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Abstract: (1) Background: Maintaining soil fertility and crop productivity using natural microbial
diversity could be a feasible approach for achieving sustainable development in agriculture. In this
study, we compared soils from vineyards under organic and conventional management by predicting
functional profiles through metagenomic analysis based on the 16S rRNA gene. (2) Methods: The
structure, diversity and predictive functions of soil bacteria related to the biogeochemical cycle of
the soil were analyzed, including oxidative and hydrolytic C-cycling enzymes, N-cycling enzymes
and P-cycling enzymes. The inter-row spontaneous vegetation in the organic vineyards was also
characterized. (3) Results: A clear effect of the farming system (organic vs. conventional) and
cover management (herbicides plus tillage, mowing only and mowing plus tillage) on bacterial
beta diversity and predicted functions was evidenced. While conventional viticulture increased
the potential capacity of the soil to regulate the cycling of inorganic forms of N, organic viticulture
in general enhanced those functions involving organic N, P and C substrates. Although the soil
bacterial community responded differently to contrasting soil management strategies, nutrient cycling
and carbon sequestration functions remained preserved, suggesting a high bacterial functional
redundancy in the soil in any case. However, most of the predicted bacterial functions related to
soil organic matter turnover were enhanced by organic management. (4) Conclusions: We posit the
potential for organic viticulture to adequately address climate change adaptation in the context of
sustainable agriculture.

Keywords: vineyard; cover vegetation; ecosystem functions; nutrient cycling; soil bacteria

1. Introduction

The growing need for sustainable food production for the worldwide human popula-
tion requires balancing the demand for food production, maintaining good environmental
conditions and protecting biodiversity. In the last century, intensive production has led to
a sharp increase in productivity due to increasing use of pesticides, fertilizers, irrigation
and heavy machinery, with associated negative effects, such as landscape simplification,
biodiversity decline and environmental degradation [1,2].

Land-use change to more sustainable practices in the so-called biodiversity-based
systems has been proposed as a feasible alternative to increase the overall level of ecosystem
service provision, such as recycling of nutrients, producing foods, regulating pests, storing
carbon and maintaining the soil structure [3]. However, the high degree of unpredictability,
the variability of particular biodiversity-based practices, such as organic farming, and
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site-specific responses may hamper in many cases the viability of organic management for
ecosystem service provision [4].

Viticulture and winemaking are important socioeconomic sectors [5], with Italy, France
and Spain being the three main wine producers worldwide [6]. The optimal temperature
ranges for grape cultivation are delimited by a lower threshold necessary for fruit ripening
and an upper threshold that would lead to damaged fruit in addition to certain mini-
mum requirements for soil moisture during the growing season [7]. Consequently, rising
temperatures and changed rainfall patterns due to climate change may have severely neg-
ative effects for many regional economies. The potential of organic farming to mitigate
the influence of agriculture on global warming has been widely reviewed [8,9]. One of
the main challenges for mitigating and adapting to climate change in viticulture, and
for organic agriculture in general, relates to understanding how management practices
affect the soil microbiota that drive soil functions, such as biogeochemical cycling and
carbon sequestration [10].

Microorganisms are crucial for maintaining soil quality for sustainable plant growth
and their role in the release of mineral nutrients through the decomposition of organic
matter or the recycling of minerals has been evidenced [11]. From this perspective, the
efficiency in the recycling of nutrients from organic compounds for decomposers has been
proposed as the key parameter that controls ecosystem processes [12]. In this scenario,
maintaining soil fertility and crop productivity using natural microbial diversity could be
the best approach to achieve the Sustainability Agreements in the agri-food supply chain
foreseen by the new EU Common Agricultural Policy for the period 2023–2027 [13] and the
European Commission’s Farm to Fork strategy target of increasing organic farming to 25%
and halving pesticide use by 2030 [14].

The importance of soil microbial communities for ecosystem services is also related to
the positive effect of diversity on multifunctionality, i.e., the simultaneous maintenance of
multiple ecosystem functions [12,15]. Despite the great diversity of microorganisms in the
soil, most biogeochemical transformations seem to be mediated by a limited set of metabolic
pathways present in a variety of taxonomic groups [16]. Furthermore, the functional
redundancy of soil microbial communities is thought to be responsible for maintaining
the stability over time of the associated ecosystem function [17,18]. Relationships between
functional and taxonomic diversity using metagenomic-based approaches have proven to
be a feasible tool to study the prediction of microbial biogeochemical processes, as well as to
identify the extent to which microbial functional redundancy regulates dynamic ecological
flows [19]. The evidence grows but research in permanent crops, such as, vineyards is
especially scarce.

A huge number of studies acknowledge the contribution of the soil microbiome to soil
quality and health. In a recent review, more than 40 functions of the soil microbiome that
promote the health of soil, plants, animals, and humans have been identified [20]. However,
effects on microbial communities are often controversial when organic and conventional
systems are compared, finding positive, negative, or no effects of soil management on
microbial diversity [21,22], which could be related to the large differences in respect to
soil management within the different farming systems. Furthermore, the effects depend
on the landscape heterogeneity and on organism groups studied [23]. It has also been
reported that soil microbial communities do not necessarily differ between conventional
and organic agriculture [24]. In this context, it is necessary to understand to what extent
different agricultural soil management practices, such as tillage, herbicide application
and/or mowing, modify the soil microbiome.

In this study, we hypothesized that the management system history affects the bacterial
contribution to soil ecosystem services in vineyards. We investigated the relationship
between soil management in organic and conventional cultivation and the abundance
of bacterial genes that encode key enzymes of the C, N, and P cycles obtained by 16S
functional prediction.
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2. Results
2.1. Cover Vegetation

Due to the intensive inter-row management, conventional vineyards were not cov-
ered by any vegetation. Regarding the inter-row vegetation of the organic farms, the O3
organic vineyards with mowing cover management showed the highest species richness
(10.5 species m−2) and diversity (H’= 0.5 bits). The species composition was dominated
by Geraniaceae (Erodium sp. and Geranium molle), followed by Asteraceae and Poaceae
(Table S1). The rest of the organic farms showed lower species richness (range: 4–7)
and diversity (range: 0.005 to 0.08) and were clearly dominated by Brassicaceae, mostly
Diplotaxis sp. Plant cover ranked from 57.5% to 14.4% without a clear pattern related to the
type of cover management.

2.2. Soil Bacteria Community Structure and Diversity

More than half of the detected phyla were Proteobacteria and Actinobacteria, with
remaining phyla attributed to 10 other phyla (Figure 1). Significant differences between
management systems (conventional vs. organic) were attributed to minor phyla Firmi-
cutes (p-value: 0.004, F-value: 11.72) and Nitrospirota (p-value: 0.0158; F-value: 7.53). At
the class level, differences between management systems were imputed to classes Bacilli
(p-value: 0.0004, F-value: 21.55), Acidimicrobiia (p-value: 0.047, F-value: 4.74), Nitrospiria
(p-value: 0.015, F-value: 7.53), Rubrobacteria (p-value: 0.020, F-value: 6.86), the unclas-
sified_Actinobacteriota (p-value: 0.002, F-value: 14.22) and Chloroflexi (p-value: 0.077,
F-value: 3.60). However, no differences in alpha diversity (Chao1) at the ASV level (p-value:
0.176; [t-test] statistic: 1.46) could be attributed to management.
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On closer analysis, we detected some differences at the family level, and the LefSe
analysis showed that four families, Micrococcaceae, Azospirillaceae, Oxalobacteraceae
and Rubrobacteriaceae were mainly responsible for the differences between managements
(Figure 2A). At the genus level, Massilia, Arthrobacter and Rubrobacter showed an interesting
abundance distribution pattern following, from higher to lower abundance, the gradient:
herbicide + tillage > mowing only > mowing + tillage (Figure 2B). Sphingomonas, Microvirga
and unclassified_Actinobacteriota were higher under organic farming with mowing as
cover crop management.
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Figure 2. Linear discriminant analysis (LDA) scores and heatmap from blue (low) via white
(medium) to red (high) of relative abundances in (A) conventional (C) and organic (O) systems and,
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Figure 3 shows the differences in species complexity, that is, beta diversity, between
different farming systems and vegetation cover managements of vineyard soils. A clear
farming system effect (p-value: 0.001, F-value: 2.35) was evidenced, as well as a cover
management effect (p-value: 0.001, F-value: 2.93) on the Bray-Curtis dissimilarity based on
abundance (Figure 3A). Interestingly, cover management separates two different groups
within organic management, linked to mowing only and mowing plus tillage (Figure 3B).
No effect on bacterial community structure was attributed to row or interrow spatial
location (p-value: 0.915, F-value: 0.61).
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2.3. Predictive Metagenomic Profiles

A marked increase in the nitrogen metabolic pathways, both in the reduction (assimila-
tory and dissimilatory nitrate reduction, denitrification and nitrogen fixation) and oxidation
pathways (nitrification), was observed under conventional management (Figure 4). On the
contrary, organic management enhanced the potential ammonification pathway in the soils.
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Organic farming increased the potential functional molecular pathways controlled by
phosphatase enzymes (Figure 5). Both acid and alkaline phosphatases catalyze the reaction:
phosphate monoester + H2O = alcohol + phosphate, but both differ in the optimal pH of
catalysis, 6 in the former and above 7.5 in the latter.
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Figure 5. KEGG pathway molecular functions of organic phosphorus cycle for soils under conven-
tional (yellow) and organic (green) management. phoN: acid phosphatase (class A) [EC 3.1.3.2]; PHO:
acid phosphatase [EC 3.1.3.2]; phoA,B: alkaline phosphatase [EC 3.1.3.1]; phoD: alkaline phosphatase
[EC 3.1.3.1]. Asterisk represents a significant difference (** p < 0.01, * p < 0.05).

The bacterial production potential of hydrolase and oxidoreductase enzymes related to
the biogeochemical carbon cycle is shown in Figures 6 and 7, respectively. Organic manage-
ment generally boosted the potential synthesis of C-degrading hydrolytic enzymes, with
the exception of the hydrolases mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase
(NAG) and 3-beta-D-glucan glucohydrolase (β-Glucanase) (Figure 6).
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Figure 6. KEGG molecular functions of genes encoding carbon hydrolases in soils under con-
ventional (yellow) and organic (green) management. NAG: mannosyl-glycoprotein endo-beta-N-
acetylglucosaminidase [EC 3.2.1.96]; xynB: xylan 1,4-beta-xylosidase [EC 3.2.1.37]; β-Glucanase:
3-beta-D-glucan glucohydrolase [EC 3.2.1.58]; CBH1: cellulose 1,4-beta-cellobiosidase [EC 3.2.1.91];
β-glucosidase [EC 3.2.1.21]. Asterisk represents a significant difference (** p < 0.01, * p < 0.05).
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Figure 7. KEGG pathway molecular functions of carbon oxidoreductases for soils under conventional
(yellow) and organic (green) management. pmo NADPH: phenol 2-monooxygenase (NADPH) [EC
1.14.13.7]; pmo NADH: phenol 2-monooxygenase (NADH) [EC 1.14.13.244]; katG: catalase-peroxidase
[EC 1.11.1.21]; npr: NADH peroxidase [EC 1.11.1.1]; tfdB: 2,4-dichlorophenol 6-monooxygenase [EC
1.14.13.20]; tmo: toluene monooxygenase system protein [EC 1.14.13.236]. Asterisk represents a
significant difference (** p < 0.01, * p < 0.05).

Oxidoreductase enzymes, which carry out both synthetic and degradative reactions,
followed a different pattern (Figure 7). While the potential production of oxygenases, such
as phenol 2-monooxygenase (pmo NADPH), pmo NADH and toluene monooxygenase
system protein (tmo), and the catalase-peroxidase (katG) was higher under organic manage-
ment, conventional management increased the potential synthesis of NADH peroxidase
(npr) and 2,4-dichlorophenol 6-monooxygenase (tfdB) oxygenases in vineyard soils.

Looking at the deduced genes related to bacterial atmospheric carbon fixation, we
found that the KEGG module related to global Calvin-Benson-Bassham cycle and specifi-
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cally bacteria harboring the ribulose-bisphosphate carboxylase gene (cbbL) encoding the
enzyme ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) were favored by
conventional management (Figure 8).
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Non-metric multidimensional scaling (NMDS) analysis separately showed the effect
of cover management type on the predicted genes involved in C, N, and P cycling and C
sequestration in conventional and organic vineyards (Figure 9). Mowing had the opposite
effect of herbicide application and tillage, which similarly affected potential bacterial functions.
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3. Discussion

There is a common agreement on the need to maintain stable ecosystem functions
associated with soil microorganisms in agricultural systems. In this study, we report the
effect of agricultural management on soil bacterial community and its predicted functions
in organic and conventional vineyards.

No important differences in bacterial composition were found between the main bac-
terial phyla but between the lower taxa across the two farming systems. Previous research
also shows minor compositional changes due to different farming systems and fertiliza-
tion styles, thus evidencing a stable microbial community in the soil [25]. In this sense,
many studies propose that organic farming facilitates a copiotrophic lifestyle compared
to conventional management [26]. However, many other studies show the opposite [27],
attributing in any case the effect to the greater quantity/availability of nutrients. In our
study, although no differences were found in soil nutrient content between systems, we
did find an increase in the copiotrophic Firmicutes and Nitrospiriia under conventional
management. However, it could be wrong to apply a specific lifestyle classification to all
members of a phylum since not all members of a taxonomic group share the same ecological
characteristics. In this context, it has been shown that management responses could occur
at lower taxonomic levels [28]. On closer analysis, differences between the two vineyard
cultivation systems could be attributed to families and genera ascribed to Actinobacteria
(Arthrobacter and Rubrobacter) and Beta- (Massilia) and Alpha-Proteobacteria (Sphingomonas
and Microvirga). Conventional management had a positive effect on the first two, but
the ascription of these (sub)phyla to a certain trophic lifestyle still remains controversial.
Although some studies associate Actinobacteria and Beta-proteobacteria with copyotrophy,
others suggest that these phyla are better adapted to oligotrophic conditions [29]. The same
inconsistency in the ascription occurs for Alpha-Proteobacteria, enhanced in our study by
organic agriculture.

No differences in alpha diversity (diversity within a farming system) were attributed
to management. In contrast, differences were found in species complexity between farming
systems (beta diversity) at the ASV level. As expected, either the presence or absence of
spontaneous vegetation, herbicide use plus tillage or tillage plus mowing, or the type of
fertilization influenced the structure of the bacterial population. Previous studies have
indicated that the beta diversity of plant-associated bacteria is strongly related to the beta
diversity of plants estimated by both species and biomass composition [30]. Despite the fact
that the spontaneous vegetation did not follow a pattern of abundance and diversity within
the organic systems, in our study an effect of cover management on bacterial diversity
was detected. We suggest that both cover management (mowing or mowing plus tillage)
and quantity/quality or the organic amendments drove the change in bacterial species
complexity in organic vineyards.

It is increasingly recognized that functional diversity patterns can provide more useful
information on land use impacts than taxonomic richness [31,32]. To test multifunctionality,
we considered some key bacterial functions related to soil biogeochemical cycling, including
oxidative and hydrolytic C-cycling enzymes, N-cycling enzymes and P-cycling enzymes.

There are a large number of studies that point to the role of soil management practices
on the abundance and expression of functional genes involved in the soil nitrogen cycle [33].
Here, we report the abundance of predicted functional genes of bacteria involved in five
steps of soil N cycling (nitrification, denitrification, nitrate reduction, nitrogen fixation
and ammonification) in vineyards under two different management systems. Contrary
to expectations, conventional vineyard management increased the abundance of most of
the predicted genes involved in soil nitrogen metabolism. There is general agreement on
the positive effect of organic fertilization on nitrogen cycling genes, commonly associated
with higher inputs of labile C and N from organic amendments and reduced tillage [34].
Thus, compared to conventional systems, organic management usually increases the abun-
dance and activity of nitrate reduction, nitrification, denitrification and nitrogen fixation
genes [35,36]. Despite this consensus, some controversy still exists. Some research shows
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that organic fertilization alone is not enough to stimulate nitrate-reducing activity [37,38].
Other studies also reveal an organic management effect only on nosZ abundance and no
effect on the other denitrification genes, such as nirK and nrfA, or those involved in fixation
and nitrification, such as nifH and amoA, respectively [39]. Furthermore, inorganic chemical
fertilizers can enhance the abundance of the bacterial nitrification amoA gene when nitrogen
is available in semi-arid conditions [40]. Finally, there is general agreement on the effect
of vegetation cover on denitrification. Since the process takes place under low-oxygen or
purely anoxic conditions, the demonstrated potential of cover vegetation to improve soil
structure and reduce compaction, and therefore improve aeration, could be related to the
decrease in soil denitrification potential detected in organic vineyards.

There is also strong evidence for the relationship between nitrogen fixation and sustain-
able agriculture [41], including lower numbers of nif genes and free-living nitrogen-fixing
bacteria under inorganic N fertilization and no tillage [42–44]. In the present study, organic
inputs from both cover vegetation and organic amendments did not improve the number of
predicted genes involved in N fixation. This is consistent with research results showing that
conventional agriculture increased overall nitrogen fixation activity in bulk soils [45,46].

Conversely, organic management improved potential ammonification in the soil,
assessed as the predicted abundance of glutamate dehydrogenase genes (GDH2, gudB,
rocG, GLUD1_2, gdhA). Since ammonification involves the mineralization of low molecular
weight organic molecules, it is feasible to relate it to the greater availability of organic
substrates derived from organic amendments and plant residues in this agricultural system.

Considering agricultural practices within conventional vineyards, we must also take
into account the effects of herbicides on the rhizospheric microbial community. In this
regard, the effect of glyphosate is still unclear. Some studies show that the herbicide
affects the expression of N cycle genes, although in very high concentrations never used in
agriculture [47,48]. Complementary studies show contradictory effects on the genes of the
bacterial C cycle [48,49].

The bacterial genes phoA,B,C and phoN/PHO encode alkaline and acid phosphatase,
respectively, enzymes involved in the hydrolysis of soil organic phosphorus into phosphate.
It is well known that functional groups of bacteria associated with phosphorus cycling are
highly sensitive to agricultural management practices [50]. In our study, the abundance
of predicted phosphatase genes was significantly higher under organic management. It is
well known that soil phosphatases respond to organic P but not mineral P, even long-term
P inputs reduce not only abundance but diversity of phosphatase genes [51]. Overall, the
relative abundance of predicted alkaline phosphatase genes was dominant over predicted
acid phosphatase genes, something expected in neutral or alkaline soils. Interestingly,
alkaline phosphatase-encoding bacterial species in organically managed soils have been
shown to be more closely related to acid phosphatase-encoding species than in conven-
tional management [52]. It has also been evidenced that, under organic management, the
predominant short-term effect on phosphorus-mineralizing bacterial communities in acid
soils can be exclusively attributed to a rhizosphere effect, whereas phoD-harboring bacteria
are influenced by both organic matter addition as by the soil rhizosphere [53]. In our
study, only in organic vineyards with spontaneous vegetation cover could the above trend
be verified, since conventional soils were always bare of vegetation. In this context, it is
widely accepted that cover crops generally increase microbial P biomass and consequently
phosphatase activity and also the diversity and species richness of phoA,B,D-harboring
bacteria [54]. Furthermore, cover vegetation tends to be highly effective in systems with
little available P, as is the case with our experimental system, due to their ability to access
“unavailable” P reserves [55].

Focusing on tillage management, there is controversy about the effect on functional
genes associated with the P cycle. There is evidence that tillage tends to increase the
abundance of functional genes associated with the degradation of P compounds [56].
Conversely, soil management practices that minimize soil disturbance have been shown
to improve phosphorus availability and therefore soil phosphatase activities [57]. In
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accordance with the latter, we found that the deduced functional profiles associated with
the P cycle were favored by organic management that included spontaneous vegetation
cover and zero or minimum tillage.

It has been established that the long-term continuous supply of organic fertilizers
results in an increase in hydrolytic enzymes that degrade carbon compounds in the soil [58].
In addition, there is a general agreement on the positive effect of the management of cover
crops and zero tillage in the C cycle [59,60]. There is less consensus on the effect of inorganic
fertilization on the genes associated with C degradation in the soil [61]. Some research
suggests that long-term inorganic fertilization accelerates soil C turnover in agroecosystems,
with concomitant upregulation of most genes involved in C degradation [62], while others
show the opposite [63].

In our study, organic vineyard management overall boosted the abundance of deduced
bacterial genes involved in the C cycle. For this study, we considered separately those
genes that strictly produce hydrolases from those that produce oxidoreductase enzymes.
The latter are involved not only in C mineralization but also in polycondensation reactions
in the soil from aromatic monomers, such as phenol or catechol, therefore they play a key
role in the stabilization of organic carbon in the soil.

We detected in organic vineyards an increase in the predicted bacterial genes involved
in the hydrolysis of the most abundant polysaccharides, such as glucose, xylan and cel-
lobiose, with the exception of the enzyme that catalyzes the hydrolysis of beta-D-glucose to
alpha-glucose. We also found a detrimental effect of organic management on the predicted
genes encoding the enzyme N-acetyl-glucosaminidase (NAG). NAG is responsible for
microbial N acquisition through chitin degradation and has often been considered as an
N-related enzyme [64]. The increase under conventional management somewhat followed
the same trend found in the most important soil enzymes involved in the N cycle.

With respect to oxidoreductases, the organic system increased the abundance of the
deduced genes encoding the enzymes phenol and toluene monooxygenase, capable of
converting benzene to phenol and catechol. The same was true for genes that produce
catalase-peroxidase, an oxidoreductase enzyme that is thought to break down H2O2 and is
often correlated with heterotrophic decomposition and humification [65]. In contrast, con-
ventional management was attributed to an increase in the predicted abundance of npr and
tfdB genes. The former involves the production of dichlorocatechol from dichlorophenol.
The latter is a stricto sensu peroxidase with a suggested role in both lignin degradation and
carbon humification [66].

There is an increase in the demand for knowledge about the concept of carbon stability
in soil, directly related to the sustainability of ecosystem services. Changes in soil organic
carbon stability can alter soil carbon release and consequently atmospheric CO2 concen-
tration [67]. In this context, carbon accumulation and sequestration has been pointed
out as a critical factor. We studied the effect of management on the bacterial potential
to fix atmospheric carbon. The Calvin cycle is the predominant pathway for bacteria to
assimilate CO2 and is therefore an important process of the soil carbon cycle. RuBisCO
enzymes catalyze the carbon dioxide assimilation reaction, the first rate-limiting step of the
Calvin cycle. Contrary to available information [68], conventional vineyard management
enhanced the predicted abundance of cbbL genes encoding the enzyme RuBisCO, thus
increasing the CO2 assimilation potential of autotrophic soil bacteria.

However, despite the importance of soil carbon sequestration in the global carbon
cycle, carbon fixation does not directly imply carbon stability and multiple factors affect the
soil C turnover, particularly temperature in a global warming scenario. In this context, the
stability of C has been associated with the process of humification of organic matter in the
soil. A recent study also shows that humic acids in the soil enhance heat stress tolerance
to plants [69]. We found in the organic management a general increase of deduced genes
that code for oxidoreductase enzymes, mainly of the oxygenase type. While those of the
oxidases type are fundamentally involved in energy metabolism, oxygenases are attributed
both a synthetic and a degrading role. Although there is much controversy about how
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humification of organic matter in soil occurs, oxidative coupling of phenols has been
recognized as a key step in the polyphenol humification theory, where catechol and o-
quinones play a fundamental role in the synthesis of humic substances [70]. In addition, it
is well known that the increase in catechol also promotes the formation of humic substances
in abiotic reactions in the catechol-Maillard system [71]. However, in no case did we find
lignin-degrading genes recognized for their role in humification according to the lignin
theory [72], except for very low amounts of dye-decolorizing peroxidases [EC 1.11.1.19].

4. Materials and Methods
4.1. Field Experiment and Sampling Site

The vineyards are located in the Designation of Origin Montilla-Moriles (Córdoba,
Spain). The climate in this area is classified as semi-continental Mediterranean, with short
winters and long, dry and hot summers (CsA according to Köppen climate classifica-
tion [73]), with an average monthly temperature of 16.6 ◦C and an average accumulated
rainfall of 54.6 mm [74]. Traditional sweet wines made from the Pedro Ximénez grape
variety characterize this wine region.

The study was carried out between September 2020 and January 2021 on vine plants
of the native cultivar Pedro Ximénez grafted onto Richter 110 rootstocks. Eight vineyards,
four organic (O) and four conventional (C), over 20 years old under organic or conventional
management, were selected from a larger project (https://www.biodiversa.eu/2022/1
0/31/secbivit/). Conventional vineyard fertilization is based on the application of NPK
fertilizers one to three times a year in all vineyards, except in C1 where manure and NPK
fertilizers alternate annually. On average, each NPK fertilizer application involves the
addition of approximately 22 kg of ammonia, 16 kg of urea, 44 kg of P2O5 and 16 kg of K2O
per hectare. Spontaneous vegetation is removed by tillage and a 36% glyphosate herbicide
is applied 1.5 times per year, resulting in permanently bare soil. The organic vineyards are
fertilized with vermicompost tea (O1 and O2) or manure (O3 and O4) once a year. For O4,
a commercial organic fertilizer is also applied once or twice a year. Spontaneous vegetation
is managed by mowing plus tillage (O1 and O4) or mowing alone (O2 and O3). Regarding
the control of fungal diseases, growers annually applied sulfur at a rate of 12 kg ha−1 in
O1 and O2, zero treatment in O3 and copper and sulfur oxychloride at a rate of 6.8 and
9.45 kg ha−1, respectively, in O4. In conventional vineyards, 27.6 kg ha−1 of sulfur were
applied in C1, 25 kg ha−1 of cuprocalcium sulfate in C2 and 50 kg ha−1 of sulfur in C3 and
C4, plus two applications of synthetic fungicides at a rate of 2 kg ha−1 in the last.

Soil samples were collected in autumn from the 0–20 cm layer of both the rows and
inter-rows. Each soil sample was an integrated sample made up of four subsamples taken
from four different points separated by 3 m. Samples were gently sieved to pass through a
mesh sieve of 2-mm, kept at 4 ◦C during the sampling campaign and then stored at −80 ◦C
until DNA extractions.

4.2. Soil Characterization

According to the IUSS Working Group WRB [75], sandy loam soils of the treatments
C1, C3, C4, O1, O2 and O3 are classified as Calcic Cambisols, C2-clay loam soil is classified
as Vertic Cambisol and sandy loam soil of the O4 treatment as Calcaric Fluvisol.

Air-dried field soil samples were used to determine physicochemical properties at
the Scientific Instrumentation Service, EEZ-CSIC, Granada, Spain (Table S2). Soil pH
was measured using a suspension of 1:2.5 soil:water with a pH-meter CyberScan PCD
6500 (Eutech Instruments, Nijkerk, The Netherlands). Total N and soil organic C were deter-
mined with the aid of the Leco-TruSpec CN elemental analyzer (LECO Corp., St Joseph, MI,
USA). Total mineral content was determined by the digestion method with HNO3 65%:HCl
35% (1:3; v-v) followed by analysis using inductively coupled plasma optical emission
spectrometry (ICP-OES) (ICP 720-ES, Agilent, Santa Clara, CA, USA).

No differences were detected in the physicochemical characteristics of the soils be-
tween the two management systems.

https://www.biodiversa.eu/2022/10/31/secbivit/
https://www.biodiversa.eu/2022/10/31/secbivit/
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4.3. Vegetation Sampling

The percentage of spontaneous vegetation in the field was estimated in mid-January
2021, one to two months before the farmers removed the vegetation cover. The estimation
method was based on four 1m2 plots per vineyard, located at the center of the row separated
by 6 m. Each plot was photographed and the different species and cover percentage were
identified, based on an analysis of the pictures and species, and were named according
to the Flora Vascular de Andalucía Oriental [76]. For each plot, the following parameters
were estimated: (1) plant cover (percentage of soil covered by plants), (2) cover percentage
per species (percentage of soil covered by species I or genera/family when species were
unidentifiable), (3) cover percentage per family (percentage of soil covered by family x), (4)
species richness (number of species) and (5) diversity (Shannon index), estimated as:

H′ =
i=n

∑
i=1

pi Lnpi (1)

where pi is the relative frequency of species i and n is the total number of species.

4.4. Molecular Analyses of Soil Bacteria

DNA was extracted from four 1 g aliquots of each soil sample using the bead-beating
method with the aid of a PowerSoil® DNA Isolation Kit (MoBio Laboratories, Solana Beach,
CA, USA), following the manufacturer’s instructions. Extractions from the same subsample
were pooled and concentrated at 35 ◦C to a final volume of 50 µL using a Savant Speedvac®

concentrator (Savant, Thermo Scientific, Holbrook, NY, USA).
The V3–V4 hypervariable regions of the 16S rRNA gene were targeted by bacterial

PCR primers 5′ CCTACGGGNBGCASCAG 3′ and 5′ GACTACNVGGGTATCTAATCC
3′ [77,78] to characterize bacterial communities from two replicates per sample using
the Illumina MiSeq (Illumina Inc., San Diego, CA, USA) (2 × 250 nucleotides paired-
end protocol) at the genomic facilities of the López-Neyra Institute of Parasitology and
Biomedicine (IPBLN-CSIC). The dada2 v1.24.0 pipeline [79] was used to process raw
sequences and construct an amplicon sequence variant (ASV) table. ASV taxonomic
assignment was achieved by implementing the assignTaxonomy function (based on naive
Bayesian classifier method) against the SILVA v138.1 database [80]. An ASV ×matrix was
generated using the Marker Data Profiling module on the MicrobiomeAnalyst web platform
(https://www.microbiomeanalyst.ca/faces/home.xhtml) [81,82]. All samples reached a
plateau based on the rarefaction curves generated by the MicrobiomeAnalyst tool.

4.5. Predictive Metagenomic Profiles

Tax4fun v0.3.1 [83], implemented in MicrobiomeAnalyst’s Shotgun Data Profiling
module, was used to predict, from 16S data sets obtained from the SILVAngs web server,
the functional pathways of soil bacterial communities based on the Kyoto Encyclopedia
of Genes and Genomes (KEGG) annotations [84]. These were based on (1) modules, that
is, functional units of sets of genes in the KEGG metabolic pathways database that can be
linked to specific metabolic capacities and other phenotypic characteristics and (2) KEGG
Orthologous (KO) corresponding to a group of orthologous genes identified by a K number
that have identical functions. Table S3 shows the modules and KOs focused on in this study.

4.6. Statistical and Diversity Analyses

Univariate general linear mixed models (GLMMs) were performed to assess the effect
of the management system (conventional vs. organic) on the abundance of bacterial taxa
and KEGG modules/KOs. Since two composite samples (row and interrow) were collected
per vineyard, vineyard identity was included as a random factor in the GLMMs using
lme4 package [85] of R v4.2.2 statistical software [86]. The normality of the data and the
homogeneity of the variance were evaluated with the Shapiro-Wilk test and the Levene

https://www.microbiomeanalyst.ca/faces/home.xhtml
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statistic, respectively. The ASV abundance information was normalized to the abundance
value of the sample with the least number of sequences.

Chao1 index of alpha diversity and beta diversity/linear discriminant effect size
(LEfSe) analyses were performed with the phyloseq package to test for differences in species
complexity within a sample and between groups, respectively, using the MicrobiomeAn-
alyst web platform. For beta diversity, Bray-Curtis distance and permutational ANOVA
(PERMANOVA) were used to assess the distance between samples and the statistical sig-
nificance of the clustering pattern, respectively. For LEfSe, features with an LDA score > 4
were considered important biomarkers of each treatment, and a p value < 0.05 indicates
significant differences. Finally, non-metric multidimensional scaling (NMDS) analysis with
Bray-Curtis distance was performed with the vegan package [87] to test dissimilarities in
bacterial KEGG KOs due to management.

5. Conclusions

In this study, we evidenced that agricultural management history selected for bacteria
with different potential to control nutrient cycles in the soil. Although the soil bacterial
community responded differently to the contrasting soil management strategies, the nu-
trient cycling and carbon sequestration functions remained preserved, suggesting a high
bacterial functional redundancy in the soil, which positively affects the stability of the
microbial community and resilience to disturbance. Redundancy refers to the ability of
a microorganism to perform one function at the same rate as another under the same
environmental conditions, and we found that most of the bacterial functions related to
organic matter turnover could potentially develop at a higher rate in organic viticulture.
Since there is a positive relationship between humification and plant environmental stress
tolerance, we postulate the potential of organic viticulture to adequately address climate
change adaptation in the context of sustainable agriculture. However, more empirical work,
including landscape and location dependency studies, is needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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