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Abstract: Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants,
but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on
the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the
uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, Avicennia marina
and Rhizophora stylosa, are characterized by unique apoplast barriers. The results showed that both
mangrove plants exhibited the highest concentration of Cd2+ in roots, followed by stems and leaves.
The Cd2+ concentrations in all organs of R. stylosa consistently exhibited lower levels than those of
A. marina. In addition, R. stylosa displayed a reduced concentration of apparent PTS and a smaller
percentage of bypass flow when compared to A. marina. The root anatomical characteristics indicated
that Cd treatment significantly enhanced endodermal suberization in both A. marina and R. stylosa
roots, and R. stylosa exhibited a higher degree of suberization. The transcriptomic analysis of R. stylosa
and A. marina roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis
and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized
apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.

Keywords: apoplast barriers; suberin; cadmium tolerance; mangrove

1. Introduction

Mangrove forests are a type of woody wetland community that thrive in the intertidal
zone of tropical and subtropical coasts, enduring periodic inundation and possessing high
productivity, return rate, decomposition rate, and resistance to adverse environmental
conditions [1,2]. Due to the ability of mangroves to tolerate high levels of environmental
pollutants, artificial mangrove wetlands have been proposed as a potential solution for
treating urban wastewater [3]. Mangrove plants exhibit a certain degree of tolerance to-
ward heavy metal; however, exceeding the maximum threshold will result in irreversible
damage to the plant due to Cd stress [4,5]. The high activity and bioavailability of Cd can
disrupt normal plant metabolism upon root absorption, leading to impaired photosyn-
thesis, nutrient imbalance, and ultimately stunted growth [6,7]. Therefore, the presence
of excessive heavy metals, such as cadmium (Cd), in sediment may impede the normal
growth of mangrove plants [5]. Avicennia marina is widely distributed along the southeast
coast of China and serves as a pioneer species in mangrove wetlands. Due to its high
tolerance for heavy metals, A. marina can stabilize plants and has the potential to remediate
heavy metal pollution in coastal wetlands [8,9]. Rhizophora stylosa also demonstrated high
tolerance to metal pollution, showing low accumulation and even surpassing A. marina
in terms of metal tolerances [10,11]. Previous studies have shown a significant positive
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correlation between metal tolerance and lignin/suberin contents of exodermis in mangrove
plants [11,12]. Understanding the mechanism of heavy metal tolerance in mangroves is
crucial for future conservation and restoration efforts.

The role of root apoplastic barriers and the radial apoplastic transport pathway play
a key role in Cd translocation and accumulation in plants [13,14]. When water and ions
move through the apoplastic pathway (also known as bypass flow), they are blocked
by an apoplastic barrier in the endodermis or/and exodermis of plant roots [15]. The
apoplastic barrier is a hydrophobic structure formed by lignin and suberin deposition,
mainly composed of suberin lamellae with suberin as the main component [16]. Suberin is
a hydrophobic secondary metabolite composed of phenolic compounds, glycerol, fatty acid
derivatives, and primary fatty alcohols. It is typically deposited in specific tissues, such as
root exodermis and endodermis, periderm, and other marginal tissues, to form suberiza-
tion [17,18]. In addition to its deposition during normal development, the biosynthesis of
suberin can also be induced by exposure to salt and Cd [13,19].

The mechanisms of suberin synthesis and Cd resistance in mangrove plants remain
unclear. Studies have shown that mangrove plants with a higher tolerance to heavy
metals possess a thicker suberin layer, which directly delays metal entry into the root
and, consequently, contributes to a higher tolerance to heavy metals [11]. Currently, most
studies on the correlation between apoplast barriers in mangrove plants and heavy metal
absorption and transportation remain at a qualitative description stage [11,20,21]. The
apoplastic flow from roots to shoots was traced using a fluorescent dye (trisodium-8-
hydroxy-1,3,6-pyrenetrisulfonic acid; PTS), which is exclusively transported to xylem via
the apoplast pathway under transpiration tension and can be employed for quantitative
assessment of the strength of the apoplastic barrier [13,22]. This study specifically focused
on tracing the apoplastic bypass flow to evaluate the effect of metal stress on Cd uptake.

This present study aims to achieve the following: (1) determine the relationship
between Cd accumulation and the apoplast barrier, (2) elucidate the role of the apoplast
barrier in Cd uptake and accumulation in mangrove plants, and (3) screen differentially
expressed genes (DEGs) related to suberin synthesis, thereby exploring the molecular
mechanisms underlying suberin synthesis and regulation in mangrove roots.

2. Results
2.1. Cd Uptake and Distribution in the Two Mangrove Cultivars

The biomass and chlorophyll content of both A. marina and R. stylosa exhibited signifi-
cant suppression under cadmium stress, with a more pronounced inhibition observed as
the concentration of cadmium increased (Figure S1). As shown in Figure 1, the distribution
of Cd varied among the leaves, stems, and roots of A. marina and R. stylosa seedlings. The
concentration of Cd2+ in each organ of both mangrove plants was relatively low when
CdCl2 was not applied. However, with increasing concentrations of CdCl2 treatment, the
Cd2+ concentrations also significantly increased in plant organs. The distribution pattern
of Cd in the organs of the two mangrove plants followed this order: root (Figure 1a) > stem
(Figure 1b) > leaf (Figure 1c). It is worth noting that the concentration of Cd2+ in each organ
of R. stylosa was lower than that in A. marina under identical CdCl2 treatment.

2.2. Apoplastic Bypass Flow and Apparent PTS Content in the Two Mangrove Cultivars

Compared with the CK, the percentage of bypass flow and PTS concentration of
Cd-treated A. marina and R. stylosa were significantly reduced, as depicted in Figure 2.
Furthermore, with the gradual increase in Cd2+ concentration, the percentage of bypass
flow and PTS concentration of both mangrove species also decreased gradually. In A. marina,
the percentage of bypass flow decreased by 38.07%, 61.31%, and 61.75%, respectively, under
different Cd2+ concentration treatments compared to the control group, while the apparent
PTS concentrations also exhibited a decrease of 37.58%, 61.07%, and 61.74%, respectively.
In R. stylosa, the percentage of bypass flow decreased by 20.52%, 67.41%, and 73.28%,
respectively, compared to the control group, while the apparent PTS concentrations reduced
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by 19.74%, 67.11%, and 73.68%, respectively. Additionally, in both control and Cd-treated
groups, R. stylosa exhibited lower percentages of bypass flow and PTS concentration
compared to A. marina.
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concentration in the roots of control and treated seedlings. (b) Cd2+ ion concentration in the stems 
of control and treated seedlings. (c) Cd2+ ion concentration in the leaves of control and treated seed-
lings. The data presented are means ± SE from three biological replicates. Different letters within the 
same organ indicate significant differences between treatments as determined by one-way ANOVA 
(p < 0.05). 
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Figure 1. Cadmium uptake and distribution in seedlings of A. marina and R. stylosa. (a) Cd2+ ion
concentration in the roots of control and treated seedlings. (b) Cd2+ ion concentration in the stems of
control and treated seedlings. (c) Cd2+ ion concentration in the leaves of control and treated seedlings.
The data presented are means ± SE from three biological replicates. Different letters within the same
organ indicate significant differences between treatments as determined by one-way ANOVA (p < 0.05).
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marina and R. stylosa under cadmium stress. Different letters within the same organ indicate signif-
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within the same organ indicate significant differences between treatments as determined by one-
way ANOVA (p < 0.05). 
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ization in both A. marina and R. stylosa roots.  

 
Figure 3. Deposition of suberin lamellae (SL) in the endodermis of A. marina (a) and R. stylosa (b) 
was observed under 0 and 100 mg·L−1 CdCl2, at distances of 5 mm and 20 mm from the root tip. 
Sections were stained with a solution containing 0.01% (w/v) Fluorol Yellow 088 for 1 h, followed by 
observation using a fluorescence microscope. The scale bar represents a length of 50 µm. 

2.4. Net Fluxes of Cd2+ in Roots Surface  
The negative values represent the influx of Cd2+ into the root from the test solution. 

As depicted in Figure 4, high Cd2+ fluxes were detected in the coniferous zone of both A. 

Figure 2. Apoplastic bypass flow (a) and apparent PTS (trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic
acid) content (b) in the A. marina and R. stylosa under cadmium stress. (a) Apoplastic bypass flow in
the A. marina and R. stylosa under cadmium stress. (b) The apparent PTS content in the A. marina
and R. stylosa under cadmium stress. Different letters within the same organ indicate significant
differences between treatments as determined by one-way ANOVA (p < 0.05). Different letters
within the same organ indicate significant differences between treatments as determined by one-way
ANOVA (p < 0.05).
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2.3. Root Anatomical Characteristics of Suberin Lamellae in Response to Cd Treatment

In order to investigate the root anatomical features and exodermal lignification/
suberization between the two mangrove plants, the staining pattern of suberin lamellae
in root cells was generated by Fluorol Yellow 088 at the root tips in the endodermis. As
illustrated in Figure 3, both A. marina and R. stylosa exhibited weaker suberization closer
to the root tip. At a distance of 5 mm from the tip, suberization was lower than that at
20 mm from the tip. At the same position, R. stylosa showed a higher degree of suberization
compared to A. marina. Additionally, Cd treatment significantly enhanced endodermal
suberization in both A. marina and R. stylosa roots.
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Figure 3. Deposition of suberin lamellae (SL) in the endodermis of A. marina (a) and R. stylosa
(b) was observed under 0 and 100 mg·L−1 CdCl2, at distances of 5 mm and 20 mm from the root tip.
Sections were stained with a solution containing 0.01% (w/v) Fluorol Yellow 088 for 1 h, followed by
observation using a fluorescence microscope. The scale bar represents a length of 50 µm.

2.4. Net Fluxes of Cd2+ in Roots Surface

The negative values represent the influx of Cd2+ into the root from the test solution.
As depicted in Figure 4, high Cd2+ fluxes were detected in the coniferous zone of both A.
marina and R. stylosa under control conditions, and A. marina exhibited higher net Cd2+

fluxes than R. stylosa.
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Figure 4. Net Cd2+ fluxes in coniferous zone of A. marina and R. stylosa roots under cadmium stress.
The negative values represent Cd2+ influx into the root from the test solution. (a) The temporal
variation of Net Cd2+ fluxes during the experimental period was quantified using the noninvasive
microtest technique (NMT). (b) The average value of Net Cd2+ fluxes was calculated on temporal
variation value. The letter "a" denotes that there is no statistically significant difference between the
two datasets as determined by one-way ANOVA (p < 0.05).
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2.5. Identification and Functional Classification of DEGs

As illustrated in Figure 5, the results demonstrated that A. marina roots exhibited
2928 up-regulated genes and 4936 down-regulated genes, while R. stylosa roots displayed
503 up-regulated genes and 1636 down-regulated genes in response to Cd treatment. As
shown in Figure 6a, the GO enrichment analysis of DEGs in A. marina revealed that up-
regulated genes are significantly enriched in GO terms related to binding, the metabolic
process, and the cell and cellular process after Cd stress. In contrast, the down-regulated
DEGs are significantly enriched in GO terms associated with metabolism, cellular processes,
binding, and catalytic activity. The GO enrichment analysis of DEGs in R. stylosa, as shown
in Figure 6b, reveals a significant enrichment of up-regulated genes in GO terms related
to catalytic activity, binding, and cellular processes. Conversely, down-regulated genes
are notably enriched in GO terms associated with metabolic processes, cellular processes,
binding, and catalytic activity. Figure 6c displays the results of KEGG enrichment analysis
for DEGs in A. marina, revealing that a total of 1250 genes are involved in 108 metabolic
pathways. Among these, the most highly expressed genes were found to be associated
with protein processing in endoplasmic reticulum and glutathione metabolism, with 73 and
43 genes, respectively. Additionally, phenylpropanoid biosynthesis, ABC transporters,
phenylalanine metabolism, cutin, suberin, and wax biosynthesis, as well as fatty acid
elongation, were also enriched with the number of enriched genes being 18, 15, 9, 3, and 2,
respectively. The results of KEGG enrichment analysis for DEGs in R. stylosa are shown in
Figure 6d. A total of 1380 genes were found to be involved in 65 metabolic pathways. The
most highly expressed genes were related to ribosome, cysteine, and histidine metabolism,
with 12 and 9 genes, respectively. Furthermore, phenylalanine biosynthesis, peroxisome,
phenylalanine metabolism, and ABC transporter were also enriched with four, three, two,
and one gene(s), respectively.
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Figure 6. Gene Ontology (GO) enrichment analysis was performed on differentially expressed genes
(DEGs) of A. marina (a) and R. stylosa (b), while Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis was conducted on DEGs of A. marina (c) and R. stylosa (d).

2.6. Candidate Genes for Suberin Biosynthesis and Regulation

The up-regulated DEGs in the transcriptome were annotated in NR and other databases
to obtain gene function annotations. Based on their functions, they were classified into
three categories: synthesis of suberin monomers, polymerization and assembly of suberin
monomers, and transcription factors involved in suberin synthesis and regulation (Table 1).
According to this speculated gene function, a molecular synthesis mechanism map of
suberin was depicted in Figure 7.
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Table 1. Key steps in the biosynthesis and assembly of suberin.

Gene Corresponding Enzyme Function 1 Gene ID Plant Species

Synthesis of suberin monomers

LACS6 Long-chain acyl-CoA synthetase Cluster-29888.0 A. marina
KCS1 3-ketoacyl-CoA synthase Cluster-14650.20981 A. marina
CER1 Very-long-chain aldehyde decarbonylase Cluster-14650.23822 A. marina
CER3 Very-long-chain aldehyde decarbonylase Cluster-12850.10147 R. stylosa

GPAT5 Glycerol-3-phosphate acyltransferase Cluster-14650.34157 A. marina
CYP86A1 Cytochrome P450-dependent fatty acidω -hydroxylase Cluster-14650.26258 A. marina

CYTB5 Cytochrome b5 Cluster-14650.28547 A. marina
CCR1 Cinnamoyl-CoA reductase Cluster-14650.33944 A. marina
CCR Cinnamoyl-CoA reductase Cluster-12850.9370 R. stylosa

F5H/CYP84A Ferulate 5-hydroxlyase Cluster-14650.33388 A. marina
COMT Caffeic acid O-methyltransferase Cluster-14650.15351 A. marina
COMT Caffeic acid O-methyltransferase Cluster-3477.0 R. stylosa
CAD Cinnamyl alcohol dehydrogenase Cluster-55339.0 A. marina
CAD Cinnamyl alcohol dehydrogenase Cluster-55339.0 R. stylosa

C4H/CYP73A Cinnamic acid 4-hydroxylase Cluster-14650.32547 A. marina
CCoAOMT Caffeoyl-CoA-O-methyltransferase Cluster-14650.32082 A. marina

Polymerization and assembly of suberin monomer

LTPG2 Nonspecific lipid transfer protein GPI-anchored 2 Cluster-14650.39736 A. marina
ABCG11 ATP-binding cassette subfamily G transporter Cluster-14650.27512 A. marina

PRX4 Peroxygenase Cluster-14650.16427 A. marina
TPX1 Cationic peroxidase Cluster-14650.35143 A. marina
TPX1 Cationic peroxidase Cluster-12850.633 R. stylosa

WsL-PRX Lignin-forming anionic peroxidase Cluster-14650.24652 A. marina
WsL-PRX Lignin-forming anionic peroxidase Cluster-12850.8199 R. stylosa

LOX1 Lipoxygenase Cluster-12850.12299 R. stylosa
LAC7 Laccase Cluster-14650.28143 A. marina
LAC14 Laccase Cluster-14650.29125 A. marina
SOD2 Superoxide dismutase, Fe-Mn family Cluster-52365.0 A. marina
SOD1 Superoxide dismutase, Cu-Zn family Cluster-14650.35925 A. marina

Transcription factors (TF)

MYB53 Transcription factor MYB Cluster-14650.15097 A. marina
MYB39 Transcription factor MYB Cluster-14650.18329 A. marina

WRKY33 Transcription factor WRKY Cluster-12850.13359 R. stylosa
1 The results was annotated based on gene function.

3. Discussion

3.1. Role of Suberin on Cd2+ Uptake, Transportation, and Tolerance in Mangrove Seedlings

Cd is a nonessential trace metal that exhibits high toxicity in almost all living organ-
isms [23]. Due to its elevated activity and bioavailability, Cd can impede plant growth [24].
In this present study, we observed the induced formation of hydrophobic barriers near
the root tips in the endodermis and exodermis following Cd treatment in R. stylosa and A.
marina seedlings, which aligns with previous findings in rice [13]. After Cd stress treatment,
both R. stylosa and A. marina showed a decrease in bypass flow and Cd2+ flux, indicating
that appropriate Cd treatment can enhance plants’ apoplastic barrier and tolerance to this
metal, which is consistent with the findings for Populus cathayana [25]. This present study
presents novel findings that the exosomal barrier in mangroves effectively hinders the
absorption and translocation of heavy metal Cd, thereby resulting in reduced concentra-
tions of CdCl2 in treated plants. In addition, the exoplasmic barrier is related to the root
suberization of plants. These findings provide valuable insights and guidance for screening
and breeding of high-tolerance plants.

Suberin acts as a physical barrier when deposited in the endodermis or exodermis
of plant roots, preventing water and nutrient losses from the tissues it surrounds, as well



Plants 2023, 12, 3786 8 of 14

as providing protection against environmental stresses, such as pathogens, drought, and
salt stress [26–29]. As a crucial protective barrier for roots, phellem not only regulates ion
absorption and transportation but also plays a significant role in the response mechanism
to heavy metal stress in mangrove plants [11]. The apoplastic tracer PTS is nontoxic to
plants and can only be transported exclusively through the apoplastic pathway to the shoot.
The lower the apparent PTS concentration and percentage of bypass flow, the lower the
concentration of heavy metals flowing into the plant, resulting in a stronger ability of the
exocytosomal barrier [13,30]. In this study, R. stylosa showed a higher degree of suberization
compared to A. marina at the same position, leading to a stronger exoplasmic barrier to the
absorption and transport of Cd2+ and stronger resistance to heavy metals. Previous research
has shown that root exodermis with a high degree of suberization exhibits greater tolerance
to heavy metals [11,31]. The stronger the apoplastic barrier, the less PTS is transported to
aboveground and the lower the bypass flow rate. In this study, R. stylosa exhibited a lower
initial bypass flow than A. marina, indicating a stronger initial apoplastic barrier and Cd
tolerance in R. stylosa.

3.2. Effects of Cd2+ Stress on Suberin Biosynthesis in Mangrove Plants

This study revealed that R. stylosa exhibited greater resistance to heavy metals com-
pared to A. marina, which is consistent with previous research [11]. The heavy metal toler-
ance of mangrove plants was found to be positively correlated with their lignin/suberin con-
tent [11,12]. In the transcriptome data of this study, genes associated with the biosynthesis
and assembly of suberin were identified in both A. marina and R. stylosa (Table 1), indicating
the involvement of suberin in the response to heavy metal stress in mangrove plants.

Suberin, a hydrophobic secondary metabolite composed of phenols, glycerol, fatty
acid derivatives, and primary fatty alcohols, is typically deposited on the cell walls of
specific tissues, including the root endodermis, exodermis, peridermis, and other marginal
tissues, resulting in the formation of phellem [19,32]. The deposition of suberin primarily
occurs on the secondary cell wall, while its polymerization mechanism remains unclear [33].
Scientists have obtained a large number of genes through transcriptome technology us-
ing Arabidopsis thaliana and other model plants [32]. The cadmium-transporter genes of
mangrove plants were illustrated to improve the Cd tolerance of transgenic plants [9]. In
this study, we conducted a comprehensive transcriptomic analysis on the roots of R. stylosa
and A. marina under Cd stress to explore the molecular synthesis mechanism of suberin in
mangrove plants.

There are two prerequisite substances for suberin monomers: very long-chain fatty
acid (VLCFA) precursors and phenylalanine. When VLCFAs are used as precursors, the
elongation of plastid-derived fatty acids (FAs) is the initial step in the biosynthesis of such
precursors [34], which is catalyzed by LACS and accomplished through the FAE com-
plex [35]. The FAE complex is composed of four enzymes: KCS, β-ketoacyl-CoA reductase
(KCR), β-hydroxyacyl-CoA dehydratase (HCD), and enoyl-CoA reductase (ECR) [36]. Un-
der Cd stress, the expression of KCS1 and LACS6 are up-regulated in A. marina, indicating
that the elongation of FAs was promoted. CER1 and CER3 encode core components of
a redox-dependent multienzyme complex, which can interact with electron-transferring
cytochrome b5 hemoproteins (CYTB5s), to act as cofactors to facilitate the very long-chain
fatty acid to produce VLC-alkanes [32,37,38]. CYP86A1 encodes a fatty acidω-hydroxylase
that catalyzes theω-site hydroxylation to produceω-hydroxy acids [39]. GPATs catalyze
acyl-CoA or acyl-ACP to produce lysophosphatidic acids (LPAs), which are reduced to
suberin monomers. GPAT5 is specifically involved in suberin biosynthesis in seed coats
and root tissues [40,41]. In this study, CER1, CER3, CYTB5, CYP86A1, and GPAT5 are
up-regulated in A. marina, suggesting that suberin biosynthesis with VLCFA as a precursor
was increased.

When phenylalanine serves as the precursor, it is oxidized to form cinnamate and then
parahydroxylated by C4H/CYP73A to yield p-coumaric acid [42]. CCoAOMT functions as
a typical O-methyltransferase protein, producing Ferulate-CoA. F5H/CYP84A and COMT
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can generate the 4-hydroxy-3,5-dimethoxy-substituted hydroxycinnamate structure of
sinapic acid in various species. CCR and CAD are capable of converting hydroxycinnamoyl-
CoA thioesters into corresponding monoxylitol [32,43]. The expression of C4H/CYP73A,
F5H/CYP84A, and CCoAOMT were up-regulated in A. marina; as well as this, COMT and
CAD are up-regulated in both A. marina and R. stylosa, indicating that suberin biosynthesis
with phenylalanine as a precursor was increased.

To form suberin, the monomers synthesized in the membrane must be transported
out of the plasma membrane (PM) for polymerization and assembly. Several transporters
including AtABCG1, AtABCG2, AtABCG6, AtABCG11, AtABCG20, and OsABCG5 are
involved in this process [44–47]. Lipid transfer proteins (LTPs) facilitate the transportation
of cuticle precursors from the plasma membrane to the cell wall surface [48]. LTPG2 has
been confirmed to participate in cutin transport, and the transportation of cutin and cork
shares common elements [49]. Here, the expressions of ABCG11 and LIPG2 are found
to be up-regulated in A. marina, indicating that transportation of suberin monomers is
also promoted.

The polymerization and assembly of suberin are primarily catalyzed by oxidases. In toma-
toes, TPX1 is exclusively expressed in cells undergoing lignin and suberin synthesis [50,51].
Meanwhile, PRX4, SOD, and LAC1 had been speculated to be implicated in suberin biosyn-
thesis [52–54]. WsL-PRX, belonging to the same oxidase class, may have similar functions
in lignin formation [55]. TPX1, PRX4, LAC7, LAC14, SOD1, and SOD2 are up-regulated
in A. marina or both in R. stylosa, indicating these genes are involved in the polymeriza-
tion and assembly of suberin. LOX1 is involved in synthesizing jasmonic acid, which
induces suberization and is speculated to be associated with suberin production [56]. LOX1
is up-regulated in both A. marina and R. stylosa, implying that the synthesis of suberin
was promoted.

Transcription factors (TFs) regulate gene expression and participate in plant stress
response by binding to specific target gene sequences. MYB, WRKY, MYC, and NAC are
the main TFs involved in suberin synthesis regulation. MYB53 acts downstream of the ABA
signaling pathway and induces suberin biosynthesis in the endodermis [57]. MYB39 is a
positive transcription factor that promotes suberin deposition in the root endodermis layer.
The transient expression of MYB39 in N. benthamiana leaves leads to the accumulation of
major suberin monomers and the deposition of suberin-like lamellae [29,32,58]. WRKY33
serves as the upstream regulatory transcription factor of CYP94B1, which is involved in
suberin biosynthesis [59]. In this study, MYB53 and MYB39 are up-regulated in A. marina,
and WRKY33 is up-regulated in R. stylosa, indicating that these genes are involved in
suberin synthesis.

Overall, these results indicated that Cd stress induced the expression of genes involved
in the synthesis, transport, and assembly of suberin, which deepened our understanding
of heavy metal tolerance mechanisms in mangrove plants and provided a reference for
genetic engineering of plant heavy metal resistance.

4. Materials and Methods
4.1. Plant Materials and Treatments

The propagules of A. marina and R. stylosa were collected from Beihai City, Guangxi
Province, China. Healthy propagules of uniform size were carefully selected and watered
with the 1/2 Hoagland solution. After A. marina and R. stylosa grew two pairs of leaves,
the seedlings were transferred into new pots with soil. The soil for growing plants was
obtained from the identical geographical region as the mangrove seedlings. The soil
was sifted through an 8 mm diameter screen to ensure uniform particle size, and then
exposed to cadmium pollution at concentrations of 0, 25, 50, and 100 mg·kg−1, respectively,
corresponding to the CK treatment, low concentration treatment, medium concentration
treatment, and high concentration treatment. After thorough mixing, the soil was used
to transplant the seedlings. Then, the mangrove seedlings were carefully transferred to
an artificial climate incubator for cultivation and irrigated with a 1/2 Hoagland nutrient
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solution every three days. The culture conditions were as follows: 25 ◦C, 14/10 h light/dark
cycle, 75% relative humidity, and 20,000 LX illumination intensity. After 4 weeks, seedlings
treated with Cd were harvested and washed with deionized water to eliminate surface Cd,
and then separated into leaves, stems, and roots to analyze Cd2+ concentration.

4.2. Measurement of Total Ion Concentration (Cd2+) from Plants

The samples were dried in an oven at 70 ◦C for 4 days and digested with concentrated
nitric acid (HNO3). The level of Cd2+ in the acid-digested samples was determined using
inductively coupled plasma-mass spectrometry (ICP-MS; Perkin Elmer NexION 2000,
Waltham, MA, USA).

4.3. Measurement of Apoplastic Bypass Flow of Different Cultivars

Three seedlings of each of A. marina and R. stylosa treated above were subjected to
treatment with 100 mg·L−1 PTS, a tracer for apoplastic bypass flow, using the method
described [13]. The plants were allowed to undergo a 96-h period of PTS absorption, and
then transferred to a nutrient solution without PTS absorption for 48 h, thereby ensuring all
absorbed PTS was transferred to the upper parts. The weight difference is used to calculate
plant transpiration. Stems and leaves were harvested and dried in an oven at 70 ◦C until
constant weight was achieved. Subsequently, samples were weighed and extracted with
8 mL of ultrapure water at 90 ◦C for 2 h. The PTS fluorescence in the extract was quantified
using a microplate reader (Cytation 5, BioTek, Winooski, VT, USA) with excitation at 403 nm
and emission at 510 nm.

The percentage of bypass flow can be calculated using the following formula:

PTS[xyl] =
PTS[stem]+PTS[leaves]

Water transpiration volume
, Bypass flow(%) =

PTS[xyl]
PTS[ext]

× 7.57 × 100,

where PTS[ext] represents the concentration of PTS in the external solution, and 7.57 is an
empirical correction factor accounting for the relative mobility of PTS and water.

4.4. Histochemical Detection of Suberin Lamellae (SL) in Roots

The adventitious roots of treated plants were selected, and cross sections were metic-
ulously prepared from the 10% region of total root length. To visualize suberin lamellae
by fluorescent microscopy, a histological staining procedure with the dyes Fluorol Yellow
088 was applied to plant organs [60]. The suberin lamellae sections were then stained with
Fluorescent Yellow 088 (0.1%, w/v) for 2 h in complete darkness before observation under
a fluorescence microscope using UV light.

4.5. Measurement of Cd2+ Fluxes

The mangrove seedlings were washed with pure water to remove any Cd and NaCl
residue and then transferred carefully to pots for cultivation with a mixture of 1/2 Hoagland
nutrient solution and 50 mg·L−1 CdCl2 every three days. The culture conditions were set at
25 °C, with a 14/10 h light/dark cycle, 75% relative humidity, and 20,000 LX illumination
intensity. After 4 weeks, samples were collected and used for the measurement of Cd2+

fluxes. Net fluxes of Cd2+ were measured using the noninvasive microtest technique (NMT)
(NMT100 Series; Younger USA, Amherst, MA, USA) and IFLUXES/IMFLUXES 1.0 software
(Younger USA, Amherst, MA, USA), which is capable of integrating and coordinating
differential voltage signal collection, motion control, and image capture simultaneously.
The Cd-microelectrode needs to be calibrated before measuring Cd2+ flux. The primary
roots of intact seedlings were rinsed with deionized water, immobilized, and equilibrated
for 10 min in the measuring solution (0.25 mM CdCl2, pH 6.0). The root was then used
to measure the point of peak flow rate at a distance of 500 µm. Each treatment had
8 biological replicates.
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4.6. RNA-Seq Library RNA Preparation, Sequencing, and Analysis

Healthy propagules of uniform size were selected and cultivated in an artificial climate
incubator until A. marina and R. stylosa grew two pairs of leaves. The mangrove seedlings
were then carefully transferred to a new plot filled with 1/2 Hoagland’s solution and
allowed to acclimate for two days. Subsequently, the plants were exposed to 50 mg·L−1

CdCl2 in 1/2 Hoagland’s solution, defined as Cd Group. Seedlings treated only with
1/2 Hoagland’s solution were set as CK group. After 3 days, the roots of seedlings were
harvested. Total RNA was extracted using the Tiangen RNAprep Pure polysaccharide
polyphenol plant total RNA extraction kit (TIANGEN, Beijing, China). After assessing the
concentration and integrity of total RNA, Poly (A)-tailed mRNA was enriched from the
total RNA using oligomeric (dT) magnetic beads, followed by random division of bivalent
cations in the buffer. The fragmented mRNA was utilized as a template for the synthesis of
first-strand cDNA, employing random oligonucleotides as primers by M-MuLV reverse
transcriptase system. Subsequently, RNase-H was employed to degrade the RNA strand,
followed by synthesis of the second cDNA strand utilizing a DNA polymerase I system.
The resulting double-stranded cDNA was purified, repaired at the ends, appended with a
tail, and connected to a sequencing adapter. Suitable fragments (370–420 bp) were screened
by agarose gel electrophoresis and enriched by PCR to construct cDNA libraries. The
library quality was tested before sequencing on an Illumina HiSeq platform (Illumina,
San Diego, CA, USA).

4.7. Statistical Analysis

All data were analyzed using SPSS 21.0 (IBM Company, Armonk, NY, USA). Each deter-
mination was performed in triplicate, and the results are presented as mean values ± standard
error (SE). One-way analysis of variance (ANOVA), Least-Significant Difference (LSD),
and Tamhane’s T2 tests were used to determine the significance of treatments and control
groups (p < 0.05).

5. Conclusions

The findings indicate that suberized apoplastic barriers in roots play a crucial role
in excluding Cd. Species with stronger barriers had less bypass flow, resulting in a more
effective reduction in Cd transfer into upper parts via the apoplastic pathway. Under
Cd stress, the corking-induced apoplastic barrier is enhanced. The extent of both initial
formation and response to Cd stress of apoplastic barriers determines the effectiveness
of these barriers. Therefore, the R. stylosa exhibits a stronger initial apoplastic barrier
compared to A. marina. Due to the hydrophobic barrier of suberin that excludes Cd
at roots, enhancing its formation can improve plant Cd tolerance. After analyzing the
root transcriptome of R. stylosa and A. marina under Cd stress, we have successfully
identified 23 candidate genes associated with suberin synthesis using very long-chain fatty
acid (VLCFA) and phenylalanine as precursors, as well as eight candidate genes involved
in suberin regulation through nuclear transcription factors. Based on this speculated gene
function, a molecular synthesis mechanism map of suberin was constructed. This study
deepens our understanding of heavy metal tolerance mechanisms in mangrove plants, as
well as facilitating screening for stress-resistant mangrove species, thereby providing a
theoretical basis for coastal mangrove protection and restoration.
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