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Abstract: Salt is harmful to crop production. Therefore, it is important to understand the mechanism
of salt tolerance in rice. CIPK genes have various functions, including regulating salt tolerance
and other types of stress and nitrogen use efficiency. In rice, OsCIPK24 is known to regulate salt
tolerance, but other OsCIPKs could also function in salt tolerance. In this study, we identified another
OsCIPK—OsCIPK9—that can regulate salt tolerance. Knockout of OsCIPK9 in rice could improve
salt tolerance. Through expression analyses, OsCIPK9 was found to be mainly expressed in the roots
and less expressed in mature leaves. Meanwhile, OsCIPK9 had the highest expression 6 h after salt
treatment. In addition, we proved the interaction between OsCIPK9 and OsSOS3. The RNA-seq
data showed that OsCIPK9 strongly responded to salt treatment, and the transporters related to salt
tolerance may be downstream genes of OsCIPK9. Finally, haplotype analyses revealed that Hap6
and Hap8 mainly exist in indica, potentially providing a higher salt tolerance. Overall, a negative
regulator of salt tolerance, OsCIPK9, which interacted with OsSOS3 similarly to OsCIPK24 and
influenced salt-related transporters, was identified, and editing OsCIPK9 potentially could be helpful
for breeding salt-tolerant rice.

Keywords: OsCIPK9; OsSOS3; sat-related transporters; salt tolerance; rice

1. Introduction

An increase in the output of rice, as a staple food feeding almost half the world,
will be required over the next 50 years. Therefore, either a higher yield per ha or more
cultivated land is needed for a larger harvest. Making full use of the soil would make
higher yields achievable. However, salt in saline–alkali soil damages crop production.
Salinity includes osmotic stress, ionic toxicity, and nutritional deficiencies, which inhibit
rice development [1].

As a major abiotic stressor, researchers have focused on the mechanism of salt tolerance
using quantitative trait loci (QTL) mapping [2] and genome-wide association studies
(GWASs) [3,4]. With progress in rice genome sequencing, related genes that could be used
for rice breeding, such as SKC1, have been cloned [5]. SKC1 is a high-affinity K+ transporter
which was cloned from Pokkali with extreme salt resistance. OsWRKY53 is a key regulator
cloned from GWAS which can regulate the expression of OsMKK10.2 in promoting ion
homeostasis and trans-represses SKC1 [4]. The superior alleles identified could be useful
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for breeding rice with salt tolerance. Meanwhile, greater yields would be obtained in
saline–alkali soils with the use of salt-tolerant genes [6].

In addition to genes like SKC1, CIPK family genes have an important role in salt
tolerance. CIPK family genes are plant-specific proteins which interact with CBL and serve
as major downstream signaling components [7,8]. The CBL-CIPK network plays a vital role
in salinity stress, disease defense, drought tolerance, and other stresses [9]. In Arabidopsis,
the SOS (Salt Overly Sensitive) pathway was the first well-studied pathway, and this acts
as an example for other networks. The AtCBL4–AtCIPK24 complex activates downstream
AtSOS1, which affects Na+ extrusion and long-distance Na+ transport [10]. Also, AtCIPK24
can form an AtCIPK24–GI complex to delay the flowering time under saline conditions [11].
After that, another network, AtCBL10-AtCIPK8, was identified, which also regulates At-
SOS1 [12]. In addition to salinity stress, the ATCBL4-AtCIPK6 pathway regulates K+

allocation [13]. The AtCBL9-AtCIPK3 network can affect seed dormancy through activating
ABR1 in the nucleus [14]. In short, CIPK family genes have multiple functions in Arabidop-
sis. In rice, CIPKs can phosphorylate many transporters that have multiple functions in
various processes, such as nitrogen uptake [15], K+ uptake [16], and microbe-associated
molecular pattern-induced defense [17]. OsCIPK9, 14, 15 regulates microbe-associated
molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense
gene expression in cultured cells [18]. Twelve OsCIPK genes, including OsCIPK9, have
been demonstrated to be induced by salinity stress [19]. In addition, CIPKs are upregulated
during panicle development and abiotic stress [18]. In salt tolerance, OsSOS2 (OsCIPK24)
and OsSOS3 (OsCBL4) play vital roles [20]. The calcium-binding protein OsSOS3/CBL4
can sense the cytosolic calcium signal elicited by salt stress, then interact with and activate
OsSOS2 (OsCIPK24). Then, activated OsSOS2/OsCIPK24 phosphorylates and activates
OsSOS1 to regulate Na+ homeostasis and improve rice tolerance to salt stress [21]. In
rice, the CIPK family has 33 members, with OsCIPK24 regulating salt tolerance [18], but
other OsCIPKs which may also have a role in salt tolerance are still unknown. A previous
study showed that the mutant Oscipk9 showed a mild salt tolerance [16], but the possible
mechanisms of salt tolerance and the haplotypes of OsCIPK9 are still unclear.

Here, we proved that OsCIPK9 is a negative regulator of salt tolerance in rice using
CRISPR-Cas9. OsCIPK9 knockouts of rice showed an increased salt tolerance, and overex-
pression lines were more sensitive. The Na+ concentration changed significantly after salt
treatment. OsSOS3 showed a higher expression in the OsCIPK9-cas line, and OsSOS3 inter-
acted with OsCIPK9. As determined through RNA-seq data, OsCIPK9 strongly responded
to salt treatment. We found obvious changes in the expression of transporters like OsKAT1,
especially under saline conditions. Finally, we analyzed the haplotypes of OsCIPK9 and
showed that the haplotype of OsCIPK9 had an obvious subpopulation classification.

2. Results
2.1. OsCIPK9 Negatively Regulated Salt Tolerance

To study the specific role of OsCIPK9 in rice, we constructed knockout lines us-
ing CRISPR-Cas9. One knockout line (OsCIPK9-cas) with a base insertion was identi-
fied (Figure 1a). The insertion caused a frameshift, and translation stopped after 148 aa
(Figure 1a). The protein sequence of the knockout line showed that the domain lacked 140
normal amino acids (143–283) and contained six mutated amino acids (from 143 to 148)
compared to that of the wild type (Figure 1b). We also created overexpression lines for
further function validation. The overexpression lines OsCIPK9-OE2 and OsCIPK9-OE3
had approximately 9- and 5-fold higher expressions than the wild type (Nipponbare),
respectively (Figure 1c).

To verify whether OsCIPK9 could function in salt tolerance, we treated the transgenic
lines and wild type with 0 and 120 mM NaCl. As a result, the knockout line (OsCIPK9-cas)
showed a higher tolerance to salt treatment, while the overexpression lines were more
sensitive (Figure 2a–c). The OsCIPK9-OE2 and OsCIPK9-OE3 lines had a lower relative
fresh weight compared with the WT, while that of the knockout line was higher (Figure 2d,e).
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We also measured the Na+ and K+ concentrations of whole seedlings. In the shoots, the
four lines showed no differences in Na+ concentrations and Na+/K+ content ratios under
no-salt conditions (Figure S1), but a discrepancy was observed under salt treatment, in
which these values were higher in the OE lines and lower in the knockout lines (Figure 2f,h).
In the roots, the Na+ concentration of the OE lines was lower than the wild type and the
knockout line under no-salt conditions, but displayed almost no difference under saline
conditions (Figure S1). The Na+/K+ content ratio was higher in the OE lines than in the
knockout lines (Figure 2g,i). Thus, OsCIPK9 conferred salt tolerance in rice, and knocking
out this gene improved salt tolerance through regulating the Na concentration.
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Figure 1. Transgenic line construction. (a) Targeted mutagenesis of OsCIPK9 with CRISPR/Cas9.
The mutant alleles have 1 nucleotide insertion in OsCIPK9-cas. The base shown in red represents
the inserted nucleotide. The amino acids in red represent mutated amino acids. The line below
in nucleotides represents the positions which translated the mutated amino acids. (b) The result
of protein alignment between Nipponbare and OsCIPK9-cas. The domain was predicted in Pfam
(pfam.xfam.org, accessed on 30 August 2022) presented in red square. (c) The expression of Nippon-
bare and overexpression lines (OsCIPK9-OE2, OsCIPK9-OE3). **: p < 0.01. Statistical significance
(versus Nipponbare) was calculated using a Student’s t-test.

2.2. Expression Pattern of OsCIPK9

To determine the expression pattern of OsCIPK9, various tissues were collected and
the mRNA abundance of OsCIPK9 was examined using RT-PCR analysis. The results
showed that OsCIPK9 was most expressed in the roots and least expressed in mature
leaves (Figure 3a). Also, we measured the expression at different time points after salt
treatment. The results show that OsCIPK9 had the highest expression 6 h after salt treatment
(Figure 3b). The knock-out line showed lower expression from 1 h to 7 days, with the
largest difference observed after 6 h. These results indicate that OsCIPK9 responded to salt
treatment, and knocking out the gene reduced the expression under salt treatment.
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Figure 2. The phenotype of Nipponbare and transgenic lines under 0 and 120 mM NaCl conditions.
(a–c) The phenotype of the wild type (Nipponbare), knockout line (OsCIPK9-cas) and overexpression
lines (OsCIPK9-OE2, OsCIPK9-OE3) under 0 mM and 120 mM NaCl conditions, bar = 10, 2, 2 cm.
(d,f,h) Comparison of Nipponbare, knockout line (OsCIPK9-cas) and overexpression lines (OsCIPK9-
OE2, OsCIPK9-OE3) in terms of relative fresh weights, Na concentrations per plant and Na+/K+

content ratios in shoots under 120 mM NaCl conditions. n = 3. (e,g,i) Comparison of Nipponbare,
the knockout line (OsCIPK9-cas) and overexpression lines (OsCIPK9-OE2, OsCIPK9-OE3) in terms of
relative fresh weights, Na concentrations per plant and Na+/K+ content ratios in roots under 120 mM
NaCl conditions. n = 3. The data are presented as means ± SDs. Statistical significance (versus
Nipponbare) was calculated using a Student’s t-test. Different letters indicate significant difference,
p < 0.05.
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Figure 3. The expression of OsCIPK9 and OsSOS3. (a) The expression of OsCIPK9 in various tissues.
(b,c) Comparison of the expression of OsCIPK9 and OsSOS3 between Nipponbare and the knockout
line (OsCIPK9-cas) under 0 and 120 mM NaCl conditions. n = 3. The data are presented as means ±
SDs.

2.3. OsCIPK9 Interacted with OsSOS3

According to the change in Na+ concentrations in different transgenic lines, including
the knock-out and overexpression lines, we examined whether OsSOS3 in the SOS pathway
could interact with OsCIPK9 similar to OsSOS2/OsCIPK24. Firstly, OsSOS3 showed a
lower expression in Nipponbare compared with OsCIPK9-cas, while OsCIPK9 showed
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a higher expression (Figure 3b,c). Thus, we supposed that OsSOS3 may interact with
OsCIPK9, playing an opposing role in salt tolerance. To test this hypothesis, we analyzed
the interaction between OsSOS3 and OsCIPK9 using a yeast two-hybrid (Y2H) assay.
OsSOS3 strongly interacted with OsCIPK9 (Figure 4a). Also, we verified the interaction
between OsSOS3 and OsCIPK9 using an in vivo firefly luciferase complementation imaging
(LCI) assay in Nicotiana benthamiana leaf epidermal cells (Figure 4b). Taken together, these
results suggest that OsSOS3 could interact with OsCIPK9 in rice.
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interact with OsSOS3 (A). AD, activation domain; BD, binding domain; DDO, SD/–Trp/–Leu; QDO,
SD/–Trp/–Leu/–His/–Ade. (b) LCI assay showing that OsCIPK9 interacts with OsSOS3 in leaf cells
of N. benthamiana. Colored scale bar indicates the luminescence intensity in counts per second (cps).
CLUC, C terminus of LUC; NLUC, N terminus of LUC.

2.4. Transcriptome Analysis of OsCIPK9

To identify possible downstream genes influenced by OsCIPK9, we performed a
transcriptome analysis using knockout lines with different treatments (0 and 120 mM
salt). Many upregulated and downregulated DEGs (differential expression genes) were
identified, but the number of up- or downregulated genes under NaCl treatment was much
greater than under control conditions (Figure 5a). The DEGs included 2285 regulated genes
without salt treatment and 9190 genes under salt treatment. Only 1338 genes were found
for both treatments (Figure 5b). A GO analysis showed that genes in the plasma membrane
of cellular components were identified, but the number of genes under salt treatment
(1190) was more than three times that under no salt treatment (358) (Figures 5c and S2).
In biological processes, more genes were clustered in cell wall organization under no salt
treatment, while the ratio increased under salt treatment. Additionally, more genes were
grouped into translation and carbohydrate metabolic processes under salt treatment (Figure
S3). The GO molecular function analysis showed that the DNA-binding transcription
faction activity process had a large number of genes with a lower Q value under no salt
treatment. Under salt treatment, the process with the most regulated genes was structural
constituents of the ribosome (Figure S4). Additionally, a KEGG analysis revealed almost
no difference between Nipponbare and OsCIPK9-cas without NaCl treatment (Figure 5d).
A large difference was identified under 120 mM NaCl treatment, as expected (Figure 5d).
In the KEGG analysis, almost all processes differed, including transport and catabolism,
signal transduction, and membrane transport. The processes consisted of the functions of
CIPKs, which have been reported previously [22]. The GO and KEGG results indicated
that OsCIPK9 strongly reacted to salt treatment and played a vital role in salt tolerance,
especially in membranes.
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The RNA-seq analysis showed that OsCIPK9 affected membrane transport. To identify
possible influencing genes in the membrane, we investigated the expression of previously
reported transporters, such as SKC1 and OsKAT1, in the RNA-seq data. Luckily, we
found that SKC1, OsKAT1, and OsNHX1 expression was higher in OsCIPK9-cas than in
Nipponbare under salt treatment (Figure 6a–c). In particular, the expression of OsKAT1 rose
almost 15-fold under salt treatment, but only 2-fold under no salt treatment (Figure 6b). To
verify the expression results, we used real-time PCR to measure the expression of the three
transporters and obtained results similar to the RNA-seq data (Figure 6d,e). Therefore, we
concluded that OsCIPK9 conferred salt tolerance by affecting the expression of salt-related
transporters expressed in the membrane, like OsKAT1.

2.5. The Haplotypes of OsCIPK9

OsCIPK9 plays a role in salt tolerance, and the haplotype of OsCIPK9 may be helpful in
breeding or for germplasm improvement in rice. To determine the haplotypes of OsCIPK9,
we analyzed them using SNP data from the Rice3K database. OsCIPK9 contains 21 SNPs
with 4 missense variants and 12 SNPs in the promoter (Figure 7a). All nine haplotypes
were identified based on SNP variants. Hap1 predominantly emerged in japonica, mostly in
temperate Japonica (55.5%), while Hap6 and Hap8 (89.2%) were identified in indica. Hap2
and Hap9 were identified only in the Aus subpopulation. Hap3 and Hap7 were identified
in the Basmati subpopulation. Hap5 was identified in various subpopulations but was
rarely found in Indica (Figure 7b). A previous study demonstrated that the tolerance level
of INDICA was higher than that of japonica at the seedling stage [23]. Therefore, varieties
with Hap6 and Hap8 may have a higher salt tolerance than those with Hap1. Subsequently,
we analyzed the haplotype network. The results showed that an unknown haplotype
connected the haplotypes, mostly in Japonica and Indica (Figure 7c). Hap7, which was found
in almost all Aus varieties, was the key haplotype connecting the present haplotypes in
Japonica and Indica (Figure 7c). These results indicate that OsCIPK9 has a subpopulation
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classification, and Hap7 is the key haplotype that connects the haplotypes existing in
Japonica and Indica.

Plants 2023, 12, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 6. The expression of related transporters. (a–c) The FPKM of SKC1, OsKAT1, and OsNHX1. 
(d–f) The relative expressions of SKC1, OsKAT1, and OsNHX1. 

2.5. The Haplotypes of OsCIPK9 
OsCIPK9 plays a role in salt tolerance, and the haplotype of OsCIPK9 may be helpful 

in breeding or for germplasm improvement in rice. To determine the haplotypes of 
OsCIPK9, we analyzed them using SNP data from the Rice3K database. OsCIPK9 contains 
21 SNPs with 4 missense variants and 12 SNPs in the promoter (Figure 7a). All nine 
haplotypes were identified based on SNP variants. Hap1 predominantly emerged in 
japonica, mostly in temperate Japonica (55.5%), while Hap6 and Hap8 (89.2%) were 
identified in indica. Hap2 and Hap9 were identified only in the Aus subpopulation. Hap3 
and Hap7 were identified in the Basmati subpopulation. Hap5 was identified in various 
subpopulations but was rarely found in Indica (Figure 7b). A previous study demonstrated 
that the tolerance level of INDICA was higher than that of japonica at the seedling stage 
[23]. Therefore, varieties with Hap6 and Hap8 may have a higher salt tolerance than those 
with Hap1. Subsequently, we analyzed the haplotype network. The results showed that 
an unknown haplotype connected the haplotypes, mostly in Japonica and Indica (Figure 
7c). Hap7, which was found in almost all Aus varieties, was the key haplotype connecting 
the present haplotypes in Japonica and Indica (Figure 7c). These results indicate that 
OsCIPK9 has a subpopulation classification, and Hap7 is the key haplotype that connects 
the haplotypes existing in Japonica and Indica. 

Figure 6. The expression of related transporters. (a–c) The FPKM of SKC1, OsKAT1, and OsNHX1.
(d–f) The relative expressions of SKC1, OsKAT1, and OsNHX1.

Plants 2023, 12, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 7. Analysis of haplotypes of OsCIPK9. (a) Haplotypes of OsCIPK9 based on the Rice3K 
database. The green represented the same nucleotides with the reference. The yellow represented 
the variations compared with the reference. (b) The distribution of subpopulations in each 
haplotype. (c) The gene network of different haplotypes. Pos: position; Alle: allele; Anno: 
annotation; GJ: japonica, tmp: temperate, sbtrp: subtropical, trp: tropical, adm: admix. XI: indica, Bas: 
basmati, Pro: promoter variation, Syn: synonymous variation, Mis: missense variation, Intron: intron 
variation. 

3. Discussion 
In a previous study, OsCIPK9 was found to regulate ammonium-dependent root 

growth [15]. Also, AtCIPK23 was found to function in salt tolerance and nitrogen use, 
including nitrate and ammonium in Arabidopsis. Here, knocking out OsCIPK9 increased 
the tolerance to salt stress at the seedling stage. Thus, this gene has multiple functions in 
nitrogen use and salt tolerance. In our results, OsCIPK9-cas also showed higher 
expressions of OsAMT1.1 and OsAMT2.1 than Nipponbare under salt stress, especially 
OsAMT1.1, with a two-fold higher expression than the wild type (Figure S5), indicating 
that OsCIPK9 plays a role not only in salt tolerance but also in ammonium transport. 
Overall, OsCIPK9 could regulate nitrogen use and salt tolerance like AtCPIK23. 

In this study, OsSOS3 was found to interact with OsCIPK9. In a previous study, 
OsSOS2 was found to be activated by OsSOS3 [24]. Secondly, OsKAT1 and some other 
transporter genes were differentially expressed. In a previous study, researchers found 
that CIPK genes could phosphorylate transporters such as AtCIPK23 and CHL1 in 
Arabidopsis [25]. The phosphorylation of CHL1 has different functions in nitrate transport 
and sensing. In addition, AtCIPK23 can phosphorylate AtAMT1.1 and influence 
ammonium uptake [26]. OsSOS2 can phosphorylate OsSOS1, which is a Na+/H+ antiporter 
1, and regulates salt tolerance in rice [27]. Further studies should be performed to reveal 
whether OsSOS3 can activate OsCIPK9 and whether OsCIPK9 can phosphorylate the 
transporters detected in our study, which would provide more powerful evidence for salt 
tolerance. 

AtSOS3 (AtCBL4) could function in salt tolerance by interacting with AtSOS2 
(AtCIPK24) [10]. In our study, we proved that OsSOS3 could also interact with OsCIPK9. 
This result indicates that the CBL-CIPK network plays a vitally important role in plant 
salt tolerance. Also, AtSOS3 (AtCBL4) regulates K+ homeostasis through the CBL4-CIPK6-
AKT2 pathway [13]. Moreover, AtSOS3 (AtCBL4) was found to be involved in auxin 
transport [28]. In future studies, more phenotypes may be studied in the OsSOS3-
OsCIPK9 pathway. 

Figure 7. Analysis of haplotypes of OsCIPK9. (a) Haplotypes of OsCIPK9 based on the Rice3K
database. The green represented the same nucleotides with the reference. The yellow represented the
variations compared with the reference. (b) The distribution of subpopulations in each haplotype.
(c) The gene network of different haplotypes. Pos: position; Alle: allele; Anno: annotation; GJ:
japonica, tmp: temperate, sbtrp: subtropical, trp: tropical, adm: admix. XI: indica, Bas: basmati, Pro:
promoter variation, Syn: synonymous variation, Mis: missense variation, Intron: intron variation.

3. Discussion

In a previous study, OsCIPK9 was found to regulate ammonium-dependent root
growth [15]. Also, AtCIPK23 was found to function in salt tolerance and nitrogen use,
including nitrate and ammonium in Arabidopsis. Here, knocking out OsCIPK9 increased



Plants 2023, 12, 3723 8 of 12

the tolerance to salt stress at the seedling stage. Thus, this gene has multiple functions in
nitrogen use and salt tolerance. In our results, OsCIPK9-cas also showed higher expressions
of OsAMT1.1 and OsAMT2.1 than Nipponbare under salt stress, especially OsAMT1.1, with
a two-fold higher expression than the wild type (Figure S5), indicating that OsCIPK9 plays
a role not only in salt tolerance but also in ammonium transport. Overall, OsCIPK9 could
regulate nitrogen use and salt tolerance like AtCPIK23.

In this study, OsSOS3 was found to interact with OsCIPK9. In a previous study,
OsSOS2 was found to be activated by OsSOS3 [24]. Secondly, OsKAT1 and some other
transporter genes were differentially expressed. In a previous study, researchers found
that CIPK genes could phosphorylate transporters such as AtCIPK23 and CHL1 in Ara-
bidopsis [25]. The phosphorylation of CHL1 has different functions in nitrate transport and
sensing. In addition, AtCIPK23 can phosphorylate AtAMT1.1 and influence ammonium
uptake [26]. OsSOS2 can phosphorylate OsSOS1, which is a Na+/H+ antiporter 1, and
regulates salt tolerance in rice [27]. Further studies should be performed to reveal whether
OsSOS3 can activate OsCIPK9 and whether OsCIPK9 can phosphorylate the transporters
detected in our study, which would provide more powerful evidence for salt tolerance.

AtSOS3 (AtCBL4) could function in salt tolerance by interacting with AtSOS2 (At-
CIPK24) [10]. In our study, we proved that OsSOS3 could also interact with OsCIPK9. This
result indicates that the CBL-CIPK network plays a vitally important role in plant salt toler-
ance. Also, AtSOS3 (AtCBL4) regulates K+ homeostasis through the CBL4-CIPK6-AKT2
pathway [13]. Moreover, AtSOS3 (AtCBL4) was found to be involved in auxin transport [28].
In future studies, more phenotypes may be studied in the OsSOS3-OsCIPK9 pathway.

Other OsCIPKs like OsCIPK04 also responded to salt treatment according to a previous
study [19]. With the development of knockout technology, transgenic lines can be produced
more easily than before. Our study showed that OsCIPK9 could improve salt tolerance
using the knockout line. Future studies could focus on other OsCIPKs which may regulate
salt tolerance, and rapidly validate the function using CRISP technology. With more
OsCIPKs being identified in the future, we may identify a more comprehensive OsCIPK
pathway in salt tolerance.

A haplotype analysis showed that lots of variations were present between japonica and
indica. Japonica had a different evolutionary process compared to indica [29]. Thus, these
variations may cause a change in OsCIPK9’s function in salt tolerance. Complementation
experiments and functional studies of various haplotypes should be conducted in the
future. More evidence about the function or causal SNPs of different haplotypes would
help in molecular breeding, especially MAS (Marker Assistant Selection).

With progress in gene editing, more editing strategies, such as one-base editing and
primer editing, have been used for crop improvements [30]. OsCIPK9 is a negative regulator
of salt treatment; therefore, it is better to edit the genomic or promoter region of OsCIPK9
to produce new alleles for breeding. A haplotype analysis showed that the promoter had
more polymorphisms than the gene in our study. Therefore, editing the promoter and
creating more lines with differential expressions [31] would be useful for breeding based
on the evaluation of other agronomic traits.

4. Conclusions

In summary, we identified a negative regulator of salt tolerance in rice, OsCIPK9. In
addition, we proposed the possible mechanism in which OsCIPK9 is involved through
interaction with OsSOS3. The most affected cellular component was that of the plasma
membrane, and the downstream genes of OsCIPK9 may be the transporters located in
the plasma membrane, like OsKAT1, as observed through RNA-seq analyses. Finally,
we suggest the possible pathway of salt tolerance in rice in which OsCIPK9 is involved
(Figure 8). Our study shows that other OsCIPKs could also function in salt tolerance, like
OsCIPK24. In addition, OsSOS3, which can interact not only with OsCIPK24 but also with
OsCIPK9, regulates salt tolerance in rice. More importantly, our study investigated more
OsCIPKs which may regulate salt tolerance in rice.
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5. Materials and Methods
5.1. Plant Materials and Transgenic Lines Construction

The Line japonica Nipponbare was used as the wild type, and CRISPR/Cas9 technology
was used to produce the knockout line (OsCIPK9-cas). The pam sequence is shown in
Figure 1a. The full CDS of OsCIPK9 was cloned from the cDNA of Nipponbare, and the
pCUbi1390 recombination vector was constructed. Overexpression lines were developed
using Agrobacterium-mediated genetic transformation. Two independent overexpression
lines (OsCIPK9-OE2 and OsCIPK9-OE3) were isolated from transgenic lines. The expression
of overexpression lines was determined using real-time PCR.

5.2. Salt Treatment and Phenotypic Identification

The seeds of all lines were geminated and grown in Yoshida nutrition solution for
14 days. NaCl concentrations of 120 mM and 0 mM (CK) were used for the treatment and
control, respectively. The traits, including fresh weight and Na+ and K+ concentrations,
were measured 7 days after NaCl treatment. Relative fresh weight = fresh weight under
no salt conditions − fresh weight under salt treatment. Na+ and K+ concentrations were
determined according to the method described by Wang et al. [32].

5.3. Y2H Assays

A Y2H assay was performed with a MatchMaker GAL4 Two-Hybrid System (Clon-
tech, Mountain View, CA, USA, https://www.takarabio.com/, accessed on 14 August
2023). The full-length coding sequences of genes (OsCIPK9 and OsSOS3) of interest were
cloned from the cDNA of Nipponbare into pGADT7 and pGBKT7 (Clontech, Moun-
tain View, CA, USA, https://www.takarabio.com/, accessed on 14 August 2023), and
different combinations of constructs were transformed together into the yeast (Saccha-
romyces cerevisiae) AH109 strain. Positive transformants were selected on synthetic dropout
(SD/−Leu/−Trp, DDO) nutrient media, while the interactions were screened in SD
medium (SD/−Leu/−Trp/−His/−Ade, QDO).

5.4. Firefly LCI Assays

The coding sequences of OsCIPK9 and OsSOS3 were cloned into the pCAMBIA-
nLUC or pCAMBIA-cLUC vectors. These constructed vectors were introduced into the
Agrobacterium tumefaciens strain EHA105. Various combinations of EHA105 strains were
used to infiltrate N. benthamiana leaves. The relative LUC activity was measured by using a
Nightshade LB 985 system (Berthold Technologies, Baden, Germany, 10 August 2023), as
described previously [33].

https://www.takarabio.com/
https://www.takarabio.com/
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5.5. RNA-Seq

Additionally, the roots of different lines under 0 and 120 mM NaCl treatments were
collected for RNA-seq analysis. The total RNA of three independent plants was isolated
using a plant RNA purification reagent (Invitrogen, Shanghai, China, 10 November 2022).
RNA-seq was performed using the BGI T7 platform, and analyses of DEGs (Differentially
Expressed Genes), KEGG (Kyoto Encyclopedia of Genes and Genomes), and GO (Gene
Ontology) were performed using Dr. Tom website produced by BGI, China (https://biosys.
bgi.com, accessed on 20 January 2023). The expression of all genes produced via RNA-seq
is listed in Table S1.

5.6. Real-Time PCR

The total RNA of different tissues and roots at different time points was extracted
using an RNA prep Pure Plant Kit (Tiangen Biotech, Beijing, China). Then, ~1 µg of total
RNA was reverse-transcribed into cDNA using a PrimeSciptTM Reverse Transcriptase
kit (Takara, Shiga, Japan, www.takarabio.com, accessed on 5 March 2023). Quantitative
RT-PCR assays were performed using an SYBR Premix Ex Taq™ kit (Takara, Shiga, Japan,
www.takarabio.com, accessed on 5 March 2023). Real-time PCR was performed in a real-
time PCR machine (I-Cycle, Bio-Rad, Hercules, CA, USA ). The primers are listed in Table S2.
The rice UBQ (Os03g0234350) gene was used as an internal control.

5.7. Haplotype Analysis

SNP data of Rice3K were downloaded from the Rice SNP-Seek Database (https://snp-
seek.irri.org/, accessed on 5 June 2022). The haplotypes were separated based on all SNP
variants of the OsCIPK9 gene and promoter (~2K upstream sequence of OsCIPK9). The
subpopulations of rice were divided into japonica (temperate, subtropical, tropical, and
admix), indica (1A,1B,2,3, and admix), Aus, Basmati, and admix. The haplotype network
was constructed using PopART software (https://popart.maths.otago.ac.nz/, accessed on
5 July 2022) [34].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12213723/s1, Figure S1: Comparison of Nipponbare (Nip),
knock-out line (OsCIPK9-cas) and overexpression lines (OsCIPK9-OE2, OsCIPK9-OE3) Na concentra-
tions per plant and Na+/K+ content ratios in shoot and root under 0 mM NaCl conditions; Figure S2:
The result of GO cellular component analysis between OsCIPK9-cas and Nipponbare under 0 mM
NaCl treatment; Figure S3: The result of GO biological process analysis between OsCIPK9-cas and
Nipponbare under 0 mM and 120 mM NaCl treatment; Figure S4: The result of GO molecular function
analysis between OsCIPK9-cas and Nipponbare under 0 mM and 120 mM NaCl treatment; Figure S5:
The FPKM of OsAMT1.1 and OsAMT2.1 in Nipponbare and knock-out line (OsCIPK9-cas) under
0 mM and 120 mM NaCl conditions; Table S1: The expression of all genes produced by RNA-seq;
Table S2: The list of primers.
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