.
In total, 239,945 high-quality SNPs with a minor allele frequency (MAF) <5% were used for
further analysis. The six models, including naïve, Q, K, PCA, K + Q and K + PCA model, were
applied to determine the statistical associations between phenotypes and genotypes. Quantile–
quantile (QQ) plots were used for false-positive correction for association analyses. In this study,
genome-wide association analysis for six glucosinolate metabolites was carried out using the
GLM with Q model and MLM with Q + K model by TASSEL 5.2.1 software. The population
structure Q matrix was completed by admixture_linux-1.3.0 software [116]. The significant signal
of the associations between SNPs and the glucosinolate metabolites was assessed based on the
threshold P < P = 1/N (where N is 239,945 SNPs in this study), and the threshold of significance
was set to p < 4.17 × 10−6.

http://prime.psc.riken.jp/compms/msdial/main.htmL#MSP
http://www.reifycs.com/AbfConverter/index.html
http://www.eXtension.org/pages/61006
http://broadinstitute.github.io/picard/
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4.6. Annotation of Candidate Genes

The significant interval regions were mapped to the Darmor-bzh reference genome (version
4.1, http://www.genoscope.cns.fr/brassicanapus/data/, accessed on 26 October 2022) [49],
which were anchored by the physical position of significant SNPs. Correspondingly, 200 kb
flanking region of association SNPs was used as the candidate interval region. Then, the
annotated genes in the interval regions were used for screening the candidate genes, and further
confirmed by gene expression analysis. Herein, the gene expression levels were calculated
as FPKM (Fragments Per Kilobase of transcript sequence per Millions base pairs) with the
featureCounts tool in Subread [117]. Finally, correlations between the GSL phenotype and the
gene expression profiles were detected to determine the candidate genes that were associated
with the glucosinolate metabolites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12030639/s1, Figure S1: The QQ plots of 6 glucosinolate
metabolites; Figure S2: Manhattan plots of association analysis for six glucosinolates using Q+K
model; Figure S3: The significant SNPs associated with 6 glucosinolates in different environments;
Figure S4: Correlation analysis of six glucosinolate metabolites in 2017cq and 2018cq; Table S1:
Summary of repeatedly detected SNPs for 6 glucosinolate metabolites by mGWAS; Table S2: Summary
of interval regions for 6 glucosinolate metabolites in B. napus; Table S3: Candidate interval regions for
6 glucosinolate metabolites in B. napus; Table S4: Candidate genes for 6 glucosinolate metabolites in B.
napus; Table S5: The expression levels of the candidate genes in BnHG and BnLG of B. napus; Table S6:
The list of 143 B. napus accessions used in this study; Table S7: Statistical analysis of 6 glucosinolate
metabolites in high-, medium- and low-glucosinolate-content rapeseed

Author Contributions: Conceptualization, N.Y. and C.Q.; methodology, Y.T. (Yunshan Tang) and
G.Z.; software, Y.T. (Yunshan Tang), S.S. and M.G.; validation, Y.T. (Yunshan Tang), N.Y. and C.Q.;
formal analysis, Y.T. (Yunshan Tang), X.J. and Y.T. (Yuhan Tang); resources, H.Z. and J.L.; data
curation, F.S., R.H. and S.C.; writing—original draft preparation, Y.T. (Yunshan Tang), N.Y. and C.Q.;
writing—review and editing, K.L., N.Y. and C.Q.; supervision, C.Q. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (32272150,
32072093), the Innovation and Entrepreneurship Training Program for graduates of Chongqing
(CYS21124), Innovation and Entrepreneurship Training Program for Undergraduates (S202210635329),
the China Agriculture Research System of MOF and MARA and the 111 Project (B12006).

Data Availability Statement: All other datasets supporting the results of this article are included
within the article and Supplementary Materials.

Acknowledgments: We thank Xinfu Xu and Rui Wang from Southwest University for providing
important plant materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [CrossRef] [PubMed]
2. Prieto, M.; López, C.J.; Simal-Gandara, J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and

healthy and adverse effects. Adv. Food Nutr. Res. 2019, 90, 305–350.
3. Bischoff, K.L. Glucosinolates. In Nutraceuticals, Effificacy, Safety and Toxicity; Gupta, R., Lall, R., Srivastava, A., Eds.; Academic

Press: Cambridge, MA, USA, 2021; pp. 903–909.
4. Jeschke, V.; Burow, M. Glucosinolates. In eLS; John, W., Sons, L., Eds.; 2018; pp. 1–8. Available online: https://onlinelibrary.wiley.

com/doi/full/10.1002/9780470015902.a0027968 (accessed on 2 April 2022).
5. Chhajed, S.; Mostafa, I.; He, Y.; Abou-Hashem, M.; El-Domiaty, M.; Chen, S. Glucosinolate biosynthesis and the glucosinolate–

myrosinase system in plant defense. Agronomy 2020, 10, 1786. [CrossRef]
6. Smolinska, U.; Morra, M.; Knudsen, G.; Brown, P. Toxicity of glucosinolate degradation products from Brassica napus seed meal

toward Aphanomyces euteiches f. sp. pisi. Phytopathology 1997, 87, 77–82. [CrossRef] [PubMed]
7. Hasegawa, T.; Yamada, K.; Kosemura, S.; Yamamura, S.; Hasegawa, K. Phototropic stimulation induces the conversion of

glucosinolate to phototropism-regulating substances of radish hypocotyls. Phytochemistry 2000, 54, 275–279. [CrossRef] [PubMed]
8. Schmidt, R.; Bancroft, I. Genetics and Genomics of the Brassicaceae; Springer: New York, NY, USA, 2011; pp. 585–596.

http://www.genoscope.cns.fr/brassicanapus/data/
https://www.mdpi.com/article/10.3390/plants12030639/s1
https://www.mdpi.com/article/10.3390/plants12030639/s1
http://doi.org/10.1016/j.tplants.2005.12.006
http://www.ncbi.nlm.nih.gov/pubmed/16406306
https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0027968
https://onlinelibrary.wiley.com/doi/full/10.1002/9780470015902.a0027968
http://doi.org/10.3390/agronomy10111786
http://doi.org/10.1094/PHYTO.1997.87.1.77
http://www.ncbi.nlm.nih.gov/pubmed/18945157
http://doi.org/10.1016/S0031-9422(00)00080-7
http://www.ncbi.nlm.nih.gov/pubmed/10870181


Plants 2023, 12, 639 15 of 19

9. Velasco, P.; Rodríguez, V.M.; Francisco, M.; Cartea, M.E.; Soengas, P. Genetics and breeding of Brassica crops. In Glucosinolates,
Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2017; pp. 61–86.

10. Bisht, N.C.; Augustine, R. Development of Brassica Oilseed Crops with Low Antinutritional Glucosinolates and Rich in Anticancer
Glucosinolates. In Nutritional Quality Improvement in Plants; Jaiwal, P., Chhillar, A., Chaudhary, D., Jaiwal, R., Eds.; Springer:
Cham, Switzerland, 2019; pp. 271–287.

11. Bell, L.; Oloyede, O.O.; Lignou, S.; Wagstaff, C.; Methven, L. Taste and flavor perceptions of glucosinolates, isothiocyanates, and
related compounds. Mol. Nutr. Food Res. 2018, 62, e1700990. [CrossRef]

12. Sønderby, I.E.; Geu-Flores, F.; Halkier, B.A. Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci. 2010, 15,
283–290. [CrossRef]
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