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Abstract: The transmission of plant viruses from infected to healthy host plants is a process in which
insects play a major role, using various transmission strategies. Environmental factors have an impact
on the transmission of viruses and the subsequent development of infections or diseases. When
viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across
different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses,
which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The
review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores
the factors influencing these interactions. Understanding the impacts of these changes is crucial for
managing the spread of pests and mitigating damage to crops. It underscores the need for continued
research to elucidate the mechanisms driving plant–insect–virus interactions and to identify new
approaches for sustainable pest management.

Keywords: insect vector; evolution; virus transmission; interactions; viruses

1. Introduction

According to recent studies, over 80% of plant pathogenic viruses are dependent
upon insect vectors for their spread [1–3]. Among insects, hemipteran, such as aphids,
leafhoppers, plant hoppers, whiteflies, mealy bugs, true bugs, and some treehoppers,
dominate as plant virus vectors [4,5].

Among hemipterans, whiteflies are the most important group of vectors. There
are more than 1500 species of whiteflies belonging to 161 genera across the world [6,7].
Many plants are known to host various species of whiteflies, which are responsible for
transmitting plant viruses. Over the last two decades, research has revealed that whiteflies
are the predominant vectors responsible for transmitting plant viruses among insects [2,8].
Whiteflies are polyphagous in nature and have a broad host range. That is why they
can effectively spread plant viruses. Based on the association of plant viruses with the
vector, plant viruses can be divided into three categories: persistent, semi-persistent, or
non-persistent and depending on the virus’s pathway within its vector as non-circulative or
circulative. Another classification is included in this area based on the virus retention sites,
distinguishing between cuticula-borne and salivary gland-borne viruses. While certain viral
and insect proteins have been found to regulate specific virus–vector associations, there is
ample potential for further exploration and investigation in this field of research [9]. Among
whitefly species, the silverleaf whitefly (Bemisia tabaci) cryptic species complex stands out
as a competent plant virus vector. Within B. tabaci, Middle East–Asia Minor 1 (MEAM1,
aka B Biotype/mitotype) and Mediterranean (MED, aka Q biotype/mitotype) are the two
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most invasive members of the species complex. Both MEAM1 and MED have created havoc
on major agricultural production regions of the world, including China, Africa, and the
Southern United States [10–12].

There are over 1100 known types of plant pathogenic viruses, and among these, the
family Geminiviridae is one of the largest and most important families of plant viruses [13–15].
The family Geminiviridae is grouped into nine genera, including Curtovirus, Begomovirus,
Topocuvirus, Mastrevirus, Eragrovirus, Capulavirus, Becurtovirus, Turncurtovirus, and Grablovirus.
Begomoviruses, which constitute the largest genera within Geminiviridae are transmitted
by B. tabaci. The genomic size of begomoviruses (monopartite or bipartite) ranges from
2.7 to 3.0 kb (Figure 1) [16]. The DNA-A of the bipartite begomoviruses comprises six in-
complete open reading frames (ORFs), which encode various proteins, including AC1/Rep,
AC2/TrAP, AC3/REn, AV2, AV1/CP, and AC4 proteins [17,18]. All of these proteins are
located on both strands (virus sense strand and complementary strand). These encoded
proteins are responsible for crucial functions, including virus replication, the encapsidation
of genomic molecules, and the regulation of viral gene expression. On the other hand,
DNA-B has two ORFs that encode nuclear shuttle proteins (NSPs) and movement proteins
(MPs) on the sense strand and complementary strands, respectively [19,20]. DNA-A com-
ponents can replicate autonomously, while the DNA-B encodes two proteins responsible for
facilitating the movement of viral DNA within and between host cells [21]. Alphasatellites,
betasatellites, and deltasatellites are distinct types of circular DNA satellites associated with
begomoviruses [22]. The intergenic region of DNA-A contains a conserved sequence of
about 200 base pairs known as the Common Region (CR), which includes the TAATATTAC
sequence v-ori within a conserved stem-loop structure [18].
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Among the viruses transmitted by the B. tabaci, begomoviruses are particularly note-
worthy for their impact on a wide variety of broad-leaf plants and can be effectively
transmitted by B. tabaci between host plants. Begomovirus transmission by whiteflies is
contentious with reports suggesting both circulative non-propagative/propagative trans-
mission, as seen in Table 1 [23,24]. Nevertheless, under both conditions, begomoviruses
do circulate in whiteflies. Circulative transmission has also aroused interest in the transo-
varial transmission of begomoviruses in B. tabaci. It also remains unclear with studies
reporting both the transovarial transmission and non-transmission of begomoviruses in
B. tabaci [5,25,26]. When whiteflies feed on infected plants, they pick up the virus particles
and carry them in their gut. As they move on to feed on healthy plants, they can transmit
the virus to these plants through their saliva. Whiteflies can also transmit several other
viruses that also can cause significant damage to different crops (Table 1). Whiteflies are
a significant concern for agriculture as they not only spread plant viruses but also cause
damage to their host plants by feeding on them [9]. In addition, their nymphs produce
honeydew on the lower branches of trees, which attracts sooty mold disease and impacts
the quality of leaves and photosynthesis [27,28]. The high infestation of whiteflies in crops
can also have a significant negative impact on other factors in the surrounding ecosystem,
disrupting natural insect populations and attracting other pests that can harm beneficial
insects and pollinators [2,28]. Whiteflies are the primary vector for begomoviruses and
can result in substantial economic loss via direct feeding, as well as transmitting them to
different crops, including cotton, tomato, cassava, and vegetables [29–31]. A majority of
the plants are vulnerable to whiteflies transmitting begomoviruses, which mainly infects
dicot hosts. This genus includes many species and strains that are known to cause signifi-
cant damage to crops worldwide, with different transmission rates among various species
within the complex [8,30].

Table 1. Different viruses and modes of transmission by whiteflies.

Viruses Mode of
Transmission Location No. of Species References

Begomovirus Circulative,
Non-propagative Salivary glands 424 [32]

Crinivirus Semi-Persistent Foregut 14 [33]

Ipomovirus Semi-Persistent Unknown 7 [34]

Torradovirus Semi-Persistent Stylet 5 [35]

Carlavirus Non-Persistent Salivary glands 55 [36]

Polerovirus Circulative,
Non-propagative 2 [37]

Cytrohabdovirus Unknown 1 [38]

Here, we provide an in-depth comprehension of the transmission of begomoviruses
to plants through whiteflies. It encompasses various segments that analyze the possible
modifications viruses can induce in plant hosts and insect carriers. This evaluation aims to
clarify the possible genetic alterations that begomoviruses may undergo in the course of
such interactions. Recent research has yielded extensive insights into the biological and
molecular aspects of plant–begomovirus transmission facilitated by whiteflies [4,39–43].
When plants come into contact with whitefly vectors in a specific ecosystem, the bego-
moviruses have the ability to manipulate the behavior of both the host plant and the vector.
Few theoretical studies have investigated the genetic changes occurring in these viruses
during transmission [4,44].
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2. Whitefly-Mediated Transmission and Acquisition of the Begomovirus

Begomoviruses can trigger cellular and molecular responses in their insect vectors,
which can then affect their transmission [45,46]. B. tabaci is the most widely distributed
among whiteflies, consisting of over 44 morphologically similar species, including the major
pest complex in agricultural ecosystems, Middle East-Asia Minor 1 (MEAM 1), SSA1 (Sub-
Saharan Africa 1), SSA2 (Sub-Saharan Africa 2), and Mediterranean cryptic species [47–49].
Genetically, these cryptic species are divergent and reproductively isolated but cannot be
distinguished morphologically [10]. This group of insects not only causes direct feeding
damage but also transmits plant pathogenic viruses, with over 90% of the transmitted virus
species being the most harmful viruses infecting hundreds of plant species. The complex
interactions among the virus, vector, and host plant determine begomovirus transmission,
with factors, such as virus acquisition by the associated vector, vector landing and probing,
and feeding patterns, all playing a role in the efficiency of transmission [40,45,50].

During the transmission of begomoviruses via whiteflies, the viruses undergo various
interactions with insect proteins and pass through the barriers in the digestive, hemolymph,
and salivary systems before transmission from the insect body [8,51]. The interaction and
tissue tropisms within the vector body provide key pathways in determining the efficacy
and specificity of transmission [32].

Whiteflies transmit persistent viruses through a series of steps that include ingestion,
attachment, entry, translocation, circulation, retention, and release of the virus. Whiteflies
acquire viral particles while feeding on infected plants. The acquired viral particles (virions)
reach into the midgut and esophagus, followed by entry and translocation into the cell
across the basal membrane. Following acquisition, replication, and dispersal, they enter
into the hemolymph, eventually becoming located in the primary salivary glands. From the
salivary glands of the vectors, the viruses are released in saliva and enter into the plant’s
phloem. After injection of the virus into the plant via saliva, the virus replicates inside the
plant cells and spreads to other parts of the plant, causing leaf yellowing, stunted growth,
and a decreased yield [8,32,52]. During this process, viruses encounter various barriers or
screenings while interacting with whitefly receptor proteins (Figure 2). This interaction can
result in genetic changes, such as mutations or recombinations, leading to the evolution of
new viral strains.

Studies with cucurbit leaf crumple virus (CuLCrV) and Tomato yellow leaf curl virus
(TYLCV, begomovirus) have shown that the majority of ingested virions are localized in
the midgut and filter chamber of the insect vector [53,54]. Some studies have shown a
transient increase in TYLCV genomic DNA in the whitefly gut. However, high levels of
viral replication might trigger the activation of the insect autophagic response, which causes
the degradation of viral particles and limits its spread to other organs, such as the ovaries
and fat cells. While some begomoviruses can invade these organs, autophagy acts as a
defense mechanism to restrict virus replication and dissemination [8,51]. The movement
of begomoviruses in insect vectors is regulated by the structural component AV1 or coat
protein (CP). The interaction of several begomoviruses with their insect vectors has been
observed to elicit various cellular, molecular, and behavioral responses that could impact
vector survival and virus spread [42,55]. Studies have shown that virus-induced changes
in vectors at a transcriptional level can affect gene expression patterns related to virus
reception, entry, tissue tropism, multiplication, and immune responses [56]. Additionally,
the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling
pathway plays a role in balancing vector fitness and virus transmission, with the virus
inhibiting the pathway, while the vector protects itself through it [3]. Furthermore, virus
infection can alter vector orientation behavior, settling and feeding behavior, fecundity, and
survival, potentially enhancing virus transmission [57,58]. Moreover, the pre-infestation of
plants by vector or non-vector insects can affect subsequent viral transmission and infection,
with different insect mouthparts activating different plant signaling pathways that impact
virus replication and movement [59].
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Figure 2. The intricate internal structure of the whitefly plays a crucial role in facilitating the
circulative transmission of plant viruses by the B. tabaci species. The virus (e) is obtained through
the ingestion of phloem sap and subsequently transported to the midgut (h) using the stylet (n) and
esophagus (f). In the filter chamber area (g), the virus particles successfully breach the protective
barrier of the midgut and gain entry into the hemolymph (l) by crossing the midgut plasmalemma
and epithelial brush border. Once in the hemolymph, the virus circulates and ultimately reaches the
primary salivary glands (a). Within these glands, the virus is internalized by passing through the
basal lamina and secretory cells until it reaches the central lumen, which connects to the salivary
gland duct. The virus then travels through the salivary gland duct and is expelled from the body
during feeding via the salivary canal. It is important to note that the accessory glands (b) do not
participate in the transmission process. Some virus particles that fail to enter the hemolymph are
excreted from the body along with the honeydew through the hindgut. Additionally, the virus has
the ability to invade developing oocytes (j) and eggs (k), potentially resulting in its transmission to
the next generation through transovarial means. Furthermore, endosymbionts (i) play a significant
role in transmission by secreting GroEL into the hemolymph.

The infection cycle of a begomovirus begins when virus particles are acquired by the
whitefly from the plant phloem of the infected plants through the insect’s stylets (Figure 2).
Both the acquisition and inoculation access periods for virus transmission may range from
10 to 60 min [60–62]. It is noteworthy to recognize that the amount of virus assimilated
by different whiteflies can indeed vary, even when they are granted the same level of
access to a specific leaf for a consistent duration [63–65]. Particularly significant is the trend
wherein the frequency of virus transmission increases as the duration of the acquisition
access period is extended [66]. However, given the host range of begomovirus and vectors,
whiteflies often encounter host plants with varying virus levels, which can profoundly
impact the virus transmission. In fact, studies using different pathosystems have shown that
begomovirus accumulation in whiteflies follows a density-dependent phenomenon, where
the higher the virus accumulation in host plant leaves, the higher the virus accumulation
in whiteflies [67–69]. Furthermore, an intriguing observation emerges in relation to the
potential impact of whitefly gender on the efficiency of virus transmission, wherein male
whiteflies exhibit comparatively lower effectiveness as vectors [31].

3. Begomovirus-Induced Changes in Whitefly Behavior

Begomoviruses are capable of replicating and building up in the salivary glands of
whiteflies, resulting in alterations in their behavior and increased transmission [70,71].
Infected whiteflies tend to exhibit increased probing and feeding behavior on plants,
leading to higher transmission rates of the virus. Moreover, studies have shown that
whiteflies infected with begomovirus tend to feed for longer periods, thereby increasing
virus acquisition and transmission rates between plants. Begomoviruses can have a direct
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or indirect impact on the behavior, fitness, and life cycle of whitefly insect vectors [31]. The
viruliferous whiteflies exhibit reduced mobility and extended periods of salivation while
engaging in the consumption of eggplant leaf discs. Changes in whitefly behavior can
also occur due to an increase in their density and the accessibility of infected plants in the
area [15,40,72]. The behavior of whiteflies, like feeding and preference, can be influenced by
viruses and have a significant impact on the spread and severity of viral epidemics [31,72].
Future molecular studies could investigate the complex ways that control these changed
behaviors, revealing the specific factors affecting how whiteflies with viruses move and
produce saliva. Furthermore, exploring the effects of different factors related to the plants
they feed on might help us understand better why more exposure to virus particles leads to
higher transmission rates. Looking into these questions could improve our understanding
of how vectors and pathogens interact and potentially lead to new methods for managing
and controlling diseases.

Some reports suggest that ingestion of phloem sap of viral-infected plants may ul-
timately affect the fitness of insect vectors and their transmission capability [41,73,74].
For instance, B. tabaci increases its feeding on the cucurbit chlorotic yellow virus (CCYV,
a non-circulative virus)-infected plants to increase the chance of virus acquisition and
subsequent spread [15,38,75]. Canto et al. reported that the physiology of the host plants
directly influences the feeding process of the vectors and host selection [76]. Additionally,
begomoviruses can modify the phenotypic characteristics of the plants, which may increase
virus transmission in heathy plants [77]. Both the circulative and non-circulative viruses
can boost vector attraction to the infected host and also improve virus transmission effi-
ciency [45,75,78]. However, the pathways for vector preference modulation are intricate
and vary across different virus–plant–insect pathosystems. Numerous studies have shown
that viruses can manipulate insects and plants in ways that affect different stages of insect–
plant interactions and increase transmission [45,75]. However, the mechanisms underlying
vector preference modulation are complex and vary across different virus–plant–insect
pathosystems, making it difficult to disentangle them. Previously, studies conducted using
the same population of B. tabaci MEAM1 under similar conditions indicated that the inter-
actions between the begomovirus, host and vector are pathosystem-specific. For instance,
studies with TYLCV-infected tomato demonstrated that B. tabaci MEAM1 that acquired
no virus was attracted towards susceptible genotypes with higher TYLCV accumulation,
and they accumulated higher TYLCV compared with whiteflies feeding on resistant hosts
with reduced TYLCV accumulation [31,69]. Also, the B. tabaci MEAM1 developmental
time decreased significantly on TYLCV-infected susceptible tomato plants compared with
non-infected plants. In contrast, in another study, the same B. tabaci MEAM1 population
that acquired no virus, avoided settling on squash infected with CuLCrV, and whitefly
development on CuLCrV-infected squash did not result in any fitness benefits [66].

Plant viruses frequently manipulate the insect vector’s biology, which ultimately
impacts virus epidemiology [79,80]. Moreover, these viruses can also modify the production
and activity of phytohormones, which affect the abundance of insect vectors. For instance,
infection with begomoviruses has been observed to inhibit the biosynthesis/catabolism of
jasmonic acid (JA), along with its signaling pathways. This phenomenon contributes to
the improved performance of the whitefly vectors associated with the infected plants. In
the case of tomato plants, begomovirus infection elevates the biosynthesis/catabolism of
salicylic acid (SA), along with its signaling pathways, while simultaneously downregulating
JA-related processes. Additionally, terpenoid biosynthesis and catabolism are reduced in
begomovirus-infected plants, making the host plants more palatable to whiteflies [39,81].
Zhao et al. [31,69] highlighted how begomoviruses can manipulate plant immunity to not
only enhance the fitness of their whitefly vectors but also suppress the performance of
non-vector insects. In the context of tobacco infected with the tomato yellow leaf curl China
virus (TYLCCNV), the whitefly vector’s performance is promoted [39,81]. Furthermore,
infection by tomato yellow leaf curl virus (TYLCV) in tomatoes disrupts JA signaling,
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resulting in the suppression of plant defenses and, consequently, an improved performance
of its whitefly vector [39,81].

Some economically significant diseases transmitted by whitefly vectors include cotton
leaf curl disease, cassava mosaic disease, and TYLC [82,83]. About 17 case studies of differ-
ent begomoviruses have been documented for the plant-mediated effects of virus infection
on non-viruliferous whitefly preference, and a total of 12 showed the host preference of
whiteflies to the virus-infected plants [45,84–87], three indicated a whitefly preference for
uninfected plants, [66,85,88] and two indicated no preference (Table 2) [31,69].

Table 2. Plant-mediated effects of virus infection on whitefly preference.

Host Plant
Virus-Isolate Whitefly

Preference of Virus-Infected
Versus Uninfected Plants by
Non-Viruliferous Whiteflies

Reference
Common Name Scientific Name

Tobacco Nicotiana tabacum cv.
NC89

Tomato yellow leaf curl
China virus-Y10 MEAM1 Virus-infected plants [89]

Jimsonweed Datura stramonium cv.
unknown

Tomato yellow leaf curl
virus-SH2 MED Virus-infected plants [90]

Tomato Solanum lycopersicum cv.
Zhongza9

Tomato yellow leaf curl
virus-SH2 MED Virus-infected plants [85]

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 Virus-infected plants [69]

Tomato S. lycopersicum cv.
Security

Tomato yellow leaf curl
virus-unknown MEAM1 Virus-infected plants [69]

Tomato S. lycopersicum cv.
Santa Clara

Tomato severe rugose
virus-unknown MEAM1 Virus-infected plants [78]

Tomato S. lycopersicum cv.
Florida 47 R

Tomato yellow leaf curl
virus-unknown MEAM1 Virus-infected plants [91]

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 Virus-infected plants [66]

Tomato S. lycopersicum cv.
Moneymaker

Tomato yellow leaf curl
virus-SH2 MED Virus-infected plants [92]

Benthi N. benthamiana cv.
unknown

Tomato yellow leaf curl
virus-SH2 MED Virus-infected plants [92]

Pepper Capsicum annum cv.
IIHR 3909

Chili leaf curl
virus-unknown MEAM1 Virus-infected plants [87]

Tomato S. lycopersicum cv.
Moneymaker

Tomato yellow leaf curl
virus-Israel MED Virus-infected plants [86]

Tomato S. lycopersicum cv.
Zhongza9

Tomato yellow leaf curl
virus-SH2 MEAM1 Uninfected plants [85]

Tomato S. lycopersicum cv.
Santa Clara

Tomato severe rugose
virus-unknown MEAM1 Uninfected plants [78,88]

Pumpkin Cucurbita pepo cv.
Goldstar

Cucurbit leaf
crumplevirus-unknown MEAM1 Uninfected plants [66]

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 No preference [66,69]

Tomato S. lycopersicum cv.
Security

Tomato yellow leaf curl
virus-unknown MEAM1 No preference [69]

Tomato yellow leaf curl virus (TYLCV) is one of the most extensively researched
begomoviruses, particularly concerning its effect on the preference of whiteflies without
the virus. Several studies have reported that whiteflies tend to choose TYLCV-infected
plants over uninfected ones [86]. According to Zhang et al. [93] both types of viruses
(persistent and non-persistent) can impact the behavior and efficacy of insect vectors, either
by altering the host’s phenotype or directly interacting with the insects to promote virus
transmission. To date, researchers have conducted 19 case studies on the direct effects of
begomovirus infection on whitefly preference to investigate whether viruliferous whiteflies
exhibit a preference for virus-infected or uninfected plants [31,94]. Among these, 11 found
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that whiteflies preferred uninfected plants [69,87], two indicated a preference for virus-
infected plants [69,86], and six showed no preference (Table 3) [45,69,95]. Begomoviruses
transmitted by whitefly vectors have evolved to modify the preference of their vectors to
increase their rate of transmission. Various studies have shown that this change in vector
preference due to begomoviruses is conducive to transmission [79,96,97]. As a result, most
studies on begomoviruses indicate that non-viruliferous whiteflies prefer virus-infected
plants (Table 2), while viruliferous whiteflies prefer uninfected plants (Table 3). This prefer-
ence manipulation of whitefly vectors directly promotes begomovirus transmission [31,50].
Begomoviruses have a genetically diverse population due to their error-prone replication
processes. However, the duration of the virus infection may impact the plant-induced effect
on whitefly preferences. Legarrea et al. [69] reported that there was no significant variation
in the selection of non-viruliferous whiteflies (MEAM1 biotype) between TYLCV-infected
and healthy tomato plants at three and twelve weeks after inoculation. However, a signifi-
cant inclination towards TYLCV-infected plants was observed six weeks post-inoculation.
Moreover, the manipulation of vector preference by the virus may vary depending on the
whitefly species. Fang et al. [85] observed that MED whiteflies without the virus favored
TYLCV-infected tomato plants for feeding, while MEAM1 whiteflies favored healthy plants.

Table 3. Direct effects of virus infection on whitefly preference.

Host Plant
Virus-Isolate Whitefly

Preference of Virus-Infected
Versus Uninfected Plants by

Viruliferous Whiteflies
Reference

Common Name Scientific Name

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 Virus-infected plants [89]

Tomato S. lycopersicum cv.
Moneymaker

Tomato yellow leaf curl
virus-Israel MED Virus-infected plants [90]

Cotton Gossypium hirsutum cv.
F846

Cotton leaf curl
virus-unknown Unknown Uninfected plants [85]

Cotton G. hirsutum cv.
F846

Cotton leaf curl
virus-unknown Unknown Uninfected plants [85]

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 Uninfected plants [69]

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 Uninfected plants [69]

Tomato S. lycopersicum cv.
Security

Tomato yellow leaf curl
virus-unknown MEAM1 Uninfected plants [69]

Tomato S. lycopersicum cv.
Security

Tomato yellow leaf curl
virus-unknown MEAM1 Uninfected plants [69]

Tomato S. lycopersicum cv.
Santa Clara

Tomato severe rugose
virus-unknown MEAM1 Uninfected plants [78]

Tomato S. lycopersicum cv.
Santa Clara

Tomato severe rugose
virus-unknown MEAM1 Uninfected plants [78]

Pumpkin C. pepo cv.
Goldstar

Cucurbit leaf crumple
virus-unknown MEAM1 Uninfected plants [91]

Tomato S. lycopersicum cv.
Florida 47

Tomato yellow leaf curl
virus-unknown MEAM1 Uninfected plants [91]

Pepper C. annum cv.
IIHR 3909

Chili leaf curl
virus-unknown MEAM1 Uninfected plants [66]

Tomato G. hirsutum cv.
F846

Cotton leaf curl
virus-unknown Unknown No preference [92]

Tomato S. lycopersicum cv.
Zhongza 9

Tomato yellow leaf curl
virus-SH2 MEAM1 No preference [92]

Tomato S. lycopersicum cv.
Zhongza 9

Tomato yellow leaf curl
virus-SH2 MED No preference [92]
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Table 3. Cont.

Host Plant
Virus-Isolate Whitefly

Preference of Virus-Infected
Versus Uninfected Plants by

Viruliferous Whiteflies
Reference

Common Name Scientific Name

Tomato S. lycopersicum cv.
Security

Tomato yellow leaf curl
virus-unknown MEAM1 No preference [86]

Tomato S. lycopersicum cv.
Moneymaker

Tomato yellow leaf curl
virus-SH2 MED No preference [85]

Benthi N. benthamiana cv.
unknown

Tomato yellow leaf curl
virus-SH2 MED Uninfected plants [78,88]

Mixed infections with multiple viruses are prevalent [98,99], but the impact of mixed
infections on the preference of whitefly remains poorly understood, and few studies
have been described to date. Ban and his colleagues discovered that the non-viruliferous
MEAM1 biotype of whiteflies favored feeding on TYLCV-infected tomato plants. However,
they did not observe any preference between the single-viral-infected and mixed-infected
plants [100]. Similarly, Gautam and his colleagues investigated the significant preference of
both viruliferous and non-viruliferous whiteflies towards healthy plants instead of mixed-
or single-viral infected plants [66]. Based on these findings, it can be concluded that mixed
infections of whitefly and/or plants did not show any significant difference from single
infections in terms of the whitefly preference.

The feeding behavior of whiteflies is critical for the transmission of begomoviruses, as
these insects serve as vectors for numerous viral diseases affecting crops. The resulting im-
pact on disease epidemiology highlights the importance of manipulating whitefly feeding
behavior [31]. This manipulation carries ecological significance for all three contributors
within this process: the plant, the whitefly, and the begomovirus. The change in whitefly
feeding behavior could stem from a direct influence on whitefly physiology or indirectly
through interactions with the plant.

Seven articles have been published investigating the influence of virus infections on
the feeding behavior of whiteflies through plant mediation [31]. The duration of whitefly
sap-feeding is used as a standard index for collating results from various studies. Among
the studies on viruses belonging to begomovirus, three have been reported for the plant-
mediated effects of virus infection on whitefly feeding behavior, all of which found no
effect [74,101]. Whitefly feeding behavior may be influenced by the acquisition of plant
viruses, in addition to indirect effects induced by host plants. Two case studies on this
subject have been reported. The first study compared the feeding behavior of whiteflies that
carry the virus with those that do not, with both feeding on healthy host plants. Five cases
showed an increase in whitefly feeding, while five showed no effect. The second research
compared the feeding behavior of whiteflies with and without the virus on infected and
healthy host plants and assessed its effects on both host plants and whiteflies. Three case
studies have observed the plant-mediated effect of virus infection on whitefly feeding
behavior. Interestingly, none of these cases revealed a noteworthy impact on it. Thus,
the first scenario is termed the direct consequence of viral infection, whereas the second
scenario involves the combined influence of both direct viral impact and plant-induced
effects [31,72,75].

Regarding begomoviruses, five studies focusing on the direct effects of virus infection
on whitefly feeding behavior have reported an increase in feeding on the infected host, while
the other five suggest no effect [8,50,72,102]. Wang et al. [103] reported that TYLCV impacts
the whitefly-feeding behavior resulting in increased secretion from salivary glands and
uniform feeding on the healthy tomato plants. Similarly, Moreno-Delafuente et al. [50]
observed the increased feeding frequency of whiteflies on egg plants infected with TYLCV.
TYLCV has a direct effect on the behavior of whiteflies, while this effect is dependent upon
the genotype of the host plants. He et al. [72] observed a positive mutual effect of TYLCV of
a Chinese strain on MEAM1 whiteflies, but no direct effect of virus infection on whitefly
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feeding was observed [31]. Therefore, it is essential to note that a virus can have a variety
of effects on whitefly behavior, even within the same pathosystem.

To manipulate the behavior of whiteflies through plant viruses, outcomes may differ
depending on the specific species or strain/cultivar involved in the whitefly–virus–plant
combination. For instance, nonviruliferous MEAM1 species prefer to feed on the healthy
tomato plants, while MED tends to feed on infected plants [85]. On the other hand, the vir-
uliferous MEAM1 biotype showed a feeding preference towards TYLCV-infected tomatoes
of the Florida-47 cultivar [69]. Such variation indicates that changes in the behavior of white-
flies by viruses comprise a complex process that requires extensive careful experimentation
for each unique pathosystem. Additionally, the careful selection of experimental materials
is crucial to offer a reference for analyzing virus epidemics. Although several begomovirus
species and whitefly species are present, only one or a few plant–virus–whitefly combina-
tions has been used to determine the outcome of interactions on whitefly-transmitted plant
viral epidemics. Therefore, to understand viral epidemics through the study of tripartite
interactions, it is vital to first determine the involvement of each whitefly, virus, and plant
species and then use them for investigation. A comprehensive examination of factors
involving whitefly–plant–virus interactions is needed.

On the whitefly side of these interactions, MEAM1 individuals feeding on virus-
infected plants showed the downregulation of genes involved in the oxidative phosphory-
lation pathway and detoxification enzymes. This reduced detoxification activity probably
lowered energy costs and boosted whitefly performance [104]. However, such positive
interactions could be pathosystem-specific. For instance, Gautam et al. [54] report that both
B. tabaci MEAM1 and MED had significantly higher fitness advantage when feeding on
TYLCV- and CuLCrV-infected plants compared to MEAM1 and MED individuals feeding
on sida golden mosaic virus (SiGMV)-infected plants. Also, a transmission study from the
same report concluded that B. tabaci MEAM1 efficiently transmitted TYLCV, CuLCrV, or
SiGMV, whereas B. tabaci MED only transmitted TYLCV [54]. A subsequent follow-up gene
expression study revealed no consistent pattern of gene expression in B. tabaci MEAM1 and
MED upon the acquisition of TYLCV, CuLCrV, or SiGMV [105]. Taken together, these stud-
ies suggest a positive effect of begomovirus infection that can be perceived by non-vector
B. tabaci cryptic species, and two highly similar viruses (CuLCrV and SiGMV, Bi-partite
New World begomovirus) can interact very differently with B. tabaci. Thus, this signifies
the context-specificity in begomovirus–whitefly interactions. Further studies are warranted
to fully comprehend the events and factors that lead to positive effects of begomovirus in
some systems and negative or no effects in others.

Currently, there is a lack of comprehensive case studies, making it challenging to
conclusively determine the effects of viruses on whitefly biology and feeding behavior when
feeding on infected plants. Typically, the modification of vector effectiveness is attributed
to changes in the synthesis of phytohormones or their signaling in plants [81,106,107].
Such studies could provide insights into the mechanisms of manipulation/changes in
whitefly performance.

This diversity allows for the rapid adaptive evolution of viruses since they may already
possess gain-of-function mutations that are useful for different selection pressures [108].
Previous studies have demonstrated that even highly similar TYLCV variants could dif-
ferentially influence component (whitefly–variant–plant) interactions and viral strain
dispersal [109]. Therefore, strains of begomoviruses that are able to effectively manip-
ulate whitefly preference to increase their transmission may gain a considerable edge over
other viral entities and ultimately outcompete them. Taken together, over time, the genetic
makeup of begomoviruses transmitted by whiteflies can experience modifications due to
the continual selection pressure linked to whitefly transmission.

4. Begomovirus-Induced Changes in Plants

Begomoviruses have been documented to infect diverse crop species in tropical, sub-
tropical, and temperate regions. The discovery of new species of these viruses has been
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facilitated by recent advancements in small RNA-based deep sequencing technology [110].
Our understanding of the natural host range of these viruses is expanding, and it has
become evident that they not only infect herbaceous plants but also woody plants, such
as citrus, grapevine, mulberry, and apple trees. The most common symptoms of various
begomovirus attacks in plants include the yellowing of leaves, leaf curling and distortion,
stunted growth, mosaic patterns on leaves, deformed fruits, necrosis, and dieback [111].

The virus can interfere with the plant’s immune system, preventing the plant from rec-
ognizing and responding to the virus infection. This allows the virus to replicate and spread
throughout the plant. Begomoviruses can also cause changes in the expression of host plant
genes, which can impact the plant’s physiological processes, including photosynthesis and
hormone signaling. The virus may also induce the formation of abnormal structures in
infected plants, such as leaf-like tissues on stems or the proliferation of roots. Symptoms
of begomovirus infection differ based on various factors, such as the growth stage dur-
ing initial infection, host species/cultivar, and begomovirus species, as well as weather
conditions [67,112]. Several diseases may be indicated by green to bright yellow mosaic
symptoms, leaf deformation, and chlorosis. Most begomoviruses are typically found in
higher concentrations in newly expanded young leaves located in the uppermost sections
of the plant, as opposed to older plant parts. Early infection in plants causes severe growth
reduction and stunting, with reduced flowering and aborted fruit development leading to
crop loss. However, later phases of development frequently experience milder illnesses
and more bearable losses. Infected plants in some path systems can attract non-viruliferous
vectors to acquire the virus while repelling viruliferous vectors, thus transmitting the virus
to uninfected plants.

Several species of B. tabaci, which may or may not be carriers of plant viruses, can
trigger modifications in the release of volatile organic compounds (VOCs) when inter-
acting with different plant species. These changes in the volatile profile can either deter
or attract other whiteflies [48,86,87]. Results indicate that infection with either virus, as
well as infestation by whiteflies in the absence of viruses, led to both shared and distinct
VOC accumulation. The unique VOCs detected in response to virus infection or insect
infestation suggest that these triggers can elicit a specific response from plants. These VOCs
could be used individually or in combination as a means of monitoring and disrupting
pest populations [113,114]. Begomoviruses can manipulate plant-produced VOCs upon
infection, which play a critical role in communication with insects [115]. Phytohormones,
such as jasmonic acid (JA) and salicylic acid (SA), are crucial in responding to B. tabaci
infestation [63–65]. Zhang et al. found that the infection of tobacco plants with Tomato yel-
low leaf curl China virus (TYLCCNV) suppresses JA-associated defenses, which favors the
performance of the MEAM1 whitefly on virus-infected plants [93]. Similarly virus-infected
plants suppress the synthesis and release of terpenoids, making them more favorable for
whitefly performance than uninfected plants. In addition, plants infected with persis-
tently transmitted viruses from the genus Begomovirus exhibit modified VOC emission
profiles [78,116,117]. These alterations in VOCs can affect the behavior and performance of
the insect vectors associated with these plants.

Host plant resistance is a highly effective method for managing diseases, particularly
those caused by begomovirus, over a specific period [118]. In plant disease resistance,
resistance (R) genes are responsible for triggering downstream signaling responses. These
genes can be divided into several super-families based on their structural motifs, such as
leucine-rich repeat domains, coiled-coil domains, interleukin-1 receptor domains, trans-
membrane regions, and nucleotide-binding-site-resistant proteins. Nucleotide-binding site
leucine-rich-repeat (NBS-LRR) genes are the two most dominant R-genes in plants, and they
are further sub-grouped based on their N-terminal coiled-coil or toll/interleukin-1 receptor
(TIR) domain [119]. For instance, some of the important begomovirus resistance genes that
confer resistance to TYLCV in tomatoes include Ty-1, Ty-2, Ty-3, and Ty-6. The Ty-1 gene
uses RNA interference to combat TYLCV, while the Ty-2, Ty-3, and Ty-6 genes serve as
receptors that can detect specific viral proteins. These receptor genes trigger defensive re-
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sponses that block TYLCV infection. These genetic resistance mechanisms form a versatile
defense strategy against begomovirus infection in tomato plants [120,121].

Plants have implemented various defense systems to protect themselves from viral
infections. Since viruses are obligate intracellular parasites, they exclusively rely on the
host’s machinery for replication and mobility [113,122–125]. RNA silencing is a funda-
mental gene regulation mechanism that specifically targets viral RNA, serving as one of
the primary defense systems against viral infections in plants [123,126]. RNA silencing
involves several steps, including silencing initiation, an effector phase, and an amplifica-
tion phase, and it is regulated by RNA-dependent RNA polymerases (RDRs). Moreover,
small interfering (siRNAs) act as mobile silencing signals that trigger local and systemic
silencing upon their movement through phloem tissues [123]. However, to successfully
infect the host, plant viruses encode proteins, known as viral suppressors of RNA silenc-
ing (VSRs), which counteract the antiviral RNA-silencing machinery [127]. Apart from
suppressing RNA silencing, VSRs also play other roles during viral infection, including
symptom induction, replication, and cell-to-cell movement. Therefore, it is of paramount
importance to explore novel RNA silencing suppressors and gain a comprehensive under-
standing of their interactions with the plant’s RNA-silencing machinery. Several studies
have been conducted on VSRs, including the identification of their structures and func-
tions, but there is still much to learn about these proteins and their roles in viral infections.
Geminiviruses encode various proteins, such as C2, C4/AC4, V2/AV2, Rep, and C1 (en-
coded by the begomovirus-associated beta satellite), which have been reported to suppress
RNA silencing at the post-transcriptional level (PTGS) and/or at the transcriptional level
(TGS) in different ways [17,128].

In plants, gene silencing occurs through two mechanisms: PTGS and TGS [128–130].
TGS is a process that occurs within the nucleus and hinders gene expression by blocking
the promoter region, thus preventing the binding of transcriptional machinery. Various
methods contribute to TGS, including RNA-directed DNA methylation (RdDM), genomic
imprinting, paramutation, transposon silencing, transgene silencing, and position effects.
TGS is primarily responsible for silencing transposons and transgenes, while PTGS plays a
secondary role in this regulatory process. In contrast, PTGS takes place in the cytoplasm
and specifically targets and degrades the mRNA transcripts of specific genes. The methods
utilized for PTGS encompass RNA interference (RNAi), clustered regularly interspaced
short palindromic repeats (CRISPR/Cas9), and nonsense-mediated mRNA decay (NMD).
Recent research has extensively explored gene silencing techniques, such as RNAi, virus-
induced gene silencing, and CRISPR/Cas9 to bolster plant resistance against pathogens,
improve drought tolerance, and engineer the ligno-cellulosic pathway. Within plants,
small RNAs (sRNAs), like microRNA (miRNA) and small interfering RNA (siRNA), play
a pivotal role in their defense against pathogens [131,132], while it is commonly believed
that plant defenses mediate whitefly–begomovirus interactions [94,133,134].

The nutritional content of plants infected with begomoviruses may influence their
suitability for whiteflies. In one study, African cassava B. tabaci from Uganda had a higher
growth rate on East African cassava mosaic virus-Uganda (EACMV-UG)-infected plants,
which correlated with a significant increase in the concentration of four amino acids in the
phloem sap of virus-infected cassava plants. This suggests that the favorable interaction
between whiteflies and EACMV-UG may be facilitated by improved nutrition in virus-
infected plants. In contrast, the MEAM1 whitefly performed better on tobacco plants
with TYLCCNV infection than on plants without infection [135]. However, no significant
differences were found in the amino acid profiles, percentage of essential amino acids, or
sugar-to-amino-acid ratio between infected and uninfected tobacco plants.

Managing and controlling begomovirus infections has become increasingly challeng-
ing due to the rapid evolution of new viral strains. Despite significant advancements in con-
trol strategies, such as RNAi, transgenics, and markers assisting breeding for host-resistant
(R) genes, begomovirus remains a major problem in commercial crops. Begomoviruses
have a high mutation rate of 10−4 substitutions per site per year (subs/site/year), which if
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accompanied by selection pressure imposed by the control strategies mentioned above, and
in most cases can lead to the evolution of resistant breaking isolates of the viruses [136].

The relationship between begomoviruses and whitefly vectors is often indirect mutual-
ism, as the whiteflies tend to perform better on virus-infected plants, which promotes virus
spread and has significant agronomic effects. However, there is a lack of an understanding
regarding how plant viruses manipulate plant defenses to promote vector performance.
Recent studies have found that the C2 protein of begomoviruses lacking DNA satellites
suppresses plant defenses against whitefly vectors, as demonstrated in the case of whitefly
B. tabaci and tobacco. Specifically, the C2 protein of TYLCV, a devastating begomovirus that
affects crops worldwide, interacts with plant ubiquitin to impede the breakdown of the
JAZ1 protein. This interaction effectively hampers the JA defense pathway and suppresses
the activity of terpene synthase genes regulated by MYC2; as a result, the enhanced sur-
vival and reproductive capabilities of whitefly vectors are facilitated [137]. These findings
suggest that the inhibition of ubiquitination by begomovirus C2 protein may be a general
mechanism in begomovirus, whitefly, and plant interactions. The interaction between gemi-
niviruses and insect vectors has significant implications for the distribution and population
dynamics of the vectors, as well as the epidemiology of begomovirus diseases.

5. Viral Adaptation and Genetic Changes during Plant–Virus–Vector Interactions

The understanding of genetic diversity in viruses is crucial for comprehending virus
epidemiology and evolution. While the impact of genetic variation on virus–host interac-
tions is well-established, its influence on virus–insect vector interactions is less understood.
Mutation, recombination, and reassortment are the key drivers of genetic variation in
viruses [138]. Before successfully infecting cells in new hosts, viruses must overcome the
defensive responses of the host. To resist or tolerate infection, plants have evolved diverse
mechanisms that restrict the replication and movement of viruses [139–145]. Concurrently,
viruses have developed counteractive tactics to evade or suppress the host’s defense mech-
anisms [137,146]. This perpetual battle between plant defense mechanisms and viruses
stimulates a co-evolutionary dynamic, influencing both entities involved.

Virus evolution is a dynamic process that leads to alterations in the genetic composition
of viral populations over time. This process gives rise to novel viral variations, strains, and
species, each possessing unique biological characteristics, including the ability to adapt to
diverse host environments. This evolutionary process is influenced by various factors, such
as hosts, vectors, the environment, and the viruses themselves [147,148]. The evolutionary
trajectory of begomoviruses is influenced by the interplay of genetic drift and selection
pressures stemming from host and vector factors. Within the viral population, random
genetic variations or those that provide a competitive edge gradually permeate, giving rise
to the emergence of new viral strains or species with unique biological characteristics.

While whiteflies transmit begomoviruses to plants, the virus particles have the poten-
tial to undergo mutations or recombination events with other related viruses present in the
whitefly population [149,150]. These changes can alter virus properties, such as the host
range, virulence, or transmissibility. Whiteflies may also selectively transmit certain virus
variants, leading to changes in the overall genetic composition of the virus population and
impacting its evolution and adaptation to different hosts. In conclusion, genetic variation
is a key factor in the epidemiology and evolution of begomoviruses. Changes that occur
during the transmission via whiteflies to plants can affect virus properties and influence
their interactions with hosts and insect vectors. Further research is needed to fully under-
stand the significance of genetic variation in virus–insect vector interactions. The process of
recombination has led to the emergence of various recently identified species by combining
genetic material from viruses that are either closely related or phylogenetically distant.
Within the Begomovirus genus, notable examples include tomato yellow leaf curl sardinia
virus, tomato yellow leaf curl Axarquia virus, sweet potato leaf curl Canary virus, tomato
leaf curl Mahé virus, and tomato leaf curl Yunnan virus, all of which have originated as
new species through recombination.
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Genetic variations within viral populations, genetic drift, and selection pressures
from factors, such as the host, vector, and environment, collectively shape the evolution
of viruses. Viruses, with their rapid replication rate exceeding that of their hosts, undergo
constant changes to elude host immune responses while preserving their functionality
across diverse hosts and vectors [151,152].

The relationship among plants, whiteflies, and begomoviruses is crucial for under-
standing the population dynamics and epidemiology of these organisms [153,154]. Several
begomovirus species, including TYLCV associated with either the MEAM1 or Mediter-
ranean cryptic species of the B. tabaci complex, have spread to different countries and
regions [155–157]. In some cases, plant-mediated interactions between whiteflies and be-
gomoviruses may have facilitated their introduction into new territories [94,135]. Plant
defenses exert a dynamic effect on the adjustments and connections between vectors and
pathogens. The modifications that begomoviruses undergo during transmission through
whitefly vectors significantly contribute to boosting their genetic diversity, adaptability,
and capacity to infect and proliferate across diverse host plants. Nevertheless, it is crucial
to recognize that the precise changes observed might differ based on variables, such as the
begomovirus strain, the whitefly vector species, and the specific host plant involved.

6. Conclusions and Future Prospects

Begomoviruses and whitefly species co-evolve as a result of genetic modifications
in the virus genome, which call for intimate begomovirus–plant–whitefly interactions.
Dynamic environmental conditions control these relationships. The manipulation issue
can be confounding since some research demonstrates alterations in viruses and their
vectors, while others claim that these changes may only be speculative. According to
our perspective, begomoviruses affect the host and vector, respectively, making them
more attractive to whiteflies and changing their feeding habits. To better understand
begomovirus–plant–whitefly interactions, more research is needed because it is unclear
whether these alterations are real or hypothetical. Plant virus epidemic prediction models
can now be created because of recent technological advancements. Utilizing emerging
technologies, like metagenomics, wisely and combining these contemporary tools with
established techniques may help us better understand the intricate relationships between
begomoviruses and whitefly vectors. This understanding may help us control the spread
of begomoviruses and their whitefly vectors.
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