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Supplementary Methods 

Maximum Likelihood inference of selfing rates 

The single-locus Method-of-Moments approach of Ritland (2002) estimates the value of selfing rate, s, 
that maximizes the likelihood of the observed genotypes (of mother and progeny) and population 
allele frequencies (p). To calculate values of 𝑠̂, we used Equations 14 and 15 from Ritland (2002). We 
calculated population allele frequencies, p, as a simple average across all the individuals (mothers and 
progeny) in the corresponding population. We then tested our implementation of the estimator by 
generating simulated progeny genotypes (see below) with three different prescribed selfing rates (s 
equals 0, 0.5 and 1, respectively). We applied our implementation of the estimator to the simulated 
data, and in general inferred selfing rates similar to those used in the corresponding simulations (Fig. 
i), suggesting that this approach was suitable for use with our data. Note that for a given progeny 
sample, this approach ignores any locus that is missing data for the population allele frequency, or 
the material or progeny genotype.  

Simulations 

We performed simulations that generated a set of genotypes at NL loci for a progeny individual, given 
a set of population allele frequencies, a set of maternal genotypes, and a prescribed level of selfing 
(and outcrossing). In general, the maternal genotypes could be drawn from the empirical dataset, or 
potentially simulated from allele frequencies, with a prescribed level of excess homozygosity (usually 
denoted as F).  

In its simplest form, a selfed individual can be simulated by going through each locus and randomly 
drawing two alleles (with replacement) from the maternal genotype. An outcrossed individual can be 
simulated by drawing one allele at random from the mother plant, and another from the population, 
with probabilities that are proportional to the allele frequencies in the population. We also anticipate 
that biparental inbreeding is important, and so considered the case where the two parents of the 
progeny were relatives. We represented this by drawing one allele at random from the mother plant. 
For the second progeny allele, we also drew it from the mother plant with probability k, or drew it 
from the population allele frequencies with probability 1-k. Therefore, across different values of k, we 
covered a spectrum from k=1, where both alleles were drawn from the mother plant, to k=0, where the 
second allele was drawn from the population allele frequencies. At intermediate k, there is a higher 
probability of inheriting a second copy of the maternal allele, intended to represent identity by 
descent from a shared recent common ancestor. In this way, k represents the relatedness of the mother 
and father plants, from k=1 where the mother and father genotypes are identical, to k=0, where the 
father is drawn from the population at large, and has no elevated probability of sharing alleles that 
are identical by descent.     

Genotyping error 

Some population genetic analyses are potentially susceptible to bias due to genotyping error. We 
wanted to examine how genotyping error rates common in SNP studies might affect estimates of 
selfing rates. We began with the simplifying assumption that most of the genotyping errors in the 
dataset involved the failure to observe one of the alleles that is present in a (truly) heterozygous 
genotype (Luca et al. 2011, Bresadola et al. 2020). We therefore concentrated on the proportion of 
heterozygous genotypes that are miscalled as homozygotes (of either allele, in equal proportions), 
which we will denote ε.  
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We used the count of impossible genotypes, where a progeny individual is homozygous for a 
different allele to a homozygous mother plant, to obtain an estimate of the value of ε. An impossible 
genotype would consist of mother genotype AA and progeny genotype aa, or vice versa. Where this 
occurs, we postulate that this was usually because the true genotypes of mother and progeny 
consisted of one homozygote (AA or aa) and one heterozygote (Aa), and the heterozygous individual 
was incorrectly called a homozygote. If this were the case, we would expect to see a relationship 
among mother progeny pairs, between the number of impossible genotypes (Nimp), and the observed 
number of loci that were either mother-heterozygous and progeny-homozygous, or vice versa 
(NHetHom). The relationship would be given by the expression Nimp = 0.5 NHetHom ε. The 0.5 occurs because 
only half of the errors that change a heterozygous genotype to a homozygous genotype make the 
genotype impossible.   

Based on this expression, and combining data from both species, we estimated the value of ε for these 
data to be around 0.03, and potentially in the range 0.01-0.05 (Fig. ii). This estimate is reasonably 
consistent with previous observations for similar genotyping approaches (Luca et al., 2011). We note 
that this largely ignores a small group of mother–progeny pairs that had unusually high numbers of 
impossible genotypes. We note that heterozygous sites are usually less frequent than homozygous 
sites, such that the genotyping error rate across all loci could be an order of magnitude lower than ε.  

Simulating genotypes with error 

To impose genotyping errors on simulations, we needed to follow two steps. First, we wanted to 
estimate a ‘hypothetical’ true set of genotypes for the mother plant, from which the observed 
genotypes might have been produced, with errors given by ε. To do this, we needed to estimate the 
likely proportion of the sites in the mother plant that were observed to be homozygous, but that 
might have been real heterozygous sites miscalled as homozygous, at rate ε. This can be estimated by 
the expression:  

ε * = ε / (1- ε)  × NHet / NHom,  

where NHet and NHom are the numbers of heterozygous and homozygous genotypes in the mother 
plant, respectively. We then estimated a hypothetical genotype for the mother plant by converting 
observed homozygous genotypes to heterozygotes with probability ε *. We note that this does not 
represent an estimate for the true genotype of any mother plant; rather, it is a representation of a 
possible mother plant, given observed genotypes, and a given rate of error. We used this hypothetical 
mother plant in the simulation of a progeny individual. We next imposed errors on the progeny 
individual by converting heterozygous genotypes to homozygous genotypes with probability ε. In all 
cases, when we decided that a heterozygous genotype would become homozygous, we chose the 
allele to make homozygous at random.  

 

 

 

 

Inference of Selfing Rates with Neural Network Models 

Overview 
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We next examined the application of neural networks to the inference of selfing rates. Our goal was to 
find an approach for mating system estimation that could be applied to many loci, and that in future 
might be extended to data with different properties (e.g., ordered markers), or to inferring different 
properties of mating systems (such as correlated paternity). Recent reports have shown how 
Convolutional Neural Networks (CNNs) can be highly effective and flexible when applied to suitable 
genetic data and problems (Flagel et al. 2019). Often, this involves performing simulations to produce 
data objects that vary in a specific feature (which can be categorical or a continuous value), and that 
are ‘labelled’ with the corresponding values of that feature (Fonseca et al. 2021, Perez et al. 2022). The 
simulated data objects are then used to ‘train’ a machine learning model. The model can then be used 
to predict values of the parameter for a set of analogous empirical data objects, resulting in estimates 
of the parameter. We performed simulations that produced progeny genotypes under different 
selfing rates. These were used to train models, along with the corresponding population allele 
frequencies, maternal genotypes, and selfing rate.  

Data for training, validation, and prediction 

The basic data object provided to CNN models, applicable to a single (real or simulated) progeny 
individual, can be thought of as a matrix with three rows and N columns. Each column contains 
values for a specific SNP locus, such that N is the number of loci. The first row contains the frequency 
of a reference allele in the population. The second row contains the diploid maternal genotype, 
encoded as the frequency of the reference allele in the mother plant (0, 0.5, or 1.0). The third row 
contains the diploid genotypes of the progeny individual, again encoded as the frequency of the 
reference allele (0, 0.5, or 1.0).  

We experimented with different approaches to simulation and training of machine learning models, 
with three main goals. First, we wanted to produce models that were accurate, based on predictions 
for ‘test’ samples, which were simulated in the same way as training data, but not used in the training 
of models. Second, we wanted to find an approach that was as generally applicable as possible. That 
is, we began by training separate models for each family (i.e., a model trained for each mother tree), 
allowing for the possibility that models might only be very narrowly applicable. Later, we relaxed 
this assumption, and found that we could obtain reasonable performance if we trained a model using 
simulated progeny for all the families in a dataset, and applied this model to all empirical progeny 
samples. This substantially reduced the computational effort required to infer selfing rates for all the 
progeny in each dataset. Third, we explored different model architectures (models), with the goal of 
using the simplest architecture that produced convincing predictions for an independent set of 
simulated test data (i.e., extra simulations, not used for training).  

For the final analyses, we implemented a CNN with three Conv2D convolutional layers, three Dense 
layers, and a final regression layer (with ‘linear’ activation). This regression layer meant the label 
associated with each data object (progeny individual) was a numerical value (the value of k, 
representing the amount of selfing used to generate the progeny). For each species, we trained the 
CNN using 10,000 simulated progeny as training data, and a further 1000 simulated progeny were 
used as ‘validation’ data in model training. These validation data are used to estimate loss during 
training and to adjust training hyper-parameters accordingly. The simulations used a mother plant 
drawn at random from the data and the allele frequencies of the corresponding population. The 
simulations used values of k (which controls the level of selfing) drawn from a uniform distribution 
bounded by 0 and 1. The analyses presented here used values for ε drawn from a uniform 
distribution between 0.04 and 0.05. We repeated the analyses for very small ε and found that this did 
not meaningfully affect the outcomes of the analysis. We also tested different schemes for handling 
missing data in these analyses. This included removing all loci that were missing data for any sample. 
However, this was quite restrictive to the size of the dataset. Here, for a given progeny individual, 
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where data were missing for the corresponding population allele frequency or for a genotype 
(maternal or progeny), we inserted an arbitrary combination of these data that should be equally 
likely under all models of selfing or outcrossing. This represented a way to make missing data 
uninformative for the particular combination of sample and locus, and to avoid excluding the locus 
across all samples. We note that these choices in relation to the specification of models and handling 
of training data are worthy avenues for future investigation.    

We tested the performance of the CNN model by simulating 100 additional progeny for each mother 
plant using random values of k. For each of these simulated progeny datasets, we made a prediction 
of the selfing rate using the trained CNN. This resulted in 100 ‘expected’ and ‘predicted’ data points. 
These are plotted for several exemplar individuals in Fig. iii, and show that, in general, there was 
strong agreement between predicted and expected selfing rates (Fig. iii). We used these test 
simulations to calculate a Mean Squared Error (MSE) for each mother plant. These MSE values are 
potentially a useful index of model performance for different individuals.  

Finally, we compared the selfing rates inferred using the Method-of-Moments estimator (MME) 
approach (Ritland 2002) and the Convolutional Neural Network (CNN) approach. These were 
strongly concordant among samples (Fig. iv). Both approaches also generate values that serve as an 
index of confidence in estimated selfing rates, and these also exhibited concordance. For example, in 
Hakea sericea population PT, it was likely inherently difficult to estimate selfing rates accurately due to 
low heterozygosity. This population had a low value of Average Reciprocal Variance (MME) and a 
large value of Mean Squared Error (CNN) (Fig. S2).  
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Figure i. Accuracy of the method-of-moments estimator of the single-locus selfing rate. Progeny data 
were simulated using selfing rates of  0, 0.5, and 1, and the single-locus estimator was used to 
estimate selfing rate from the simulated data. 
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Figure ii. The prevalence of impossible genotypes, where mother and progeny are homozygous for 
different alleles. For each progeny–mother sample pair, the number of loci with impossible genotypes 
is shown as a function of the number of loci where one individual (mother or progeny) is 
heterozygous and the other is homozygous. Black points are Hakea teretifolia samples and blue points 
are Hakea sericea samples. The trend line is fit through the origin and has a slope of 0.06 
(corresponding to ε ≈ 0.03). 
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Figure iii. Exemplar validation data for the CNN model. A model was trained to predict selfing rate 
from genotype data. For each mother plant, 100 datasets were simulated at random levels of selfing. 
Predictions were made for each dataset. Here, for the mother plant where the model was most (black, 
filled) and least (gray, filled) accurate, selfing rates predicted using the model are shown as a function 
of the prescribed (simulated values). For the individual where the predictions were least accurate, a 
new model was trained using training data and simulations based exclusively on material genotypes 
(and population allele frequencies) from that individual. Predicted and prescribed points from that 
model are plotted in unfilled gray symbols.    
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Figure iv. Comparison of selfing-rate estimates from a single-locus method-of-moments (MOM) 
estimator (horizontal axis) and a CNN model (vertical axis). Each point represents a Hakea sericea 
progeny individual. Note: estimated values that were < 0 or > 1 have been placed at 0 and 1, 
respectively, for the purpose of this illustration. 

 


