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Abstract: Tree crop yield is highly dependent on fertiliser inputs, which are often guided by the 
assessment of foliar nutrient levels. Traditional methods for nutrient analysis are time-consuming 
but hyperspectral imaging has potential for rapid nutrient assessment. Hyperspectral imaging has 
generally been performed using the adaxial surface of leaves although the predictive performance 
of spectral data has rarely been compared between adaxial and abaxial surfaces of tree leaves. We 
aimed to evaluate the capacity of laboratory-based hyperspectral imaging (400–1000 nm wave-
lengths) to predict the nutrient concentrations in macadamia leaves. We also aimed to compare the 
prediction accuracy from adaxial and abaxial leaf surfaces. We sampled leaves from 30 macadamia 
trees at 0, 6, 10 and 26 weeks after flowering and captured hyperspectral images of their adaxial and 
abaxial surfaces. Partial least squares regression (PLSR) models were developed to predict foliar 
nutrient concentrations. Coefficients of determination (R2P) and ratios of prediction to deviation 
(RPDs) were used to evaluate prediction accuracy. The models reliably predicted foliar nitrogen 
(N), phosphorus (P), potassium (K), calcium (Ca), copper (Cu), manganese (Mn), sulphur (S) and 
zinc (Zn) concentrations. The best-fit models generally predicted nutrient concentrations from spec-
tral data of the adaxial surface (e.g., N: R2P = 0.55, RPD = 1.52; P: R2P = 0.77, RPD = 2.11; K: R2P = 0.77, 
RPD = 2.12; Ca: R2P = 0.75, RPD = 2.04). Hyperspectral imaging showed great potential for predicting 
nutrient status. Rapid nutrient assessment through hyperspectral imaging could aid growers to in-
crease orchard productivity by managing fertiliser inputs in a more-timely fashion. 

Keywords: fertiliser; hyperspectral imaging; macadamia; Macadamia integrifolia; mineral nutrient; 
partial least squares regression (PLSR) 
 

1. Introduction 
Demand for food crop production is increasing rapidly with an expanding human 

population [1–3]. Tree crops currently provide over 600 million tons of the 10,600 million 
tons of global food production [4–6]. However, improving the yield and quality of tree 
crop products is dependent on maintaining sufficient crop nutrition [7–9]. Nutrient re-
quirements within a cropping system may depend on the cultivar, climate, soil type and 
soil biology [10,11] and continuous monitoring of crop nutrition is often required to opti-
mise fertiliser inputs and reduce nutrient losses [12–15]. Conventional methods for deter-
mining the crop nutrition status are generally laborious and time-consuming, creating 
delays between field sampling, the receipt of nutrient results, and fertiliser amendments 
[16–18]. Rapid assessment tools are needed to monitor crop nutrition in real-time, allow-
ing growers to quickly adjust their fertiliser regimes to maximise crop productivity and 
reduce nutrient runoff [19,20]. 

Hyperspectral imaging is an emerging technology that has been adapted for the 
rapid assessment of soil, leaves and agricultural products [21–25]. Hyperspectral imaging 
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is a combination of spectroscopic and imaging techniques that enables the identification 
of chemical components and their spatial distribution in a sample [26,27]. The ability to 
capture spatial data allows the analysis of heterogeneous samples and so hyperspectral 
imaging requires minimal sample preparation [27]. Spectral and spatial data acquired by 
the hyperspectral imaging system can be correlated with chemical concentrations in the 
tested sample, allowing the development of models that predict chemical composition 
[26]. 

Hyperspectral imaging is becoming an important diagnostic tool in precision agri-
culture for the rapid assessment of crop nutrition [19,28,29]. Hyperspectral imaging sen-
sors mounted on platforms such as satellites, aircraft and unmanned aerial vehicles (UAV) 
have been used to estimate N, P and K levels in the leaves of many crops [30–32]. Satellite 
and airborne remote-sensing techniques may not always provide high-accuracy predic-
tions of crop nutrition, as atmospheric conditions can affect prediction accuracy [33,34]. 
Laboratory-based hyperspectral imaging, on the other hand, has been used to predict fo-
liar nutrient concentrations with high accuracy in apple (Malus domestica) (e.g., N: R2 = 
0.77) and cacao (Theobroma cacao) (e.g., N: R2 = 0.75; P: R2 = 0.71) [28,35]. Prediction of foliar 
mineral nutrient concentrations through laboratory-based hyperspectral imaging has gen-
erally been performed using the adaxial (top) surface of leaves [19,29,36]. Models devel-
oped using spectral data from the adaxial surface of citrus (Citrus × sinensis) leaves provide 
higher accuracy (R2 = 0.90) in predicting N concentrations than models using the abaxial 
(bottom) surface (R2 = 0.83) [37]. The accuracy of hyperspectral imaging in predicting foliar 
nutrient concentrations has not been compared between the two leaf sides in other tree 
crops. 

Macadamia (M. integrifolia, M. tetraphylla and hybrids) is the seventh largest of the 
tree-nut industries, accounting for 62,000 tons of the 5.3 million tons of annual tree-nut 
production [38]. The importance of macadamia crop nutrition for pollination success, fruit 
set and fruit development means that continuous monitoring of tree nutrition is critical 
for maintaining orchard productivity [39,40]. Timely fertilizer management leads to opti-
mal yield and nut quality [41]. Generally, foliar nutrient levels are used as an indicator of 
crop nutrition status in macadamia [41–43]. Traditional nutrient analysis methods are 
time-consuming and, therefore, growers are unable to make rapid decisions to amend fer-
tiliser applications [16–18]. Rapid assessment of macadamia crop nutrition could help 
growers to increase yield and nut quality by quickly adjusting fertilizer regimes. A multi-
spectral UAV system has been used to assess visual categories of macadamia canopy con-
ditions, without assessing tree nutrition [44]. In this study, we aimed to: (a) evaluate the 
capacity of laboratory-based hyperspectral imaging to predict nutrient concentrations in 
macadamia leaves; and (b) compare the accuracy in predicting foliar nutrient concentra-
tions between images captured of the adaxial and abaxial leaf surfaces. 

2. Results 
2.1. Reflectance of Adaxial and Abaxial Surfaces 

The adaxial and abaxial surfaces had similar spectral patterns in the 400–1000 nm 
wavelength region (Figure 1). However, the reflectance of the abaxial surface was higher 
than the adaxial surface between approximately 400 and 730 nm, and reflectance of the 
adaxial surface was higher than the abaxial surface between approximately 740 and 1000 
nm. The highest difference in reflectance between the two surfaces was around 567 nm. 
The average reflectance of both the abaxial and adaxial surfaces was high at approxi-
mately 560 nm and from approximately 700 to 1000 nm. Two small peaks were observed 
approximately at 600 nm and 640 nm. 
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Figure 1. The mean (± SD) relative reflectance of the Vis–NIR spectra (400–1000 nm) from the adaxial 
(blue lines) and abaxial (grey lines) leaf surfaces (n = 120). The 100% reflectivity was scaled to 10,000 
(integers) by default. 

2.2. Predicting the N, P, K and Ca Concentrations 
The best-fit model using spectral data from the adaxial surfaces predicted N concen-

trations with R2C = 0.90, RMSEC = 0.13%, R2V = 0.80 and RMSEV = 0.18% in the cross-valida-
tion (Figure 2a). The best-fit model using spectral data from the abaxial surfaces predicted 
N concentrations with R2C = 0.92, RMSEC = 0.12%, R2V = 0.87 and RMSEV = 0.15% in the 
cross-validation (Figure 2b). The models predicted N concentrations with good or mod-
erate accuracy for the test sets from the adaxial surfaces (R2P = 0.55, RMSEP = 0.28% and 
RPD = 1.52) and the abaxial surfaces (R2P = 0.45, RMSEP = 0.31% and RPD = 1.38), respec-
tively (Figure 2). Models developed from adaxial surfaces provided higher RPDs for pre-
dicting foliar N concentrations than those using abaxial surfaces. 
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Figure 2. Measured vs. predicted nitrogen concentration (%) of the calibration set (Cal: open circles), 
cross-validation set (Val: open triangles) and test set (Test: closed diamonds) of macadamia cultivar 
‘816′ leaves using hyperspectral images of the (a) adaxial and (b) abaxial surfaces and using all 
available wavelengths. 

The best-fit model using spectral data from the adaxial surfaces predicted P concen-
trations with R2C = 0.89, RMSEC = 0.01%, R2V = 0.81 and RMSEV = 0.03% in the cross-valida-
tion (Figure 3a). The best-fit model using spectral data from the abaxial surfaces predicted 
P concentrations with R2C = 0.88, RMSEC = 0.02%, R2V = 0.83 and RMSEV = 0.02% in the 
cross-validation (Figure 3b). The models predicted P concentrations with high accuracy 
for the test sets from both the adaxial surfaces (R2P = 0.77, RMSEP = 0.02% and RPD = 2.11) 
and abaxial surfaces (R2P = 0.71, RMSEP = 0.02% and RPD = 1.90) (Figure 3). Models devel-
oped from adaxial surfaces also provided higher RPDs for predicting foliar P concentra-
tions than those using abaxial surfaces. 

 
Figure 3. Measured vs. predicted phosphorus concentration (%) of the calibration set (Cal: open 
circles), cross-validation set (Val: open triangles) and test set (Test: closed diamonds) of macadamia 
cultivar ‘816′ leaves using hyperspectral images of (a) adaxial and (b) abaxial surfaces and using all 
available wavelengths. 

The best-fit model using spectral data from the adaxial surfaces predicted K concen-
trations with R2C =0.82, RMSEC = 0.07%, R2V = 0.75 and RMSEV = 0.08% in the cross-valida-
tion (Figure 4a). The best-fit model using spectral data from the abaxial surfaces predicted 
K concentrations with R2C = 0.81, RMSEC = 0.07%, R2V = 0.77 and RMSEV = 0.08% in the 
cross-validation (Figure 4b). The models predicted K concentrations with high accuracy 
for the test sets from both the adaxial surfaces (R2P = 0.77, RMSEP = 0.09% and RPD = 2.12) 
and abaxial surfaces (R2P = 0.82, RMSEP = 0.07% and RPD = 2.39) (Figure 4). That is, the 
models developed using adaxial and abaxial surfaces provided similar RPDs in predicting 
foliar K concentrations. 

The best-fit model using spectral data from the adaxial surfaces predicted Ca concen-
trations with R2C = 0.80, RMSEC = 0.06%, R2V = 0.68 and RMSEV = 0.08% in the cross-valida-
tion (Figure 5a). The best-fit model using spectral data from the abaxial surfaces predicted 
Ca concentrations with R2C = 0.82, RMSEC = 0.06%, R2V = 0.69 and RMSEV = 0.08% in the 
cross-validation (Figure 5b). The models predicted Ca concentrations with high accuracy 
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for the test sets of the adaxial surface (R2P = 0.75, RMSEP = 0.07% and RPD = 2.04) (Figure 
5a). However, the model predicted Ca concentrations with only moderate accuracy for the 
test set from the abaxial surfaces (R2P = 0.61, RMSEP = 0.08% and RPD = 1.64) (Figure 5b). 

 
Figure 4. Measured vs. predicted potassium concentration (%) of the calibration set (Cal: open cir-
cles), cross-validation set (Val: open triangles) and test set (Test: closed diamonds) of macadamia 
cultivar ‘816′ leaves using hyperspectral images of (a) adaxial and (b) abaxial surfaces and using all 
available wavelengths. 

 
Figure 5. Measured vs. predicted calcium concentration (%) of the calibration set (Cal: open circles), 
cross-validation set (Val: open triangles) and test set (Test: closed diamonds) of macadamia cultivar 
‘816′ leaves using hyperspectral images of (a) adaxial and (b) abaxial surfaces and using all available 
wavelengths. 
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2.3. Predicting Other Mineral Nutrient Concentrations 
The best-fit models using spectral data from the adaxial surfaces had high prediction 

accuracies for concentrations of Cu (R2P = 0.80, RMSEP = 7.87 mg/kg and RPD = 2.27), Mg 
(R2P = 0.95, RMSEP = 237 mg/kg and RPD = 1.31) and Zn (R2P = 0.85, RMSEP = 1.90 mg/kg 
and RPD = 2.63) (Table 1). The best-fit models using spectral data from the adaxial surfaces 
had moderate prediction accuracies for concentrations of Mn (R2P = 0.56, RMSEP = 40.61 
mg/kg and RPD = 1.54) and S (R2P = 0.49, RMSEP = 319 mg/kg and RPD = 1.43) (Table 1). 
Adaxial surfaces provided low prediction accuracies for Al, B, Fe and Na concentrations 
(Table 1). 

The best-fit model using spectral data from the abaxial surfaces had high prediction 
accuracy for Cu concentration (R2P = 0.76, RMSEP = 8.19 mg/kg and RPD = 2.10) (Table 1). 
The best-fit models using spectral data from the abaxial surfaces had moderate prediction 
accuracies for concentrations of S (R2P = 0.52, RMSEP = 281 mg/kg and RPD = 1.47) and Zn 
(R2P = 0.51, RMSEP = 2.74 mg/kg and RPD = 1.46) (Table 1). Abaxial surfaces provided low 
prediction accuracies for Al, B, Mg, Mn and Na concentrations (Table 1). No model could 
be developed to predict Fe concentrations using spectral data from the abaxial surfaces 
(Table 1). 

Table 1. Performance of partial least squares regression (PLSR) models in predicting mineral nutri-
ent concentrations from the adaxial and abaxial surfaces of the leaves of macadamia cultivar ‘816′. 

Nutrient Surface Transfor-
mation 

LV Calibration 
set 

Validation 
set 

Test 
set 

    RMSEC R2C RMSECV R2CV RPD R2P 
N (%) Adaxial Raw 13 0.13 0.90 0.18 0.80 1.52 0.55 

 Abaxial SNV 10 0.12 0.92 0.15 0.87 1.38 0.45 
P (%) Adaxial Normalise 11 0.01 0.89 0.03 0.81 2.11 0.77 

 Abaxial MSC 6 0.02 0.88 0.02 0.83 1.90 0.71 
K (%) Adaxial Raw 8 0.07 0.82 0.08 0.75 2.12 0.77 

 Abaxial SNV 5 0.07 0.81 0.08 0.77 2.39 0.82 
Ca (%) Adaxial DTR–2 9 0.06 0.80 0.08 0.68 2.04 0.75 

 Abaxial DTR–2 11 0.06 0.82 0.08 0.69 1.64 0.61 
Al (mg/kg) Adaxial MSC 10 26.4 0.52 32.7 0.28 1.25 0.33 

 Abaxial DTR–4  4 30.0 0.42 32.1 0.20 1.14 0.20 
B (mg/kg) Adaxial SNV 3 49.1 0.45 52.7 0.38 1.15 0.22 

 Abaxial DTR–3 3 49.2 0.45 51.5 0.41 1.21 0.29 
Cu (mg/kg) Adaxial DTR–2 8 6.65 0.81 7.82 0.75 2.27 0.80 

 Abaxial DTR–2 11 5.57 0.89 6.76 0.82 2.10 0.76 
Fe (mg/kg) Adaxial MSC 1 18.6 0.03 19.0 0.01 1.03 0.01 

 Abaxial MSC 9 14.9 0.44 18.1 0.19 0.64 NA 
Mg (mg/kg) Adaxial DTR–3 5 163 0.56 178 0.48 1.31 0.95 

 Abaxial DTR–3 11 131 0.75 177 0.55 1.18 0.25 
Mn (mg/kg) Adaxial Normalise 5 34.2 0.49 37.7 0.39 1.54 0.56 

 Abaxial DTR–2 5 33.4 0.56 36.8 0.48 1.11 0.15 
Na (mg/kg) Adaxial OSC 2 42.0 0.25 45.4 0.14 1.21 0.29 

 Abaxial Normalise 8 46.1 0.35 54.5 0.11 1.05 0.05 
S (mg/kg) Adaxial DTR–3 5 314 0.45 356 0.31 1.43 0.49 

 Abaxial DTR–3 6 324 0.44 351 0.36 1.47 0.52 
Zn (mg/kg) Adaxial MSC 13 2.36 0.80 3.16 0.64 2.63 0.85 

 Abaxial DTR–2 9 2.59 0.77 3.30 0.64 1.46 0.51 
LV: optimal latent variables in the model; RMSEC: root mean square error of calibration; R2C: corre-
lation coefficient of calibration; RMSECV: root mean square error of cross-validation; R2CV: correlation 
coefficient of cross-validation; RPD: ratio of prediction to deviation; R2P: correlation coefficient of 
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prediction; SNV: standard normal variate; MSC: multiplicative scatter correction; DTR–2: de-trend-
ing polynomial order 2; DTR–3: de-trending polynomial order 3; DTR–4: de-trending polynomial 
order 4; OSC: orthogonal signal correction; NA: correlation coefficient of prediction is not available. 

3. Discussion 
Our study highlights the potential of hyperspectral imaging as a real-time diagnostic 

tool to assess macadamia crop nutrition. Hyperspectral imaging in the Vis–NIR region 
(400–1000 nm) had the capacity to predict N, P, K, Ca, Cu, Mn, S and Zn concentrations 
in macadamia leaves with RPD greater than 1.4. Prediction accuracy for each of these nu-
trients was generally higher using spectral data from the adaxial surface than from the 
abaxial surface of leaves. Rapid estimation of crop nutrition could aid macadamia growers 
to increase orchard productivity, minimise fertiliser costs and reduce nutrient losses by 
allowing more-timely and responsive fertiliser management. 

Laboratory-based hyperspectral imaging predicted N, P, K, Ca, Cu, Mn, S and Zn 
concentrations reliably in macadamia leaves with RPD > 1.4. Models that provide RPDs 
between 1.4 and 2.0 are considered “good” while models with RPDs > 2.0 are considered 
“excellent” [45]. Mineral nutrients do not absorb light in the Vis–NIR region [27] but hy-
perspectral imaging can detect mineral nutrients indirectly as organic macromolecules 
that form bonds with mineral nutrients to maintain cellular structure and function [36]. 
Prediction of N, P, K, Ca, Cu, Mn, S and Zn concentrations in macadamia leaves might 
have been possible due to light-absorbing organic macromolecules that formed complexes 
with these nutrients. 

Some mineral nutrient concentrations including N, B, Mn and Na were predicted 
with moderate or low accuracy, although the N prediction had a model robustness of RPD 
> 1.4. Low prediction accuracy for foliar B, Mn and Na concentrations has been reported 
previously from maize (Zea mays) and soybean (Glycine max) [46]. However, hyperspectral 
imaging has predicted foliar N concentrations with high accuracy in oilseed rape (Brassica 
napus), maize and soybean [19,46]. Nitrogen is a component of the photosynthetic enzyme, 
ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), and so hyperspectral imaging 
might detect N indirectly as chlorophyll, which exhibits strong absorption in parts of the 
visible spectrum [46,47]. The data range can influence the prediction ability of hyperspec-
tral imaging models [28,46]. The range of foliar N concentrations in the current study was 
1.03–2.89% whereas the range in oilseed rape was 3.48–6.21% and in maize and soybean 
was 0.96–5.68% [19,46]. The narrower range of foliar N concentrations in macadamia 
leaves may have decreased the prediction accuracy. 

Adaxial surface images were more reliable than abaxial surface images in predicting 
the levels of many mineral nutrients in macadamia leaves. The prediction ability for the 
estimation of P and Ca concentrations decreased from “excellent” to “good”, and the pre-
diction ability for the estimation of N concentration decreased from “good” to “moderate” 
when we developed models using abaxial- rather than adaxial-surface data. Spectral data 
from the abaxial surface has approximately 10% lower accuracy than data from the adaxial 
surface in predicting foliar N and P concentrations of citrus leaves [37]. These differences 
in prediction accuracy were associated with structural differences between the adaxial 
and abaxial surfaces [37]. We found that spectral data from the abaxial surface of maca-
damia leaves had 6–14% lower accuracy than data from the adaxial surface in predicting 
foliar N, P and Ca concentrations. The upper epidermis and palisade parenchyma of mac-
adamia leaves have a more-uniform cell arrangement than the lower epidermis and 
spongy parenchyma [48,49]. Furthermore, palisade parenchyma is chloroplast-dense and 
absorbs more light than spongy parenchyma [50,51]. Higher prediction performance us-
ing the adaxial surface might be explained partly by the uniform cell structure of the up-
per epidermis and palisade parenchyma and the higher chloroplast density of the palisade 
parenchyma, which could increase the stability of reflectance. Abaxial surfaces also pro-
vided “low” prediction accuracies for Al, B, Mg, Mn and Na concentrations. We, therefore, 
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recommend scanning the adaxial surface when using hyperspectral imaging to predict 
nutrient levels in macadamia leaves. 

4. Materials and Methods 
4.1. Sample Collection and Processing 

The sampling site was in a commercial macadamia orchard at Alloway (24°56′6” S 
152°21′16” E), Queensland, Australia. We selected thirty trees in a block of cultivar ‘816′ 
trees that were 13 years old. Tree spacing was 2 m within each row and 10 m between 
rows. The experimental trees had a mean height of 8.0 ± 0.1 m and trunk circumference of 
63 ± 1 cm (± SE) at 10 cm above the graft union (n = 30). Each experimental tree was ran-
domly allocated to one of three boron-fertiliser treatments (0, 15 or 30 g B per tree) that 
were applied prior to flowering [52]. We collected leaves from each tree on four occasions 
between September 2018 and March 2019, specifically at 0 weeks after peak anthesis (peak 
flowering), 6 and 10 weeks after peak anthesis (premature fruit drop) and 26 weeks after 
peak anthesis (commencement of harvesting) [53]. We collected one young fully expanded 
leaf from each of the four cardinal directions on each of the thirty trees at each sampling 
time; i.e., a total of 120 leaves at each sampling time. The leaves were transferred to the 
laboratory immediately after collection. The four leaves from each tree at each sampling 
time were pooled to constitute a single sample for imaging and mineral nutrient analysis. 
We captured two images from each sample of four leaves: (1) the adaxial surfaces; and (2) 
the abaxial surfaces (Figure 6a,b). We collected a total of 240 images, consisting of 120 
images from adaxial surfaces and 120 images from abaxial surfaces; i.e., four sampling 
times × 30 trees × two leaf surfaces. 

 
Figure 6. Regions of interest (shown in grey) that were used to extract mean spectral reflectance for 
(a) adaxial and (b) abaxial surfaces of macadamia cultivar ‘816′ leaves (scale bar = 22 mm). 

4.2. Hyperspectral Imaging System 
We used a laboratory-based visible–near-infrared (Vis–NIR) hyperspectral imaging 

system (Pika XC2, Resonon, Bozeman, MT) for image acquisition. The imaging system 
had a 12-bit line-scanner camera with a lens of 23 mm focal length, four current-controlled 
wide-spectrum quartz-halogen lights, a linear translation stage operated by a stepper mo-
tor, and data acquisition software (Spectronon Pro Version 2.94, Resonon, Bozeman, MT, 
USA). The spectral resolution of the camera was ~1.3 nm. The camera captured 462 wave-
lengths between 400 and 1000 nm [54]. The samples were placed on a black tray on the 
translation stage. The scanning speed and exposure time were 1.23 mm s−1 and 17.57 ms, 
respectively. 
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4.3. Image Calibration and Spectral Profile Extraction 
We used Spectronon Pro software (Version 3.2.0; Resonon, Bozeman, MT, USA) to 

extract the spectral data of the acquired images. The mean raw reflectance (R0) of each 
sample was extracted by marking a region of interest (ROI) for each leaf image. The ROI 
was selected such that it covered all four leaves in each sample (Figure 6a,b). The mean 
corrected relative reflectance (R) was calculated using Equation (1): R = (R − D)(W − D)  (1)

where R0 is the mean raw reflectance, D is the reflectance of a dark image when the camera 
lens was covered with the lens cap (dark calibration) and W is the reflectance of a white 
Teflon sheet that reflected ~99% of incident light (white calibration) [55,56]. 

4.4. Mineral Nutrient Analysis 
We dried the leaf samples at 60 °C immediately after imaging. The four dried leaves 

collected from each tree at each sampling time were ground together into a fine powder. 
We used approximately 300 mg subsample of the ground leaf powder to analyse their 
mineral nutrient concentrations. Total N concentration was determined by combustion 
analysis using a LECO 928 Macro Determinator (LECO, Saint Joseph, MI) [57,58]. Alumin-
ium (Al), boron (B), calcium (Ca), copper (Cu), iron (Fe), K, magnesium (Mg), manganese 
(Mn), P, sodium (Na), sulphur (S) and zinc (Zn) concentrations were determined by in-
ductively coupled plasma–atomic emission spectroscopy after nitric and perchloric acid 
digestion [59,60]. 

4.5. Model Development 
We obtained the spectral average of the four leaves from each image and created two 

data sets, consisting of spectral data extracted from the images of (1) the adaxial surfaces 
and (2) the abaxial surfaces. Spectral outliers in each data set were detected using Ho-
telling’s T2 test with a 95% confidence interval and removed from the analysis [61]. The 
remaining samples were divided randomly into two groups, with approximately 80% of 
the samples assigned to the calibration set and 20% of the samples assigned to the test set 
[24]. A t-test was performed to confirm that the means of the calibration and test sets for 
each mineral nutrient in each data set were not significantly different (p > 0.05) (Table 2). 
Spectral transformations were performed on the calibration set to increase the signal-to-
noise ratio and decrease the influence of undesired light-scattering effects (Figures S1 and 
S2) [54,62]. The applied transformations included multiplicative scatter correction (MSC), 
area normalisation, de-trending, orthogonal signal correction (OSC), and standard normal 
variate (SNV) [63–66]. Partial least squares regression (PLSR) models were developed for 
each mineral nutrient, using both raw and transformed data, to correlate foliar mineral 
nutrient concentrations with relative reflectance in the full spectral range of 400–1000 nm 
[67]. Partial least squares regression is particularly suitable for a data set when the number 
of variables is greater than the number of samples and when the predictor variables are 
highly correlated [68,69]. The optimal number of latent variables (LV) for establishing the 
calibration model was determined at the minimum value of predicted residual error sum 
of squares (PRESS) of the cross-validation set, using Equation (2) [70]: PRESS = (y − y )  (2)

where n is the number of samples, and y  and y  are the predicted and reference values 
in the ith sample, respectively. 
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Table 2. Descriptive analysis of the calibration and test sets for mineral nutrient concentrations in 
macadamia cultivar ‘816′ leaves. 

Nutrient Surface Sample Set n Min Max CV Mean SD 
N (%) Adaxial Calibration 96 1.07 2.89 0.24 1.68 0.41 

  Test 24 1.03 2.82 0.27 1.56 0.43 
 Abaxial Calibration 96 1.03 2.82 0.25 1.64 0.41 
  Test 24 1.21 2.89 0.25 1.71 0.43 

P (%) Adaxial Calibration 96 0.04 0.21 0.39 0.10 0.04 
  Test 24 0.05 0.21 0.40 0.11 0.04 
 Abaxial Calibration 96 0.04 0.21 0.40 0.11 0.04 
  Test 24 0.06 0.18 0.32 0.11 0.03 

K (%) Adaxial Calibration 96 0.29 1.11 0.30 0.53 0.16 
  Test 24 0.31 1.07 0.32 0.59 0.19 
 Abaxial Calibration 96 0.29 1.11 0.31 0.53 0.16 
  Test 24 0.36 1.07 0.30 0.59 0.17 

Ca (%) Adaxial Calibration 96 0.15 0.69 0.36 0.38 0.14 
  Test 23 0.19 0.66 0.34 0.40 0.14 
 Abaxial Calibration 95 0.15 0.69 0.35 0.39 0.14 
  Test 22 0.21 0.65 0.36 0.35 0.13 

Al (mg/kg) Adaxial Calibration 96 26.9 196.6 0.57 69.2 39.7 
  Test 24 26.4 189.7 0.62 59.3 36.6 
 Abaxial Calibration 96 26.9 196.6 0.57 69.2 39.7 
  Test 24 26.4 189.7 0.62 59.3 36.6 

B (mg/kg) Adaxial Calibration 92 13.0 300.2 0.77 86.2 66.4 
  Test 23 16.0 279.8 0.81 79.7 64.7 
 Abaxial Calibration 96 13.0 357.8 0.81 82.2 66.5 
  Test 24 16.0 300.2 0.77 106.6 82.0 

Cu (mg/kg) Adaxial Calibration 96 3.08 62.44 0.87 17.89 15.49 
  Test 24 3.37 67.14 0.82 21.91 17.88 
 Abaxial Calibration 96 3.08 67.14 0.82 19.52 15.92 
  Test 24 3.31 62.44 1.05 15.38 16.22 

Fe (mg/kg) Adaxial Calibration 96 40.1 125.1 0.28 67.1 19.0 
  Test 24 41.5 120.7 0.30 67.9 20.4 
 Abaxial Calibration 96 40.1 125.1 0.30 67.6 20.0 
  Test 24 41.5 98.2 0.24 66.1 15.8 

Mg (mg/kg) Adaxial Calibration 96 736 2056 0.21 1162 246 
  Test 24 746 1836 0.25 1231 311 
 Abaxial Calibration 96 736 2056 0.22 1165 261 
  Test 24 840 1836 0.21 1219 260 

Mn (mg/kg) Adaxial Calibration 96 21.4 251.3 0.56 86.3 48.1 
  Test 24 19.2 286.4 0.70 88.8 62.5 
 Abaxial Calibration 96 21.4 286.4 0.57 88.8 50.9 
  Test 24 19.2 209.6 0.66 78.9 52.0 

Na (mg/kg) Adaxial Calibration 94 53.1 402.7 0.41 120.3 48.8 
  Test 24 59.6 349.8 0.56 148.7 82.5 
 Abaxial Calibration 96 53.1 402.7 0.46 125.2 57.7 
  Test 24 75.0 349.8 0.47 129.2 60.5 

S (mg/kg) Adaxial Calibration 96 1015 3607 0.22 1908 426 
  Test 24 1152 3101 0.23 1963 456 
 Abaxial Calibration 96 1015 3607 0.23 1901 435 
  Test 24 1555 3101 0.21 1992 413 
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Zn (mg/kg) Adaxial Calibration 96 7.31 30.91 0.35 15.09 5.27 
  Test 23 6.51 26.31 0.37 13.67 4.99 
 Abaxial Calibration 96 6.51 30.91 0.36 15.06 5.46 
  Test 22 8.74 21.21 0.29 13.72 3.99 

Min: minimum; Max: maximum; CV: coefficient of variation; SD: standard deviation. Means of the 
calibration and test sets for each mineral nutrient do not differ significantly (student’s t-test, p > 
0.05). 

We used a full cross-validation (leave-one-out) method to avoid over-fitting data and 
to obtain the optimum performance from the model [19,71]. The model with the highest 
coefficients of determination for calibration (R2C) and cross-validation (R2V) and the lowest 
root mean square errors for calibration (RMSEC) and cross-validation (RMSEV) was se-
lected as the best-fit model for each mineral nutrient. The R2 and RMSE values were cal-
culated using Equations (3) and (4), respectively [72]: 

R = 1 − (y − y )∑ (y − y)  (3)

RMSE = (y − y ) n⁄   (4)

where n is the number of samples, y  and y  are the reference and predicted values in the 
ith sample, respectively, and y is the mean of each reference value. The complete proce-
dure for hyperspectral image analysis and the development of predictive models is sum-
marised (Figure 7). 
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Figure 7. Schematic diagram of hyperspectral image analysis and the development procedure for 
predictive models. 

4.6. Evaluating Model Performance Using the External Test Set 
We then assessed the prediction ability of the final model for each mineral nutrient 

using the test set. The ratio of prediction to deviation (RPD) was calculated for each model 
to evaluate its prediction ability, using Equation (5) [61,73]: RPD = SDRMSE  (5)

where SDT is the standard deviation of the reference values in the test set and RMSET is 
the root mean square error of the prediction from the test set. Outlier detection and re-
moval, spectral transformations, and model development were performed using Un-
scrambler software (Version 10.5.1; CAMO, Oslo, Norway). 

5. Conclusions 
This study demonstrated that laboratory-based hyperspectral imaging is a promising 

tool for rapidly predicting mineral nutrient concentrations, particularly N, P, K, Ca, Cu, 
Mn, S and Zn, in macadamia leaves. Ratios of prediction to deviation (RPDs) were greater 
than 1.4 and coefficients of determination for prediction (R2P) ranged from 0.52 to 0.85. 
Spectral data from adaxial leaf surfaces was more suitable than from abaxial leaf surfaces 
for developing models with high accuracy and predictive performance. Our results high-
light the potential of hyperspectral imaging for monitoring crop nutrient levels, which 
could assist growers to maximise orchard productivity through timely fertiliser manage-
ment. The rapid assessment of crop nutrition may also help to minimise fertiliser costs 
and reduce nutrient runoff to the downstream environment. 
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