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Abstract: Rhodiola L. has high nutritional and medicinal value. Little is known about the properties
of its habitat distribution and the important eco-environmental factors shaping its suitability. Rhodiola
coccinea (Royle) Boriss., Rhodiola gelida Schrenk, Rhodiola kirilowii (Regel) Maxim., and Rhodiola quadri-
fida (Pall.) Fisch. et Mey., which are National Grade II Protected Plants, were selected for this research.
Based on high-resolution environmental data for the past, current, and future climate scenarios, we
modeled the suitable habitat for four species by MaxEnt, evaluated the importance of environmental
factors in shaping their distribution, and identified distribution shifts under climate change scenarios.
The results indicate that the growth distribution of R. coccinea, R. kirilowii, and R. quadrifida is most
affected by bio10 (mean temperature of warmest quarter), bio3 (isothermality), and bio12 (annual
precipitation), whereas that of R. gelida is most affected by bio8 (mean temperature of wettest quarter),
bio13 (precipitation of wettest month), and bio16 (precipitation of wettest quarter). Under the current
climate scenario, R. coccinea and R. quadrifida are primarily distributed in Tibet, eastern Qinghai,
Sichuan, northern Yunnan, and southern Gansu in China, and according to the 2070 climate scenario,
the suitable habitats for both species are expected to expand. On the other hand, the suitable habitats
for R. gelida and R. kirilowii, which are primarily concentrated in southwestern Xinjiang, Tibet, eastern
Qinghai, Sichuan, northern Yunnan, and southern Gansu in China, are projected to decrease under
the 2070 climate scenario. Given these results, the four species included in our study urgently need
to be subjected to targeted observation management to ensure the renewal of Rhodiola communities.
In particular, R. gelida and R. kirilowii should be given more attention. This study provides a useful
reference with valuable insights for developing effective management and conservation strategies for
these four nationally protected plant species.

Keywords: Rhodiola L.; maximum entropy approach (MaxEnt); bioclimatic variables; national protected
plants

1. Introduction

Climate change poses one of the most significant threats to global biodiversity and has
a profound impact on the geographical distribution patterns of species [1–3]. According
to the climate change report by the Intergovernmental Panel on Climate Change (IPCC),
the last three decades have most likely been the warmest in the past 800 years. The report
also suggests that global warming could rise to 1.5 ◦C above pre-industrial levels between
2030 and 2052 [4,5]. Global warming causes a rise in the temperature of the troposphere,
which in turn results in a gradual increase in rainfall in the Northern Hemisphere over
time. In many regions around the world, there has been a notable increase in rainfall, as
well in the intensity and frequency of rainfall. The frequency of cold days and nights in
both the Northern and Southern Hemispheres is decreasing, while the frequency of hot
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days and nights is increasing, indicating a trend towards warmer temperatures. By the end
of the 20th century, annual precipitation is expected to increase in the high- and middle-
latitude wet regions of the Northern Hemisphere, while decreasing in the middle and low
latitudes. Climate change is primarily caused by the interaction between temperature and
precipitation factors [6,7]. In particular, the rapid increase in global temperatures over the
last 30 years has significantly impacted the distribution of plants due to climate change.
In the future, global warming is expected to shift the spatial distribution pattern of plant
growth towards higher latitudes [8–10]. This shows that while plants are growing in a
given current environment, it does not mean that they are confined to those environmental
conditions. In order to survive and reproduce, plants are bound to adapt to the environment
that suits them, through the evolution of organs and even the change of life cycle [11,12].
Relevant studies have shown that climate change will alter the climate-suitable zones for
plants in the future, posing a serious threat to species diversity [13].

Currently, the most frequently utilized niche models for forecasting the potential dis-
tribution of species include Bioclim (bioclimatic prediction system) [14], Domain (domain
model) [15], GARP (genetic algorithm for rule-set prediction) [16], ENFA (ecological niche
factor analysis) [17], and MaxEnt (maximum entropy approach) [18]. Among them, MaxEnt
is the most widely used ecological niche model [19–25]. It has proven to be a useful tool
for predicting prehistoric geological periods and future climate scenarios [26]. Moreover,
the MaxEnt model is preferred for the conservation of species, determination of pedigree
geography [27], and simulation of species’ potential distribution areas [28–30], among other
research fields. The advantage of the MaxEnt model is that it can produce accurate results
even with a small sample [31,32].

Rhodiola L. is a hemicryptophyte in the family Crassulaceae, with approximately
90 species worldwide, which are primarily distributed in Asia, North America, and the
Himalayas. Of these, there exist approximately 73 species, 2 subspecies, and 7 varieties
of Rhodiola in China, which account for approximately 80% of the world’s total Rhodiola
resources [33]. They are primarily distributed in northwest and southwest China, and most
of them grow at an altitude of 2000–5000 m in alpine rocky areas or under shrubs [33].
Molecular phylogenetic analyses suggest that Rhodiola originated in the Qinghai–Tibet
Plateau about 21.0 Mya and rapidly diversified beginning 12.1 Mya coincident with the
uplift of the Qinghai–Tibet Plateau [34]. The genus subsequently expanded into adjacent re-
gions, with a handful of species dispersing to other parts of the globe [35]. The evolutionary
history and contemporary geographic ranges suggest that Rhodiola species are adapted to
low temperatures, making them an ideal model for investigating the response of montane
herbaceous species to climate change. The genealogical patterns of three Rhodiola species
(R. alsia, R. dumulosa and R. kirilowii) of the Qinghai–Tibet Plateau have been investigated,
and these studies suggested that contemporary Rhodiola distributions have been highly
influenced by the LGM temperature [36–38]. Meanwhile, Rhodiola is a highly promising
medicinal plant in both the food and medicine industries owing to its anti-hypoxic and
anti-aging effects.

In recent years, Rhodiola’s resources have been over-exploited and -utilized, leading
to the destruction of its natural resources and a significant decline in reserves. This,
coupled with the plant’s restrictive growth environment, has resulted in a sharp reduction
in its distribution area. In this study, MaxEnt 3.4.1 software is utilized to simulate its
dynamic geographic distribution over various time periods. The present study aims to
discuss the potential distribution range and the major environmental factors affecting the
distribution of different Rhodiola species during five periods: Last Interglacial (LIG), Last
Glacial Maximum (LGM), Middle Holocene (MH), current, and future (under 2050 and 2070
climate scenarios). Our findings will provide a theoretical reference for future reproduction,
resource utilization, and protection of this genus. Moreover, this study holds significant
importance for maintaining species diversity and ecosystem stability in arid and semi-arid
regions, particularly in the face of global climate change. The specific aims of our study
are to (1) test which climatic factors underlie the distributions and range shifts of Rhodiola
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species in different periods (past, current, and future), and (2) test the evolution of suitable
distribution areas of Rhodiola in different periods.

2. Data and Methods
2.1. Geographical Distribution Data for Rhodiola L.

The distribution data for four Rhodiola L. species were obtained from the China Virtual
Herbarium (CVH, http://www.cvh.ac.cn/, accessed on 15 March 2023), National Specimen
Information Infrastructure (NSII, http://www.nsii.org.cn/, accessed on 20 March 2023),
and Global Biodiversity Information Facility (GBIF, https://www.gbif.org/, accessed on
26 March 2023). In this study, Rhodiola coccinea (Royle) Boriss., Rhodiola gelida Schrenk,
Rhodiola kirilowii (Regel) Maxim., and Rhodiola quadrifida (Pall.) Fisch. et Mey., all of which
are National Grade II Protected Plants, are selected as research objects. A total of 886 data
points on the species’ natural distribution were collected. Duplicate and erroneous samples
were removed. To minimize the sampling error, only one distribution point was selected
within each 10 km × 10 km grid, resulting in a total of 330 distribution recording points.
Of these, 77, 18, 162, and 73 belonged to R. coccinea, R. gelida, R. kirilowii, and R. quadrifida,
respectively (Figure 1).
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Figure 1. Distribution records of R. coccinea, R. gelida, R. kirilowii and R. quadrifida in China.

2.2. Environmental Parameters

In this study, we modeled the distribution patterns of the four Rhodiola L. varieties
across past, current, and future climate scenarios. For the current climate scenarios, we
initially selected 19 bioclimatic variables (Table 1) with a spatial resolution of 30 s (approxi-
mately 1 km) from the World Climate Database (http://www.worldclim.org/, accessed on
17 April 2023) [39]. For the past climate scenarios, climate change modeling data acquired
from the World Climate Database (http://www.worldclim.org/, accessed on 23 April
2023) [39] was utilized based on the following criteria: MH with a 30 s spatial resolution,
LGM with a 2.5 min spatial resolution, and LIG with a 30 s spatial resolution. For the
future climate scenarios, we utilized climate change modeling data, downloaded from the
World Climate Database, based on the representative concentration pathway scenarios:
RCP8.5-2050 and RCP8.5-2070 [39].

Typically, climatic factors primarily include precipitation and temperature. There
exists a certain correlation between climatic factors that may result in overfitting of fore-
casts. ArcGIS 10.8 software was utilized to extract climatic variable information from the
distribution points of Rhodiola L. Furthermore, the correlation of climatic variables was ana-
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lyzed using the Pearson correlation coefficient method in SPSS 23.0, based on the following
criteria: If the coefficient was less than 0.8, the bioclimatic variables were retained. When
the Pearson correlation coefficient between two variables exceeded 0.8, the variable with
the higher contribution rate was retained. Finally, the following eight bioclimatic variables
were selected: bio2, bio3, bio4, bio8, bio10, bio12, bio13, bio16.

Table 1. Bioclimatic variables used in the research.

Variable Description Variable Description

Bio1 Annual Mean Temperature Bio11 Mean Temperature of Coldest Quarter

Bio2 Mean Diurnal Range (mean of monthly
(max temp − min temp)) Bio12 Annual Precipitation

Bio3 Isothermality (bio2/bio7) (×100) Bio13 Precipitation of Wettest Month
Bio4 Temperature Seasonality (standard deviation × 100) Bio14 Precipitation of Driest Month
Bio5 Max Temperature of Warmest Month Bio15 Precipitation Seasonality (coefficient of variation)
Bio6 Min Temperature of Coldest Month Bio16 Precipitation of Wettest Quarter
Bio7 Temperature Annual Range (bio5–bio6) Bio17 Precipitation of Driest Quarter
Bio8 Mean Temperature of Wettest Quarter Bio18 Precipitation of Warmest Quarter
Bio9 Mean Temperature of Driest Quarter Bio19 Precipitation of Coldest Quarter
Bio10 Mean Temperature of Warmest Quarter

2.3. Model Simulation

MaxEnt software (version 3.4.1; http://www.cs.princeton.edu/wschapire/Maxent/;
accessed on 17 April 2023) was utilized for modeling. MaxEnt was independently able
to perform and predict comparatively well against an ensemble approach that combined
many well-used, highly regarded algorithms to identify important areas for the suitable
area distribution of plants. Such findings do not necessarily imply that MaxEnt is a better
technique than other approaches, and there are still cases where it is less appropriate [40].
But when modeling species distributions from incomplete data, MaxEnt should still be
considered one of the most reliable and accessible technologies [41–43]. The first key
to MaxEnt’s success is its regularization process to avoid overfitting, especially when
using small sample sizes [44–46]. MaxEnt is able to extract useful information successfully
even from incomplete data, and hence captures non-linear, complex interactions and
relationships [44–46]. MaxEnt is not sensitive to variation in sample size [47]. Secondly,
MaxEnt has been shown to be relatively insensitive to moderate sampling bias [44,46].
Although studies have shown signs of spatial bias [48], Graham et al. [31] found that
MaxEnt was one of the techniques not strongly influenced by spatial errors in sampling.

The MaxEnt model approaches the problem by translating predictions of species distri-
bution into a probabilistic model. The randomness of the species distribution prediction is
made into a probability distribution and the optimal distribution probability is found [49].
The calculated results of entropy increase with the input of environmental factors related to
each distribution’s data and the number of iterations. Finally, the state with the maximum
entropy is obtained, that is, the state closest to the real thing. Mathematically, given a
random variable ε, it has n different possible outcomes. X1, X2, . . . Xn happens with
probability p1, p2. . ., then, the entropy pn of ε can be written as follows:

H(ε) =
n

∑
i=1

pi log
1
pi

= −
n

∑
i=1

pi log pi

The bioclimatic variables in ASCII format, along with the latitude and longitude
information for the distribution points of the four species in CSV format, were imported
into MaxEnt 3.4.1 for analysis. Furthermore, 25% of the distribution points formed the
test set, while the remaining 75% of the distribution points formed the training set. The
prediction process was repeated 10 times. In addition, the accuracy of the prediction results

http://www.cs.princeton.edu/wschapire/Maxent/
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was evaluated using the area under the curve (AUC) value [50], which is determined by
the area enclosed by the receiver operating characteristic (ROC) curve and the horizontal
axis [51]. The AUC value ranges from 0 to 1; the closer the value is to 1, the stronger is the
correlation between bioclimatic variables and the predicted geographical distribution area
of species, indicating the higher accuracy of the model prediction results. Different AUC
values describe the accuracy of prediction results as follows: 0.50–0.60, very poor; 0.60–0.70,
poor; 0.70–0.80, fair; 0.80–0.90, good; and 0.90–1.00, excellent [52].

2.4. Importance Assessment of Environmental Variables and Classification of Suitable Habitat

The MaxEnt model utilizes the Jackknife method to assess the contribution rate of
each environmental variable to the prediction outcomes. This approach helped identify the
primary ecological factors limiting the distribution of Rhodiola in China. The ASCII files
obtained from the operation were imported into ArcGIS 10.8 and converted into raster data.
The manual classification method in the Reclass tool was used to categorize the habitats
based on their suitability indices, as follows: unsuitable (0–0.2), poorly suitable (0.2–0.4),
moderately suitable (0.4–0.7), and highly suitable (0.7–1) habitats. Finally, the distribution
and occurrence areas of the four species in China were obtained [53].

3. Results
3.1. Major Climatic Factors Affecting the Distribution of Rhodiola L.

Based on the ROC curve analysis of the AUC, the MaxEnt model for Rhodiola yielded
AUC values ranging from 0.86 to 0.93 across different time periods. These results indicate
that MaxEnt can accurately simulate the distribution range of the four Rhodiola species
across the six time periods. Four species, with a cumulative occurrence rate of 70%, were
selected 24 times in the results of the distribution models of the four species (Table 2).

Table 2. Validation of model and contribution rate of 8 different bioclimatic (bio) variables (%).

Species AUC Data Bio2 Bio3 Bio4 Bio8 Bio10 Bio12 Bio13 Bio16

R. coccineas

LIG 0.898 15.3 16.6 44.6

LGM 0.89 18.9 14.5 43.7

MH 0.897 19.7 13.9 42.5

Current 0.896 19.5 13.6 44.1

2050 0.899 21.5 42.6 12.1

2070 0.899 22.6 43.3 13.6

R. gelida

LIG 0.905 18.2 25.2 35.5

LGM 0.909 17.3 30.5 33

MH 0.917 18 21.1 39.4

Current 0.925 18.3 31 31

2050 0.93 17.6 27.8 34

2070 0.928 17.8 23.3 38.3

R. kirilowii

LIG 0.917 24.4 31.6 31.1

LGM 0.917 21.8 33.3 31.4
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Table 2. Cont.

Species AUC Data Bio2 Bio3 Bio4 Bio8 Bio10 Bio12 Bio13 Bio16

MH 0.915 20 34.9 31.6

Current 0.916 23 31.3 30.9

2050 0.915 17.2 36.9 31.8

2070 0.918 16.3 37.9 30.4

R. quadrifida

LIG 0.86 11.7 64

LGM 0.865 13.1 61.3

MH 0.861 12.5 61.6

Current 0.866 13.3 61.1

2050 0.869 14.1 57.7

2070 0.862 15.7 62.6

Note: only contribution rates of variables with a cumulative rate of more than 70% are shown. AUC means area
under ROC.

Over the course of six different periods, R. coccinea exhibited bio3 and bio10 six
times; moreover, bio4 and bio12 appeared four and two times, respectively. These four
climatic variables contributed the most to species distribution, implying that compared to
precipitation, temperature is more influential in determining the distribution of R. coccinea.
Moreover, bio2, bio8, bio13, and bio16 had the least impact on R. coccinea distribution.

During the six different periods, R. gelida exhibited bio13 and bio16 six times, bio8
four times, and bio2 two times. These four climatic variables demonstrated the highest
contribution to species distribution, indicating the greater influence of precipitation on R.
gelida distribution compared to temperature. In contrast, the climatic variables bio3, bio4,
bio10, and bio12 least affected the distribution of R. gelida.

Furthermore, bio3, bio10, and bio12 appeared six times in R. kirilowii over the course of
six different periods. These three climatic variables contributed the most to species distribu-
tion, implying the coupling effect of temperature and precipitation on the distribution of R.
kirilowii. In contrast, the climatic variables bio2, bio4, bio8, bio13, and bio16 demonstrated
the least impact on R. kirilowii distribution.

Over the course of six different periods, the climatic variables bio10, bio3, and bio4
were observed six times, with a contribution rate of approximately 60%; four times; and
two times, respectively, in R. quadrifida. These three climatic variables contributed most
significantly to R. quadrifida distribution, suggesting that the distribution of R. quadrifida
is primarily affected by temperature. In contrast, the climatic variables bio2, bio8, bio12,
bio13, and bio16 had the least impact on R. quadrifida distribution.

3.2. Potential Geographical Distribution of Rhodiola across Different Periods

The modeling results for the distribution range of four Rhodiola species under six
climate scenarios are presented in Figures 2 and 3. The figures show all the distribution
areas for Rhodiola in China, which include both the highly and moderately suitable areas.
Under past climate scenarios (LIG, LGM, and MH), suitable habitats for R. coccinea were
widely distributed in Tibet, Sichuan, northern Yunnan, Qinghai, and Gansu, with sporadic
occurrences in western Xinjiang. Compared with MH, the current climate scenario does not
demonstrate a significant change in habitats suitable for R. coccinea distribution. However,
under the 2050 and 2070 climate scenarios, the habitat suitable for R. coccinea distribution is
projected to shift southwards. Suitable habitats for R. gelida are currently widely distributed
in southwest Xinjiang, northwest Tibet, Qinghai, and along the border between Gansu and
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Xinjiang, and compared to that under the MH, the suitable habitat for R. gelida distribution
has changed only slightly under the current climate scenario. Under the climate scenarios
for 2050 and 2070, the most suitable habitat for R. gelida distribution is expected to be
primarily in southwest Xinjiang and northwest Tibet. These results suggest that the area
of high suitability has significantly decreased. Currently, the most suitable habitats for R.
kirilowii are widely distributed in the Qinghai–Tibet Plateau, northwest Sichuan, northeast
Tibet, southeast Qinghai, northern Yunnan, and southern Gansu, and no significant change
for R. kirilowii distribution was demonstrated compared with MH. Moreover, suitable
habitats for R. kirilowii distribution under the climate scenarios for 2050 and 2070 exhibit no
evident deviation. The suitable habitats for R. quadrifida are presently widely distributed in
northwestern Sichuan, eastern and southern Tibet, eastern Qinghai, southern Gansu, and
southern Xinjiang, and the suitable habitat range for R. quadrifida distribution has extended
further northeast compared to that during MH. Under the 2050 and 2070 climate scenarios,
the optimal distribution area for R. quadrifida is estimated to be primarily concentrated in
Sichuan and Tibet, and that of Qinghai is expected to reduce (Figure 2), relatively.

3.3. Spatial Pattern Changes in Potential Suitable Areas for Rhodiola Distribution during
Different Periods

The spatial patterns of the historically suitable areas and the currently potentially
suitable areas for the distribution of the four selected Rhodiola species were compared and
analyzed (Table 3). The results indicate that the suitable distribution area of R. coccinea
decreased during the LGI-LGM period, and the loss area was estimated to be 21,369 km2,
which accounts for 1.3% of the current suitable area for R. coccinea distribution. These areas
of loss are mainly distributed in the northwest region of China, specifically in western
Xinjiang, western Tibet, eastern Qinghai, and southern Gansu. The suitable distribution
area of R. gelida showed an expanding trend, with the increased area being 9776 km2, which
accounts for 1.6% of its current suitable area. The expanded suitable areas are primarily
concentrated in southwest Xinjiang and western Tibet. The suitable distribution area of
R. kirilowii decreased by 1621 km2, which accounts for 0.18% of the total suitable area of
the species in China. The suitable distribution area of R. quadrifida underwent significant
changes, with a reduction of 82,301 km2, which accounts for 4.5% of its current suitable
area. These areas of loss are mainly distributed in Qinghai and Tibet.

During the LGM–MH period, the suitable distribution area of R. gelida and R. kirilowii
decreased significantly, and the total areas lost were 19,129 km2 and 15,919 km2, which
account for 3.2% and 1.7% of their current suitable areas, respectively. The suitable areas of
loss are primarily distributed in Tibet.

During the MH–current period, the suitable distribution area of R. coccinea and R.
quadrifida exhibited a decreasing trend. Specifically, the suitable distribution area loss for
R. coccinea and R. quadrifida was 16,887 km2 and 67,614 km2, respectively, which account
for 1.0% and 3.7% of their current suitable areas, respectively. Moreover, the suitable
distribution area of R. gelida and R. kirilowii showed an expanding trend. The suitable
distribution area of R. gelida was relatively large, covering 51,448 km2, which accounts
for 8.5% of its current suitable area. The suitable distribution area of R. kirilowii increased
by 13,832 km2, accounting for 1.5% of its current suitable area in China. These expanded
suitable areas are primarily distributed in Qinghai and Tibet.
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Table 3. Area statistics for changes in species distribution of the four Rhodiola L. species in six time periods (km2).

Species Suitability Ranks Species Distribution Area (km2)

LIG LGM Area change
(LIG–LGM) MH Area change

(LGM–MH) Current Area change
(MH–Current) 2050 Area change

(Current–2050) 2070 Area change
(Current–2070)

R.coccinea Not suitable 7,375,605 7,389,565 13,960 7,376,330 −13,235 7,403,989 27,659 7,404,598 609 7,386,625 −17,364
Low suitable 588,549 595,958 7409 609,504 13,546 598,732 −10,772 572,518 −26,214 578,296 −20,436

Medium suitable 1,100,264 108,094 −19,324 1,065,932 −15,008 1,066,198 266 1,144,134 77,936 1,147,899 81,701
High suitable 554,403 552,358 −2045 567,056 14,697 549,902 −17,153 497,570 −52,332 506,001 −43,901

R.gelida Not suitable 8,104,089 7,969,775 −134,314 8,129,178 159,403 7,956,644 −172,534 8,090,339 133,695 8,111,319 154,675
Low suitable 951,087 1,075,625 124,538 935,351 −140,274 1,056,437 121,086 960,297 −96,140 953,351 −103,086

Medium suitable 324,399 339,417 15,019 318,133 −21,284 371,617 53,484 327,067 −44,550 318,397 −53,221
High suitable 239,247 234,004 −5243 236,158 2155 234,122 −2036 241,117 6995 235,755 1633

R.kirilowii Not suitable 8,014,315 8,044,422 30,107 8,028,000 −16,422 8,018,666 −9334 8,003,861 −14,805 8,045,777 27,111
Low suitable 675,553 647,067 −28,487 679,407 32,340 674,909 −4498 717,743 42,834 688,131 13,222

Medium suitable 395,025 393,569 −1456 397,809 4240 402,633 4824 372,663 −29,971 364,933 −37,700
High suitable 533,928 533,763 −165 513,604 −20,159 522,612 9008 524,554 1942 519,979 −2633

R.quadrifida Not suitable 6,529,197 6,588,593 59,396 6,581,346 −7247 6,602,484 21,138 6,678,273 75,789 6,592,834 −9650
Low suitable 1,128,673 1,151,578 22,905 1,151,659 81 1,198,135 46,476 1,134,026 −64,109 1,184,936 −13,199

Medium suitable 1,092,051 1,100,747 8696 1,094,656 −6091 1,015,322 −79,334 1,042,712 27,390 1,053,106 37,784
High Suitable 868,899 777,903 −90,997 791,160 13,257 802,880 11,720 763,810 −39,070 787,944 −14,936
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In the scenario of future climate change, variations in the spatial pattern of Rhodiola
were compared and analyzed. The results indicate that as global warming intensifies,
the majority of Rhodiola’s current suitable areas will remain intact under two potential
climate change scenarios in the future, with retention rates exceeding 80%. Under the 2050
climate scenario, the suitable distribution areas of R. gelida, R. kirilowii, and R. quadrifida are
expected to decrease. The suitable distribution area of R. gelida is estimated to decrease to
37,555 km2, which accounts for 6.2% of its current suitable area, with Xinjiang and Tibet
being the primary distribution areas. The suitable distribution area of R. kirilowii is expected
to reduce to 28,029 km2, which accounts for 3.0% of its current suitable area, with Sichuan
and Tibet being the primary distribution areas. The loss in suitable distribution area of
R. quadrifida is expected to be 11,680 km2, which accounts for 0.6% of its current suitable
area. These areas of loss are expected to be primarily concentrated in Qinghai. Under the
2070 climate scenario, the suitable distribution areas of R. coccinea and R. quadrifida are
expected to expand but those of R. gelida and R. kirilowii are estimated to show a decreasing
trend, leading to a loss of 51,588 km2 and 40,333 km2, respectively, which account for 8.5%
and 4.4% of their current suitable distribution areas, respectively. Newly discovered and
lost suitable areas for Rhodiola distribution are particularly vulnerable to the impacts of
climate change. Therefore, it is imperative to prioritize these areas and develop effective
conservation strategies to mitigate the effects of climate change on Rhodiola species.

4. Discussion
4.1. Potential Distribution of Rhodiola

The response of species to rapid climate change typically involves diffusion into new
adaptation zones, in situ adaptation, or extinction [54]. However, most alpine plants have
limited dispersal over long distances [55,56]. Rhodiola primarily grows in the Qinghai–Tibet
Plateau and the Hengduan Mountain area, which is consistent with the findings of the
present study. Under the current climate scenario, the suitable areas for the distribution
of the four studied species are mainly located in Xinjiang, Tibet, Qinghai, Sichuan, Gansu,
and Yunnan. The potential distribution area of R. gelida in China is 1,616,100 km2, which
accounts for 6.3% of China’s total area. The highly suitable areas, with suitability values
of ≥0.7, are mainly located in southwest Xinjiang and northwest Tibet. The potential
distribution areas of R. coccinea, R. quadrifida, and R. kirilowii in China are 605,739 km2,
925,245 km2, and 1,818,202 km2, which account for 16.8%, 18.9%, and 9.6% of the total land
area in China, respectively. The highly suitable areas, with suitability values of ≥0.7, are
mainly concentrated in Tibet, Sichuan, Qinghai, Gansu, and Yunnan.

4.2. Relationship between Rhodiola and Climatic Variables

Precipitation and temperature are two crucial climatic variables that impact species
distribution [57,58]. Owing to China’s complex topography, there are significant variations
in rainfall and temperature across different spatial scales [59]. According to the results of
the analysis on the contribution rate of ecological factors, bio10 had contribution rates of
44.1% and 61.1% for R. coccinea and R. quadrifida, respectively. This suggests that the mean
temperature of the warmest quarter is a decisive factor that affects the distribution of R.
coccinea and R. quadrifida. Moreover, bio13 and bio16 exhibited the highest contribution
rates among ecological factors, both at 31.0%. This suggests that precipitation played a
significant role in determining the distribution of suitable areas for R. gelida. Moreover,
bio10 and bio12 had the largest contribution rates to the growth of R. kirilowii, accounting
for 31.3% and 30.9%, respectively. This indicates that temperature and precipitation jointly
affect the distribution of suitable areas for R. kirilowii growth.

4.3. Spatial Distribution of Rhodiola under Climate Change

In this study, the MaxEnt model was utilized to demonstrate the potential distribution
areas of four Rhodiola species under past, current, and future climate scenarios. The results
indicate that the range of ecologically suitable areas for the four Rhodiola species would
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vary under different climatic scenarios. During LIG–MH, the suitable habitat range of
all the studied species decreased, except for that of R. quadrifida, which increased. Under
the current climate scenario, the suitable habitat range for R. coccinea and R. quadrifida has
decreased, while that of R. gelida and R. kirilowii has expanded. In the future climate context,
we estimate that the suitable habitat range for R. coccinea and R. quadrifida will increase
under a higher concentration of greenhouse gas emissions under the RCP8.5 scenario. This
implies that temperature induces a positive effect on R. coccinea and R. quadrifida growth
by accelerating phenological processes and extending the growing season. Moreover, the
suitable habitat range for R. gelida and R. kirilowii will gradually decrease.

5. Conclusions

(1) Based on the MaxEnt model, eight climate factors were selected to simulate and
predict the geographical distribution and occurrence areas of four Rhodiola species across
two temporal and spatial scales. The AUC value of the model ranged between 0.86 and
0.93, indicating the high accuracy of prediction results.

(2) Among the various climatic variables, temperature and precipitation are the pri-
mary climatic factors limiting the distribution of the four studied species.

(3) Under the current scenario, R. coccinea and R. quadrifida are primarily distributed in
Tibet, eastern Qinghai, Sichuan, northern Yunnan, and southern Gansu. Under the 2070
scenario, the suitable habitat areas for both species are expected to expand. Moreover, R.
gelida and R. kirilowii in China are presently mainly concentrated in southwest Xinjiang,
Tibet, eastern Qinghai, Sichuan, northern Yunnan, and southern Gansu, and under the 2070
scenario, the suitable habitat areas for both species are expected to decrease. The results of
this study will serve as a valuable reference for developing management and conservation
strategies for the four nationally protected species of Rhodiola.
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