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Abstract: Huanglongbing (HLB) is a highly contagious and devastating citrus disease that causes
huge economic losses to the citrus industry. Because it cannot be cured, timely detection of the HLB
infection status of plants and removal of diseased trees are effective ways to reduce losses. However,
complex HLB symptoms, such as single HLB-symptomatic or zinc deficiency + HLB-positive, cannot
be identified by a single reflection imaging method at present. In this study, a vision system with an
integrated reflection–transmission image acquisition module, human–computer interaction module,
and power supply module was developed for rapid HLB detection in the field. In reflection imaging
mode, 660 nm polarized light was used as the illumination source to enhance the contrast of the
HLB symptoms in the images based on the differences in the absorption of narrow-band light by the
components within the leaves. In transmission imaging mode, polarization images were obtained in
four directions, and the polarization angle images were calculated using the Stokes vector to detect
the optical activity of starch. A step-by-step classification model with four steps was used for the
identification of six classes of samples (healthy, HLB-symptomatic, zinc deficiency, zinc deficiency +
HLB-positive, magnesium deficiency, and boron deficiency). The results showed that the model had
an accuracy of 96.92% for the full category of samples and 98.08% for the identification of multiple
types of HLB (HLB-symptomatic and zinc deficiency + HLB-positive). In addition, the classification
model had good recognition of zinc deficiency and zinc deficiency + HLB-positive samples, at 92.86%.

Keywords: Huanglongbing; classification; image acquisition; pattern recognition; classifier

1. Introduction

Citrus is one of the most popular fruits in the world, with a total production of
144 million tons worldwide, according to the Food and Agriculture Organization of the
United Nations [1]. In the process of citrus cultivation, it will be harmed by pests and
diseases, among which Huanglongbing (HLB) has the most serious impact. The culprit
for the severe damage caused to the citrus industry is the psyllid-spread phloem-limited
bacterium “Candidatus Liberibacter asiaticus” (CLas) [2,3]. The most serious consequences
are the loss of the edible value of fruit and the death of citrus trees. In addition, HLB
cannot be cured, and the proliferation of HLB has a great impact on the citrus industry [4].
Achieving accurate detection of HLB and removing diseased trees are effective ways to
reduce losses [5].

Traditional methods for the detection of HLB include field diagnosis, indicator crop
identification, microscopic pathogen observation, serological identification, hybrid criteria,
DNA probe hybridization, polymerase chain reaction (PCR), and quantitative real-time
polymerase chain reaction (qPCR) [6]. The field diagnosis method relies on the extensive
experience of the inspector; despite this, its accuracy rate is less than 70% [7]. Other
methods require the support of expensive equipment, and the detection process is tedious
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and time-consuming. Currently, PCR and qPCR are the most commonly used methods to
confirm HLB infection [8]. However, due to their high cost, it is not possible to apply them
to large-scale orchards, and in practice they still rely on human screening of suspicious
leaves for detection.

In recent years, many fast and effective methods have been developed to detect HLB
as quickly as possible. Yellow shoots and blotchy mottles are the common symptoms of
HLB-affected plants [3,9]. For these symptoms, HLB detection methods based on machine
vision and pattern recognition have been proposed. A customized fluorescence imaging
system was used for the acquisition of images of citrus leaves [10,11]. In this study, the
SVM and ANN obtained 92.8% and 92.2% accuracy, respectively. Deng et al. used natural
light to acquire citrus leaf images, and C-SVC and BPNN were used to perform pattern
recognition, with an accuracy of 91.93% and 92%, respectively [6,12]. Liu et al. used
hyperspectral imaging to acquire citrus leaf images and extracted image features based
on GLCM [13]. The PLS-DA model was used for the identification of HLB-symptomatic
leaves, and the results showed that the method was effective for the identification of
HLB-symptomatic samples.

HLB infection manifests as phloem necrosis, which is thought to be the main rea-
son for the accumulation of starch in leaves, because it prevents photosynthetic products
from being transported to the roots [14]. The leaves in a healthy state produce only trace
amounts of starch, which can be neglected compared to the amount of starch accumulated
in HLB-affected leaves [9]. The abnormal accumulation of starch is another typical feature
of HLB infection. On this basis, Pourreza et al. conducted extensive and thorough studies
and obtained a high confidence level [15,16]. However, the smooth and thick waxy layer
on citrus leaves hinders the entry of polarized light, reducing the potential for detecting
the optical activity of starch in leaves by optical imaging. In addition, the image acquisition
method of reflection imaging confuses the yellowing areas caused by nutrient deficiency
with those caused by starch accumulation. Meanwhile, both zinc deficiency and HLB can
cause abnormal accumulation of starch in the leaves [17], but the difference is in the form
of starch accumulation and the content of starch [18,19]. The immediate effect of zinc defi-
ciency seems to be to prevent the export of photosynthetic products from the chloroplasts,
causing the accumulation of starch in the chloroplasts and resulting in their destruction [20].
The accumulation of starch in zinc-deficient leaves occurs within the chloroplasts, and
almost all chloroplasts are affected, so the yellowing areas are evenly distributed between
the leaf veins. HLB causes blockage of the phloem and, subsequently, the translocation
of starch from the leaves to the roots is blocked and starch granules accumulate in the
leaves in large quantities, causing crushing and destruction of the chloroplasts’ structure [9].
This destruction is irregular, so the leaves show mottled yellowing. Differences in starch
accumulation patterns result in differences in leaf symptoms between zinc-deficient and
HLB-positive samples. However, in the later stages of HLB infection, zinc deficiency
symptoms usually accompany HLB symptoms, and the symptoms of HLB are masked
by zinc deficiency symptoms [3]. In summary, the information in the images obtained
by a single reflection imaging method is limited and cannot be adapted to the complex
and diverse symptoms of HLB in the natural environment. Therefore, it is more likely to
achieve the detection of multiple types of HLB by considering two typical symptoms of
HLB infection—blotchy mottles and abnormal accumulation of starch—in an integrated
manner. The objectives of this study were as follows:

1. To develop a device for real-time HLB detection in the field.
2. To develop an imaging system capable of highlighting the blotchy, mottled texture of

HLB-affected leaves in reflection imaging mode.
3. To develop a method capable of calculating a polarization angle image that can

reflect the relative starch content and distribution within the leaf in transmission
imaging mode.

4. To develop an optimal step-by-step classification model for the detection of multiple
types of HLB-affected samples (HLB-symptomatic and Zn deficiency + HLB-positive).
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2. Results
2.1. Results of Image Acquisition and Pre-Processing

Figure 1 shows examples of four polarization angle images acquired in reflection
imaging mode combined with polarized light imaging. The 0◦, 45◦, and 135◦ images all
had significant leaf surface reflections, which obscured the symptoms of the leaves. The
90◦ images presented the symptoms of the leaves and were selected for pre-processing
in reflection imaging mode. This method based on polarized light imaging to separate
reflection components has been proposed and applied in the field of computer vision [21].

Figure 1. Examples of four polarization angle images acquired in reflection imaging mode.

Figure 2 shows the pre-processed reflection and transmission images representing the
six types of leaf samples involved in this study: HLB-symptomatic, healthy, Zn deficiency,
Zn Def. + HLB-positive, B deficiency, and Mg deficiency. The absorption spectrum of
chlorophyll has the strongest absorption peak near 660 nm (red light region) [22]. Therefore,
the reflection image generated by the 660 nm illumination has a strong suppression effect
on the imaging of chlorophyll. In the reflection image, there was no chlorophyll loss in
healthy leaves, resulting in light at 660 nm being absorbed by chlorophyll and, therefore,
showing a continuous black area. HLB-symptomatic samples showed discontinuous,
mottled yellowing because of the random destruction of chlorophyll within the leaves
due to starch accumulation [9]. The Zn- and Mg-deficient samples showed a symmetrical
yellowing pattern, which was different from the yellowing caused by HLB [3]. Zn deficiency
often accompanies HLB infection in its later stages [3], and it is difficult to distinguish HLB
infection in Zn-deficient leaves based on reflection images because Zn deficiency symptoms
mask HLB symptoms [15]. B deficiency leads to lignification of the xylem cell walls [23],
so the veins were more pronounced in images of B-deficient citrus leaves, as shown in
Figure 2.
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Figure 2. Example images of different types of leaves acquired using the custom-developed vi-
sion system.

Transmission images were used to represent the content and distribution of starch in
the leaves. Compared to the HLB-affected samples, no appreciable amount of starch was
accumulated in the healthy, Mg-deficient, and B-deficient samples, so the differences in the
transmission images were not significant. As shown in Figure 2, samples can be divided
into two categories according to the presence or absence of significant starch accumulation.
Among them, samples with no significant accumulation of starch—such as healthy, Mg-
deficient, and B-deficient samples—had low grayscale values in the mesophyll and high
grayscale values in the leaf veins. Samples with significant starch accumulation—such as
HLB-symptomatic, Zn-deficient, and Zn Def. + HLB-positive samples—had large numbers
of high-brightness pixel points in the mesophyll. Similar to the HLB-symptomatic samples,
the Zn-deficient samples also showed chlorophyll loss due to starch accumulation, except
that Zn deficiency prevented the transfer of photosynthetic products from the chloroplasts
and caused starch to accumulate uniformly in all chloroplasts, whereas HLB caused uneven
blockage of the phloem, so the chlorophyll loss due to Zn deficiency was more uniform
and symmetrical. The starch content of Zn-deficient leaves was higher than that of healthy
leaves but lower than that of HLB-symptomatic leaves [15,24], which is consistent with
the results of the images that we obtained. In addition, the transmission images of Zn
Def. + HLB-positive samples had more pixels than the Zn-deficient and HLB-symptomatic
samples, so we speculated that the starch content in Zn Def. + HLB-positive samples was
higher than that in HLB-symptomatic and Zn-deficient samples. The presence of high-
brightness pixels in the veins of all samples was caused by the inability of light to penetrate
the veins. Specifically, the leaf vein surface was illuminated by the light passing through
the mesophyll and captured by the camera, so high-brightness pixels were displayed in the
images acquired in transmission imaging mode. However, the difference in the distribution
of pixel points in the mesophyll was sufficient to identify the presence and extent of starch
accumulation in leaves; therefore, highly luminous pixels of leaf veins had an acceptable
impact on the classification process.

2.2. Results of the Step-by-Step Classification Model

Compared to the interference of leaf veins’ highlighted pixels in the transmission
images, the reflection images were subjected to less interference and had excellent differen-
tiation ability, except for Zn-deficient and Zn Def. + HLB-positive samples. Accordingly,
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a step-by-step classification model was designed. The samples were classified into five
categories using reflection imaging mode: healthy, Mg deficiency, B deficiency, HLB-
symptomatic, and Zn deficiency broad category (Zn-deficient and Zn Def. + HLB-positive
samples), and the subdivision of the Zn deficiency broad category was performed using
the transmission imaging mode.

Table 1 shows the accuracy of the five classifiers at each step in the classification model,
and the best combination of classifiers was selected accordingly. Among them, the LR
had good classification results in the first, second, and fourth steps, LDA also had good
classification effects in the second step, and RF had the best classification effects in the
third step.

Table 1. The best set of classifiers for each step of the classification models.

Step No. Imaging Mode
Accuracy (%)

Best Classifier
LDA RF SVM CART LR

1 Reflection 98.85 99.62 98.46 94.23 100.00 LR
2 Reflection 100.00 96.43 98.57 90.00 100.00 LDA, LR
3 Reflection 96.67 97.50 95.83 94.17 96.67 RF
4 Transmission 87.14 80.00 82.86 87.14 92.86 LR

The complete detection process was performed on the dataset of all categories of
samples using the best classifier in each step of the classification model, and the step-
by-step classification results are shown in Table 2. The average identification rate of the
model for the six categories of samples was 96.92%, with 100% for healthy, Mg-deficient,
B-deficient, and HLB-symptomatic samples. In the third step of the classification model,
three Zn Def. + HLB-positive samples were incorrectly identified as HLB-symptomatic
samples. These three samples could have been accurately identified in the fourth step,
which introduced errors in the identification of Zn Def. + HLB-positive samples. This is
an unavoidable problem for step-by-step classification models, because the identification
in the next step is based on the identification in the previous step and, thus, the risk of
misclassification in the previous step needs to be taken. However, if the classifier of each
step is reliable enough, then this risk will be greatly reduced. In this study, this error could
be acceptable considering the high accuracy of the step-by-step model.

Table 2. Confusion matrix for all category samples.

Actual Class

Predicted Class

SumHealthy Mg Def. B Def. HLB-
Symptomatic Zn Def. Zn Def. +

HLB-Positive

Healthy 50 0 0 0 0 0 50
Mg Def. 0 50 0 0 0 0 50
B Def. 0 0 40 0 0 0 40

HLB-symptomatic 0 0 0 50 0 0 50
Zn Def. 0 0 0 0 48 2 50

Zn Def. +
HLB-positive 0 0 0 3 3 14 20

Sum 50 50 40 53 51 16 260

The main objective of this study was to identify multiple types of HLB, so all categories
of samples were classified into two categories (HLB-positive and HLB-negative); the
classification results are shown in Table 3. The average classification accuracy of the model
was 98.08% when only the recognition rate of HLB was considered.
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Table 3. Results of classification of the infection status of HLB.

Actual Class
Predicted Class

Sum
HLB-Positive HLB-Negative

HLB-positive 67 3 70
HLB-negative 2 188 190

Sum 69 191 260

3. Materials and Methods
3.1. Citrus Leaves Collection

Citrus leaves were acquired from Newhall Gannan navel orange trees in Ganzhou
Citrus Scientific Research Institute (Ganzhou, Jiangxi Province, China) in November 2021
under the guidance of experienced horticulturalists. Six kinds of leaf samples—healthy,
HLB-symptomatic, zinc deficiency (Zn deficiency), samples of the combined effect of Zn
deficiency and HLB (Zn Def. + HLB-positive), magnesium deficiency (Mg deficiency) and
boron deficiency (B deficiency)—were collected. All samples were packaged in Ziploc
moisture barrier packets, transported to the laboratory via cold chain, and subsequently
tested for HLB by qPCR [8]. A total of 260 leaf samples were tested, including 50 healthy
samples, 50 HLB-symptomatic samples, 50 Zn-deficient samples, 20 Zn Def. + HLB-positive
samples, 50 Mg-deficient samples, and 40 B-deficient samples.

3.2. Custom-Developed Vision System

Considering the complex symptoms of HLB, combined with the internal and external
symptoms (i.e., mottled leaves and starch accumulation) of the HLB-affected leaves, using
these two imaging modes for HLB detection is the better choice. This approach was used
to design the vision system, which was packaged in a galvanized sheet box (30 cm × 30 cm
× 30 cm) including the image acquisition module and the power supply module (Figure 3).
A touchscreen industrial computer was used for the operation of the entire identification
process and to display the results. The industrial computer was powered by a DC power
supply (12 V, 5 A) and equipped with a USB interface. As shown in Figure 3b, the 24 V
lithium battery was stepped down by a 12 V voltage stabilizer to supply power to the
industrial computer.

The illumination system of the image acquisition module was divided into two parts:
reflection mode and transmission mode, which were used to detect the mottled symptoms of
citrus leaves and the internal starch accumulation, respectively. The massive accumulation
of starch induced by HLB leads to the destruction of chloroplasts’ structure, of which
the most direct external expression is the yellowing of the leaves [14]. To highlight this
property, six LEDs (LED Engin, San Jose, CA, USA) at 660 nm (LZ1-10R202-0000, 2.5 W)
were used to provide illumination for the reflection imaging mode. The reflection rate
of light was higher for lutein and carotenoids, and the absorption rate was highest for
chlorophyll under 660 nm LED light source irradiation [25]. This helped to highlight the
regions of leaves with mottled symptoms in the images. Starch has the property of rotating
the polarization plane of polarized light, and a 589.6 nm wavelength is usually used to
detect this optical activity [18]. To avoid the blocking of polarized light by the waxy layer
on the leaf surface, the transmission imaging mode was used to measure the ability of
starch to rotate the polarization plane of light. In addition, 12 LEDs (Cree LED, Durham,
NC, USA) at 590 nm (XPEBAM-L1-0000-00902, 3 W) were used to provide illumination for
the transmission imaging mode. As shown in Figure 3b, all of the LEDs were powered by a
24 V lithium battery after being regulated by a 24 V voltage stabilizer.
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Figure 3. Custom-developed vision system: (a) appearance of the vision system; (b) circuit diagram
of the power supply module; (c) schematic diagram of the image acquisition module.

Figure 3c shows the schematic diagram of the custom-developed vision system. The
image acquisition module was sealed in a space of 15 cm × 15 cm × 30 cm to obtain a
single illumination source and avoid reflections from other objects. The vision system
used a grayscale polarization camera (MER-502-79U3M POL, Daheng Imaging, Beijing,
China) as the image acquisition machine. In addition, the polarization camera could be
used for data transfer and power supply via a USB interface. The camera was equipped
with a Sony IMX250MZR CMOS (IMX250MZR, Sony, Tokyo, Japan) polarization sensor. It
had a resolution of 5 megapixels and a frame rate of 79 fps. Four polarizers with different
polarization directions (0◦, 45◦, 90◦, and 135◦) were integrated inside the camera to acquire
four polarized images. The camera was fitted with a lens (M0824-MPW2, Computar, Tokyo
Japan) with a focal length of 8 mm, the purpose of which was to reduce the size of the
device for portability.

To improve the imaging quality, linearly polarized light was used to provide illumina-
tion for the reflection imaging mode. In the transmission imaging mode, the leaves were
flattened using a pressing plate with an elliptical hole in the center to obtain a flat trans-
mission image, and linearly polarized light was used to generate polarized images of the
leaves. To ensure uniformity of the light, homogenizing plates were used. All of the linearly
polarized light was generated through the polarizer in front of the illumination source. The
polarization directions of all of the polarizers coincided with the polarization direction of
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the 0◦ polarizer in the polarization camera. Therefore, four images were acquired in each
of the reflection and transmission imaging modes:

1. 0◦ image: generated by polarized light and the 0◦ polarizer in the polarization camera.
2. 45◦ image: generated by polarized light and the 45◦ polarizer in the polarization camera.
3. 90◦ image: generated by polarized light and the 90◦ polarizer in the polarization camera.
4. 135◦ image: generated by polarized light and the 135◦ polarizer in the polarization camera.

3.3. Image Pre-Processing

The 90◦ image was chosen to perform the pre-processing for reflection imaging because
it had proven to be effective in improving the image quality (as explained later in the
Section 2). The flow of the pre-processing method in the reflection imaging mode is shown
in Figure 4a, which aimed to remove the background in the image and make the orientation
of the leaves uniform. The purpose of removing the background in the image was to
simplify the image and remove the interference of external substances in feature extraction;
the purpose of making the orientation of the leaves uniform was to facilitate the extraction
of texture features. The pre-processing consisted of the following five steps:

I. Triangular threshold segmentation was used in separating the image background [26].
II. The maximum connected component was extracted to obtain the leaf region.
III. To obtain the background-free image of the leaf, the original image was multiplied

by the leaf region.
IV. The ellipse was fitted according to the blade shape.
V. The rotation angle in the affine transformation was determined according to the

angle between the long axis of the fitted ellipse and the horizontal direction, and
all of the leaf images were changed to the horizontal position.

In the transmission imaging mode, four polarization images were obtained, as shown
in Figure 4b. To obtain a clearer picture of the changes in the polarization state of light
occurring due to the starch inside the leaf, the polarization state of the light was described
using the Stokes vector, which is often applied for the mathematical description of polarized
light states [27]. Stokes’ theory applies to both partially and fully polarized light. Due to
the anisotropy of the citrus leaf, polarized light crossing the leaf becomes a combination
of polarized and unpolarized light, and the Stokes vector can perfectly represent the
polarization characteristics of the light after crossing the leaves. The Stokes vector contains
four Stokes polarization parameters (S0, S1, S2, and S3), where S0 represents the intensity
of the whole light and S1, S2, and S3 represent independent polarization states in different
directions. The formula is as follows:

S =


S0
S1
S2
S3

 =


I
Q
U
V

 =


I0 + I90
I0 − I90

I45 − I135
IR − IL

 (1)

where I is the sum intensity value of light, Q is the subtraction of light intensity for the
0◦ and 90◦ images, U is the subtraction of light intensity for the 45◦ and 135◦ images,
and V is the intensity subtraction of the beam in the left and right circularly polarized
light components.

Since starch has the property of rotating the plane of polarized light, different con-
centrations of starch lead to different angles of rotation of the plane of polarized light, so
the angle of linear polarization (AoLP) was determined using the Stokes vector method
to describe the differences in the content and distribution of starch within the leaves. In
general, the AoLP is a valid indicator to describe polarization characteristics in polarization
imaging studies [28]. The AoLP represents the angle between the direction of the vibration
of light and the reference direction, which can characterize the angle of rotation of the
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polarization plane after the polarized light passes through the citrus leaf, as described in
the following equation:

AoLP =
1
2

arctan
(

U
Q

)
(2)

Figure 4. Pre-processing of leaf images in two imaging modes: (a) the pre-processing of the reflection
image: (I) thresholding, (II) extraction of connected components, (III) acquiring leaf images of
the region of interest (ROI), (IV) fitting the ellipse, and (V) affine transformations; (b–d) the pre-
processing of the transmission image: (b) the original image obtained in transmission imaging mode,
(c) histogram of the robust gray value normalization process, and (d) pre-processing result of the
transmission image.
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The polarization angle image calculated by Equation (2) is shown in Figure 4d, where
the trace amount of starch in the leaves led to a lower contrast in the polarization angle
image. The robust gray value normalization method [29] was used to enhance the contrast
of the image with the following equations:

f (g) = g ∗Mult + Add, f (g) ∈ [0, 255] (3)

f (g) = Min(Max(bg ∗Mult + Add + 0.5c, 0), 255), f (g) /∈ [0, 255] (4)

Mult =
⌊

255
gMax − gMin

⌋
(5)

Add = −Mult ∗ gMin (6)

ci =
i

∑
j=0

nj

n
(7)

where g represents the gray value of the original image, Mult represents the multiplication
factor, Add represents the summation factor, f(g) represents the gray value of the image
after enhancement, gMax is the maximum gray value, gMin is the minimum gray value, ci is
the cumulative probability of grayscale values, ni denotes the number of pixels with gray
value i, and n is the number of pixels in the region of interest (ROI). To prevent f(g) from
going outside the range of gray values (i.e., 0 to 255), Equation (4) was used for cropping.
Mult and Add control the changes in the image’s contrast and brightness, respectively.
The normal gray value normalization method directly determines the maximum and
minimum gray values in the image as gMax and gMin, respectively. However, this gray
value normalization method is useless if the darkest (gray value = 0) and brightest (gray
value = 255) points are in the image. The robust gray value normalization method used in
this study determines gMax and gMin by counting the cumulative histogram of the image
and setting the cumulative histogram threshold to filter the gray value of the image. For
example, as shown in Figure 4c, there were pixel points with gray values equal to 0 and
255 in the image, and the cumulative probability was greater than 90% in the region where
most of the image’s gray values were concentrated. The cumulative probability threshold
was set to 0.9, gMax = 23 and gMin = 0 were determined, and Mult = 11 and Add = 0 were
calculated. The before-and-after comparison of image enhancement is shown in Figure 4d.

3.4. Feature Extraction

The 90◦ image in reflection imaging mode and the enhanced polarization angle image
calculated using the four polarization images obtained in transmission imaging mode were
used for feature extraction. Texture features extracted from the gray level co-occurrence
matrix (GLCM) and statistical histogram features of gray values (mean and standard
deviation) were extracted.

The GLCM is a common method used in image feature extraction, showing the
frequencies of two different grayscale values adjacent to one another in four main directions
(0◦, 45◦, 90◦, and 135◦) [15]. The normalized GLCM model proposed by Gómez et al. was
used in this study [30]. Usually, some scalars were used to characterize the GLCM. In this
study, four features were selected to characterize the GLCM, including Energy, Correlation,
Homogeneity, and Contrast, as shown in Table 4. The mean and standard deviation of the
values of these four features in the four directions of 0◦, 45◦, 90◦, and 135◦ were calculated
and, finally, eight texture features were obtained to represent one leaf sample.
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Table 4. GLCM-based texture features.

Feature Equations

Energy ∑
i

∑
j

p(i, j)2 (8)

Correlation ∑
i

∑
j

(i·j)p(i,j)−µxµy
σxσy

(9)

Homogeneity ∑
i

∑
j

p(i,j)
1+|i−j|2

(10)

Contrast ∑
i

∑
j
|i− j|2 p(i, j) (11)

Mean µ =
∑p∈R g(p)

F (12)

Standard deviation σ =

√
∑p∈R (g(p)−µ)2

F
(13)

Dependency

µx = ∑
i

i∑
j

p(i, j), µy = ∑
j

j∑
i

p(i, j)

σ2
x = ∑

i
(i− µx)

2∑
j

p(i, j),

σ2
y = ∑

j
(j− µy)

2∑
i

p(i, j)

Two statistical histogram features—the mean and standard deviation of the gray
values—were calculated based on the ROIs of the leaf images. The calculation formula is
shown in Table 4 (Equations (12) and (13)), where R is the ROI of the image, p is the pixel
point of R, g(p) is the gray value, and F is the number of pixels in R.

3.5. Classification Models

Based on the findings of our preliminary experiments and the texture differences
between different classes of leaves, an optimal step-by-step classification model was de-
veloped. The aim was to simplify the operation, convert the complex classification into a
simple dichotomous classification, and improve the classification performance by making
full use of the respective advantages of reflection imaging and transmission imaging. The
step-by-step classification model is shown in Figure 5, which includes a total of four clas-
sification steps and, ultimately, divides the samples into six subclasses. The first, second,
and third of these steps used the reflection imaging mode, while the fourth step used the
transmission imaging mode. In the process of determining the best classifier for each step,
the dataset was divided into two parts—the training set and the test set—at a ratio of 7:3
(70% training data and 30% test data).

Figure 5. Schematic diagram of the step-by-step classification model.

To select the optimal pattern recognition method, the classification performance of
five pattern recognition methods—linear discriminant analysis (LDA), random forests
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(RF), support-vector machine (SVM), classification and regression tree (CART), and logistic
regression (LR)—was evaluated in each classification step.

LDA is a classic supervised dimensionality reduction classification technique, which
is usually used for the dimensionality reduction and classification of data. Since LDA
gives the data the largest interclass distance and the smallest intraclass variance in the
new dimensional space, the distinguishability of the reduced-dimensional sample data
is better than that of the original data [31]. RF aggregates multiple weak classifiers into
strong classifiers and uses multiple trees to differentiate and classify the data. Improving
prediction accuracy without significantly increasing computational effort is a significant
advantage of RF [32]. SVM is a dichotomous classification model whose basic model is a
linear classifier with a maximum interval defined in the feature space, which solves the
decision boundary of the maximum bounded hyperplane by learning samples [33]. CART
simplifies computation by repeatedly classifying or regressing binary data. Patterns of
values of different input and output variables are obtained through data learning, data
classification, and prediction. These patterns are then used to classify and predict new
data objects. The decision tree infers the categorical values of the output variables based
on the values of the input variables of the new data. LR assumes that the data obey
Bernoulli distribution, and it uses gradient descent to solve the parameters by maximizing
the likelihood function to achieve the purpose of dichotomizing the data. Standard logistic
regression uses a weighted linear combination of the coefficients of the input variables to
classify the data. Accuracy (i.e., the ratio of the number of correctly classified samples to
the total number of samples) was used to evaluate the classification performance of the
models, and the classifier with the highest average accuracy in the training and test sets at
each step was considered to be the best classifier.

After determining the best classifier for all steps, each dataset was randomly divided
into two equal sets. The entire model was then run with one set as the training set and the
other set as the validation set. Then, the classification model was repeated with the two
sets in swapped roles. Thus, classification results were obtained for all samples.

4. Discussion

In this paper, a portable custom-developed vision system equipped with two imag-
ing modes was developed to distinguish multiple types of HLB-affected samples (HLB-
symptomatic and Zn Def. + HLB-positive) based on the blotchy mottled texture features of
the leaves and the abnormal starch accumulation inside the leaves.

Our findings suggested a new approach for the identification of Zn-deficient and
Zn Def. + HLB-positive samples, which was achieved using a transmission imaging
system equipped with a 590 nm polarized light illumination unit. In the early stages
of HLB infection, blotchy mottling may be the only leaf pattern visible. In later stages,
symptoms of Zn deficiency will eventually develop, and the HLB-induced Zn deficiency is
indistinguishable from genuine Zn deficiency in the leaf symptoms [3]. HLB symptoms
can be masked by Zn deficiency symptoms, so the texture features on the leaves cannot
be used to accurately distinguish between the Zn-deficient and Zn Def. + HLB-positive
samples. Significant differences in starch content between HLB and Zn-deficient samples
have been confirmed [17]. This was consistent with the results of the transmission images
that we acquired (Figure 2). In addition, our results showed significant differences in the
number and distribution of pixel points in the transmission images of Zn-deficient and Zn
Def. + HLB-positive samples, as shown in Figure 2, indicating the differences in the content
and distribution of starch between them. This difference was used for classification, and
the confusion matrix is shown in Table 5. The accuracy of the model for the identification
of Zn-deficient and Zn Def. + HLB-positive samples was 92.86%, with five samples being
incorrectly identified. The detection of starch within citrus leaves by reflection imaging
mode has been reported [16], but this approach is more disturbed by yellowing caused
by non-starch accumulation, because the symptoms of starch accumulation and nutrient
deficiency are very similar. The method proposed in our study used transmission imaging
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mode to acquire polarization images of multiple angles, combined with the Stokes vector
method to calculate the polarization angle images of leaves [26]. The optical activity of
starch within the leaves was detected intuitively, and the interference of yellowing caused
by waxy layer reflection and non-starch accumulation was avoided. This method is effective
for the identification of Zn-deficient and Zn Def. + HLB-positive samples.

Table 5. Confusion matrix for the identification results of Zn-deficient + HLB-positive samples.

Actual Class
Predicted Class

Sum
Zn Deficiency Zn Def. + HLB-Positive

Zn deficiency 48 2 50
Zn Def. + HLB-positive 3 17 20

Sum 51 19 70

In this study, it was found that the use of a homemade HLB detection device equipped
with both transmission and reflection imaging modes could identify classic HLB symptoms
and HLB symptoms confused by Zn deficiency symptoms (HLB-symptomatic and Zn
Def. + HLB-positive), with the potential for early detection of HLB. The narrow-band
polarized light reflection imaging technique used by Pourreza et al. has been used to
conduct numerous studies on the optical activity of starch within leaves [15,24], and these
studies have made a great contribution to the field of HLB detection. However, the high
similarity between starch accumulation regions and nutrient deficiency symptom regions
results in the inability to avoid the interference of non-HLB yellowing regions in the
reflection imaging mode. Therefore, considering the complexity and variability of HLB
symptoms, it is almost impossible to identify HLB-symptomatic and Zn Def. + HLB-
positive samples using a single reflection imaging method. In our research, the combined
image acquisition method of transmission imaging and reflection imaging was confirmed
to have great promise in the field of HLB detection because it can acquire both internal
and external features of leaves. Two changes in HLB-affected leaves can be detected: the
first is the blotchy mottled texture on the leaves’ surface, and the second is the abnormal
accumulation of starch inside the leaves [3,9,14]. Accordingly, we designed two imaging
modes for detecting these two symptoms. The reflection imaging mode was designed based
on the differences in the light absorption rates of individual components within the leaves at
selected wavelengths of light [22], so as to make the disease-affected areas of the leaves more
prominent in the reflection images. The transmission imaging mode was used to detect
abnormal accumulation of starch within the leaves, and for this purpose a suitable narrow-
band illumination system was customized for detecting the optical activity of starch [18,34].
The polarization images acquired by the vision system in four directions were used to
calculate the polarization angle images of the leaves by the Stokes vector method. The
relative content and distribution of starch in the leaves were determined according to the
number and distribution of pixel points in the polarization angle images. The step-by-step
classification model shown in Figure 5 was designed to combine the advantages of reflection
imaging mode and transmission imaging mode. Ultimately, accurate identification of HLB-
symptomatic and Zn Def. + HLB-positive samples, as well as some nutrient-deficient
samples, was achieved. As shown in Table 2, the identification accuracy of the model
for all categories of samples was 96.92%. Among them, the recognition rate was 98.08%
for HLB (HLB-symptomatic and Zn Def. + HLB-positive samples were included). It has
been demonstrated that starch accumulation symptoms appear at an earlier stage than
blotchy–mottled symptoms [35]. In addition, the feasibility of early detection of HLB was
confirmed by Pourreza et al. through optical imaging techniques to detect the optical
activity of starch in leaves [36]. The yellowing mottled symptoms of HLB-affected leaves
are believed to result from the disintegration of the chloroplast thylakoid system caused
by the starch buildup [9]. The mottling symptoms on HLB-affected leaves become more
pronounced as the disease progresses. Therefore, the sensitivity of our detection system to
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mottling symptoms and starch accumulation may be useful for the early detection of HLB,
especially in the period when starch starts to accumulate in HLB-affected leaves but does
not show symptoms that are visible to the human eye.

Highly accurate laboratory-based methods, such as qPCR detection, require a signif-
icant investment in specialized personnel and equipment [8]. In contrast, vision-based
detection methods are simpler and more efficient. In our study, a portable and efficient
HLB detection method was proposed to achieve the identification of HLB-symptomatic
samples as well as samples with a combined effect of nutrient deficiency and HLB. A highly
integrated custom-developed detection device was used for rapid detection in the field,
and it took only a few seconds to determine the HLB infection status of the samples. The
accuracy was acceptable compared to the time-consuming and tedious PCR method. The
portable design and the fast and accurate detection results make it possible to use this
custom-developed vision system commercially.

5. Conclusions

The object of this paper was to use a custom-developed, highly integrated portable
vision system for the identification of multiple types of HLB-affected samples (HLB-
symptomatic and Zn Def. + HLB-positive). The conclusions are as follows:

1. A portable vision system integrating reflection and transmission imaging modes
was designed for the identification of HLB. The custom-developed vision system
contained a power module and identification software equipped with the step-by-step
classification model, which made it possible to use the equipment in the field.

2. Two internal and external symptoms caused by HLB—(1) the external symptom of
blotchy mottled leaves and (2) the internal symptom of abnormal accumulation of
starch in leaves—were used for the identification of HLB infection status.

3. A wavelength of 660 nm was used as the illumination band for the reflection imaging
mode, where the contrast of the blotchy–mottled symptomatic areas of the HLB-
affected samples was enhanced by the light. A wavelength of 590 nm is commonly
used for the detection of optical activity; therefore, it was selected as the illumination
band for the transmission imaging mode. In combination with the Stokes vector
method, the polarization angle image was calculated to visualize the extent to which
the plane of polarized light was rotated by the starch, and this was used to infer the
distribution of starch in the leaf.

4. A step-by-step classification model was developed based on the respective advantages
of the transmission and reflection imaging modes. The recognition accuracy of six
types of samples (HLB-symptomatic, healthy, Zn deficiency, Zn Def. + HLB-positive,
B deficiency, and Mg deficiency) was 96.92%, including 98.08% for HLB-symptomatic
and Zn Def. + HLB-positive samples. In addition, a novel method was developed for
the detection of Zn Def. + HLB-positive samples, with a recognition rate of 92.86%.

5. In this study, we achieved the identification of HLB-symptomatic and Zn Def. + HLB-
positive samples, along with some nutrient-deficient (i.e., Zn deficiency, B deficiency,
and Mg deficiency) samples, with high accuracy. In addition, the low-cost (approx-
imately USD 1500) integrated design allows for a custom-developed vision system
that is expected to be commercially available within the next three years, which will
be important for HLB prevention.
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