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Abstract: To identify sets of genes that exhibit similar expression characteristics, co-expression
networks were constructed from transcriptome datasets that were obtained from plant samples
at various stages of growth and development or treated with diverse biotic, abiotic, and other
environmental stresses. In addition, co-expression network analysis can provide deeper insights
into gene regulation when combined with transcriptomics. The coordination and integration of all
these complex networks to deduce gene regulation are major challenges for plant biologists. Python
and R have emerged as major tools for managing complex scientific data over the past decade. In
this study, we describe a reproducible protocol POTFUL (pant co-expression transcription factor
regulators), implemented in Python 3, for integrating co-expression and transcription factor target
protein networks to infer gene regulation.
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1. Introduction

For their growth and development under a wide spectrum of environmental condi-
tions, diverse organisms including plants and animals rely on the regulation of finely tuned
gene expression [1]. An indispensable component of gene regulation is transcription factors
(TFs), which interact with other regulatory constituents to form gene regulatory networks
(GRNs) that govern a variety of cellular processes [2–4]. In addition to regulating mRNA
levels, GRNs often interact with metabolic networks and environmental cues to specify
spatial and temporal patterns [3,4]. However, it remains unclear what exactly drives the
correlated expressions between groups of genes [5]. Even under relatively stable physio-
logical conditions, i.e., Drosophila melanogaster, the collective profile of gene expressions
in each cell type or tissue does not remain static, since genes are continuously regulating
each other [6,7]. When multiple TFs target the same genes, co-expression is accentuated,
and exhibits time-shifted behavior; this tendency increases if multiple TFs target the same
genes [8]. Transcriptional/translational feedback loops control the growth and develop-
ment of plants [9,10]. Similarly, various aspects of plant biology are influenced by the
GRN, including gene expression, metabolism, developmental processes, and responses
to stress [11–16]. In addition, most TF–target interactions rewire transiently in response
to stimuli, while a few acts permanently as hubs. The concept of network centrality and
network motif has been used in the past, such as in [17–20], in order to study GRNs and
their rewiring under stimuli.

In addition to GRN inferences, co-expression networks are useful for understand-
ing gene regulation [17,21]. Through co-expression network analyses, genes with similar
expression patterns across varying [22] or non-varying [23] conditions can be discov-
ered, clustered, and explored simultaneously. Often, genes that encode proteins from the
same pathway or complex co-regulate, even if their functions are unrelated [24,25]. A
co-expression network inference consists of three basic steps: (i) estimating the pairwise cor-
relation coefficient from gene expression profiles; (ii) eliminating low-correlation gene pairs;
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and (iii) clustering the genes into modules or clusters [22,26,27]. An edge and node network
are constructed based on genes and gene pairs above a certain threshold [5,28]. Genes
participating in the same regulatory pathway or sharing the same function tend to display
similar expression profiles, leading to modules or clusters. To provide researchers with
system-level resources, several comparative co-expression databases have been developed
in the last few years [25,29].

The weighted gene co-expression network analysis (WGCNA) method (also R pack-
ages) for the inference of co-expression networks [30] provides the option of constructing
the co-expression network by either inferring highly positive edges only or both highly posi-
tive and negative edges [31]. Using public datasets of uncut roots and 3-h post-decapitation
tissue samples, we investigated underlying genes involved in root regeneration [32]. In
our pipeline, co-expression and GRN are determined separately using expression profiles.
Then, a network-based integrative approach is used to merge the inferred co-expression
and GRN [33,34]. After removing non-overlapping edges, a shared network becomes a
co-expressed regulatory network (CERN). As a result, the CERN overcomes the short-
comings of both the co-expression network and GRN, namely the direction of regulation
and evidence of co-existence. In addition, CERN-uncut and CERN-(3 h post-decapitation)
were compared to discover universal elements involved in root regeneration. It is possible
to extend this pipeline to any plant species to integrate gene regulatory networks and
co-expression networks, depending on the availability of the TF–target network. Inter-
species comparison can be accomplished using a common ID system for homologous genes
and proteins.

2. Results

In response to multiple stresses within a cell type, the POTFUL pipeline is expected to
retrieve a set of genes that are involved in regulating cellular function directly or indirectly.
Stress responses in plants are tightly correlated with developmental processes, but their
interactions are poorly understood [35,36]. Using an integrative approach, the POTFUL
pipeline combines the GRN and co-expression to figure out the omnipresent regulator
between samples that are known TF–target pairs and co-expressed together. For the co-
expression network to be merged with the GRN, its edges first need to be duplicated so
that bi-directional information can be stored in the memory. If nodes A and B have a
common edge (e.g., A→ B), then an edge (B→ A) will also be created. As TF–target edges
are compared to edge-duplicated co-expression networks, only the common edges are
retained for the further purposes of analysis, while TF–target directionality is preserved
for the purposes of further biological interpretation. In the current study, we obtained
transcriptome datasets that are derived from two different environmental stresses, i.e.,
altered uncut and 3 h post-decapitation deprivation conditions. At first, we inferred
co-expressions for uncut and 3 h post-decapitation conditions using the expression data
of respective samples. For co-expression network inference, the WGCNA R (v1.72-1)
package was used, which clusters genes by their expression profiles unsupervised. The
minClusterSize parameter in the cutreeDynamic R function can be optimized to adjust
number of WGCNA modules or clusters (see Appendix C, Problem 2) [37].

The uncut co-expression network encompasses 8921 nodes and 563,244 edges, and
is composed of 13 diverse modules. In the case of a 3-h post-decapitated co-expression
network, we obtained the same number of WCGNA modules, e.g., 13, which contain
4756 nodes and 166,625 edges (Figure 1a,b). Generally, more samples lead to more robust
and refined results, so 30 uncut samples have a larger co-expression network than the
samples taken three hours after decapitation. Thus, the number of overlapping modules
would be few or none between two networks of different sizes. Uncut samples are also
expected to exhibit more co-correlated gene expression patterns, so the uncut co-expression
network contains more nodes than decapitated samples. POTFUL determines which
WGCNA modules are overrepresented within one network based on their co-expression
in two other networks. A significant correlation exists between the four uncut and 3 h
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post-decapitated co-expression modules (brown: turquoise (q-value = 3.23 × 10−7), red:
green-yellow (q-value = 1.726343 × 10−2), black: pink (q-value = 1.475838 × 10−11), ma-
genta: purple (q-value = 2.583919 × 10−7)) (Figure 1e). In the enrichment dot plot, the
significance of enrichment is depicted using three colors of dot/circles, p < 0.001 (***): green,
p < 0.01 (**): gold, and p < 0.05 (**): yellow. Moreover, the names of modules (by color) are
arranged, left to right and bottom to top, starting with “turquoise”, “blue”, “brown”, etc.
It ensures that the most important modules are cornered at the bottom left of the enrich-
ment dot plot. Among the combinations, the blue (3 h post-decapitation): yellow (uncut)
combination is the most important, since they are high-priority modules and significantly
enriched, p < 0.001 (Figure 1e). The gene regulatory network (GRN) is inferred from gene
expression data using the GRNBoost algorithm (GRNBoost2 from Arboreto (v 0.1.6) Python
package) [38–42].

GRNBoost2 produces plenty of putative ranked/weighted (importance score) TF–
target integrations. False positive TF–target pairs can be pruned in a variety of ways. Using
weight filters (importance) when exporting GRNBoost2 results would be one simple way
to filter. To eliminate false positives, we removed the GRN edges that did not appear in
the curated TF–target network. If a known TF–target network is not provided, POTFUL
will not filter putative GRN edges, or this feature can be turned off by setting Filter to ‘0’ or
‘false’ in the ‘TF_reg’ function.

As a result, uncut (1015 nodes and 1095 edges) and 3 h post-cut (266 nodes and
229 edges) “co-expressed–GRN” networks were constructed. The number of genes in
the turquoise module for both the uncut and decapitated (3 h) is the highest., whereas
the number of TF–target pairs in the “co-expressed–GRN” network is a maximum in the
yellow module (TF:44 and Not TF–target:204) for the uncut network; for decapitated (3 h)
network, the maximum TF–target pairs are in the blue module (TF:23 and Not TF–target:48)
(Figure 1c,d). There are 20 shared nodes (yellow), 995 unique uncut nodes (green), and
246 decapitated (3 h) unique nodes (gold) in the combined co-expressed–GRN (1261 nodes
and 1321 edges) (Figure 1f).

Functional enrichment analysis was performed on an overlapping-co-expression–
GRN (Figure 1f and Table S1) using the Metascape tool [43]. Among all 20 shared
nodes (yellow) in the overlapping co-expressed–GRN, three genes (AT2G18380/GATA20,
AT2G45660/AGL20, and AT3G01530/MYB57) are involved in the reproductive shoot sys-
tem development biological process. Genes unique to only the uncut (green) samples are
significantly enriched (Log(q-value) < −1.3), with “negative regulation of response to salt
stress”, “positive regulation of DNA-templated transcription”, “regulation of secondary
cell wall biogenesis”, “regulation of defense response”, and “cellular response to hypoxia”.
Interestingly, the unique gene (gold) was significantly enriched (3 h post-decapitated) in
“positive regulation of cellular biosynthetic process”. The enrichment of post-cut samples
in “positive regulation of cellular biosynthetic process” correlates with the original experi-
mental design; that is, after decapitation, it can be expected by the plant to shift its focus
more on biosynthesis-damaged tissues to support regeneration.
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Figure 1. POTFUL analysis of uncut and 3 h post-decapitated samples. A bar plot showing the num-
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Figure 1. POTFUL analysis of uncut and 3 h post-decapitated samples. A bar plot showing the
numbers of genes found in WGCNA modules for uncut (a) and 3 h post-decapitation (b). The
co-expressed–GRNs of uncut (c) and 3 h post-decapitation (d). (e) Module-to-module comparison of
gene co-expression networks, enrichment analysis. The dot-plot of enrichment shows three colors of
dots/circles: green for p < 0.001 (***), and yellow for p < 0.05 (*). Where NE stands for not enriched.
(f) The colors of the nodes in the co-expressed–GRNs overlap indicate exclusive (uncut: green and
3 h post-decapitation: gold) and shared nodes (yellow).
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3. Discussion

We investigated the transcriptional data of plants as a case study and created a co-
expression network followed by a GRN. The co-expression modules were also compared
statistically using WGCNA modules as a basis for the comparison. In addition to the
co-expressed pairs, a significant number of these pairs were also found to be included
in the GRN. For multicellular organisms such as plants and animals to respond to stress,
thousands of genes and their regulatory coordination are required [44]. Often, some genes
co-express and act as transcriptional regulators, directly or indirectly. Several purposes
can be served by gene co-expression networks, including identifying regulatory genes,
prioritizing candidate genes for diseases, and annotating functional genes. Correlation net-
works cannot identify causality or differentiate regulated genes from regulatory genes. The
POTFUL pipeline goes beyond traditional co-expression network analysis by combining
differential co-expression analysis with co-expressed–GRNs [45,46]. The applicability of
POTFUL is not limited to plant species. Due to their role in phenotypic differences, in differ-
ent disease states, tissue types, and developmental stages, POTFUL can identify genes with
different co-expression partners (see Appendix D). As more omics layers are considered,
such as protein–protein interactions and methylome analysis, further enhancements can be
made to these genes’ regulatory roles. In summary, POTFUL is a useful tool for comparing
pairs of co-expression networks, but it is important to be aware of its limitations before
using it (see Appendix B, Limitations).

4. Materials and Methods

It is sufficient to have the expression profiles of two differentiating bio-samples (e.g.,
uncut and decapitated), the TF–target interaction network, and a list of all transcripts
relating to the organism being studied. Apart from the computation device, there is no
need for reagents or other materials. As part of this protocol, all analysis steps are carried
out using Python, an interpreted, high-level general-purpose programming language that
can be used on a wide variety of operating systems, including LINUX, Windows, and
macOS. Currently, the protocol is written in Python version 3.10.4 on a Linus-based system
(Red Hat Enterprise Linux version 7.9 (Maipo)). In addition to Python, R packages and
tools are required for several analyses such as WGCNA, though those analyses are not
part of this protocol. The protocol can be run on most UNIX and Linux distributions;
however, Ubuntu 22 and Fedora 36, Red Hat 7, and macOS Monterey are recommended.
In addition to HPC devices, this protocol has been tested on other devices, with the
following specifications:

• OS: Windows 11 (5.10.102.1-Microsoft-standard-WSL2), and Fedora 36;
• RAM: 16 GB;
• SDD: 256 GB;
• CPU: Intel i7;
• Conda 4.12.0.

The conda environment file ‘POTFUL.yml’ can be used to install all the necessary
Python packages, as explained in the Section 4.

Furthermore, this protocol requires a TF list, TF–target graph/network data, and
transcriptomic data. In this protocol, GRNs were inferred using grnboost2 (genie3), and
among other possibilities for denoising GRNs, we used a curated TF–target network.
The TF–target interactions used in the case study for Arabidopsis thaliana were collected
from various sources to combine and make a comprehensive TF–target network. This
includes an Arabidopsis thaliana regulatory network (AtRegNet) [47], a plant cistrome
database (DAP_seq) [48], an Arabidopsis transcriptional regulatory map (ARTM) [48], Cu-
rated_1 [49], TF2Network (Curated_2) [50], and Ath [47,49–51]. Furthermore, the case study
uses RNA-seq data from uncut meristems and root meristem stumps, post-cut (GSE74488).
Uncut root RNA-seq libraries were prepared using 7-day-old plant roots, as described
by [32]. Following the decapitation of additional roots, samples were collected after three
hours, sixteen hours, and forty-six hours. To maintain consistency with expression variation
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depending on time and condition, we compared root samples from uncut roots and root
tissue samples taken three hours after decapitation.

In addition to the above example, we included additional analyses that combine data
from 88 microarray samples [52]. These samples were divided into three groups to compare
the effects of different types of stress on gene expression. The first group was the control
group (GSE5620). These samples were not exposed to any stress and were used to compare
the other two groups. The second group (GSE5624) was exposed to drought stress, and
the third group (GSE5623) was exposed to salt stress. The researchers wanted to see how
drought and salt stress affect gene expression (Figures S1–S3) (Table S2).

Note that if this protocol is to be applied to species other than A. thaliana (e.g., other
plants or animals), then the raw datasets must be carefully annotated to match the IDs
across the co-expression and TF–target network.

The POTFUL protocol can be executed in six steps, which includes sample collec-
tion, high-throughput sequencing analysis, co-expression network, WGCNA modules,
GRN inference, and functional enrichment analysis. These sections are discussed in more
detail below.

The POTFUL GitHub repository can be cloned using the following command if using
a Linux/Unix operating system, or the repository can be downloaded as a zipped folder
from GitHub (see Appendix A).

$ git clone https://github.com/<user_id>/POTFUL.git
$ cd POTFUL
Use the following command to set up a conda virtual environment (‘POTFUL.yml’)

and install all required packages. Additional .yml files are provided in the repository for
Windows and Mac users, and in addition to Python packages, RUST must be installed.

$ conda env create -n POTFUL --file POTFUL.yml
The pipeline is divided into six major steps. Below is a step-by-step description of

each step.

4.1. Choosing Plant Materials and Growing Conditions for High-Throughput Sequencing Analysis

Duration: Couple of weeks
Step 1 establishes the foundation for the anticipated outcome, i.e., the similarity or

dissimilarity of the regulatory pattern between the two samples. It could take a couple
of weeks from sowing seeds to collecting samples at the desired development stage, to
preparing a library, to sequencing the results. Though in this study, a public dataset is used,
GSE74488, uncut root samples (30 samples) were compared with root samples taken three
hours after decapitation (67 samples). WGCNA requires a minimum of 15 samples, and 20 is
the recommended sample number to be able to construct a co-expression network [53]. Even
though the minimum number of samples for GENIE3 [38] is not explicitly recommended,
it has been observed that recall increases as the number of samples increases [54].

4.2. High-Throughput Sequencing Analysis Data

Duration: 2 days
Depending upon the previous step, a high-throughput sequencing analysis is needed.

As mentioned above, the expression values (GSE74488: GSE74488_sc_expression.csv.gz)
were obtained from the Gene Expression Omnibus (GEO) repository for this study. Thus,
no NGS analysis was required. For this framework to work, besides the NGS sequencing
analysis, a proper annotation is paramount (see Appendix C, problem 1). For interspecies
analysis, it is essential to perform the ortholog analysis once NGS analysis has been
completed, and assign unique identifiers to each pair of orthologs of two species before
proceeding to pairwise comparisons for inter-species samples.
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4.3. Co-Expression Network and WGCNA Modules

Duration: 2 h
Following the standard WCGNA protocol, two co-expression networks were con-

structed based on the uncut and 3-h post-cut expression profiles. As the scale-free topology
fit index for both the uncut and decapitated samples failed to reach values above 0.8 for
reasonable powers, the soft-thresholding was set to 16 for the uncut and 12 for the 3 h
decapitated samples [53]. The modules were identified using the WGCNA dynamic tree
cut algorithm. To identify the modules, deepSplit and minClusterSize were the required
parameters. Cluster splitting sensitivity was controlled by either a logical or integer (0–4)
value for deepSplit [37]. A standalone module must have a minimum number of genes,
which is controlled by minClusterSize. For both datasets, the deepSplit parameter was set
to zero, whereas minClusterSize was set to 300 and 250 for the uncut and 3 h decapitated
samples, respectively. The edges and node table need to be exported as the tab-separated
text file format to be able to load in POTFUL using the exportNetworkToCytoscape function,
and the adjacency threshold for including edges in the output was set to 0.9.

4.4. Inference of Gene Regulatory Network

Duration: 15 min
The expression profile and grnboost2 [38] were used to infer the weighted gene regula-

tory network. In this case study, we used the Python implementation of grnboost2 for infer-
ring the GRN using the TF list and expression data (https://arboreto.readthedocs.io/en/
latest/index.html (accessed on 29 April 2023)). The GRN can be loaded as a tab-separated
text file in POTFUL. Below is an example script regarding GRN analysis using grnboost2.
#!/usr/bin/env python3
import pandas as pd
from arboreto.algo import grnboost2, genie3
from arboreto.utils import load_tf_names
from distributed import LocalCluster, Client

tfdf = pd.read_csv(“Auxiliary_File/Arabidopsis_TF and family.csv”)
tf_names = list(set(tfdf[‘Protein ID’].values.tolist()))
len(tf_names)

ex_matrix = pd.read_csv(“1_Expression_data/Expr_Uncut.csv”, sep=‘,’,
index_col=0).T
ex_matrix.head()

local_cluster = LocalCluster(n_workers=10,
threads_per_worker=1,
memory_limit=8e9)

custom_client = Client(local_cluster)

network = grnboost2(expression_data=ex_matrix,
tf_names=tf_names, verbose=True,

client_or_address=custom_client)
network.to_csv(‘3_GRN_data/GSE74488_Uncut_arboreto_regnet.tsv’, sep=‘\t’,
index=False)
network.head()

Note: The auxiliary files are provided in the GitHub repository, and before moving to
the next step, cloning the repository was performed as described earlier.

4.5. WGCNA Module Enrichment

Duration: 5 min
Below is an example of a module-to-module comparison of the WGCNA module of

the uncut samples with the 3 h decapitated root samples. After the successful execution
of the previous steps, three resulting files were expected (WGCNA node table, WGCNA

https://arboreto.readthedocs.io/en/latest/index.html
https://arboreto.readthedocs.io/en/latest/index.html


Plants 2023, 12, 3618 8 of 15

edge table, and GRN data) for each dataset. All of the files were verified to be in the correct
format and in the current directory or path.

Note that as per convenience, using an appropriate integrated development environ-
ment (IDE) is recommended, such as Jupyter notebook, JupyterLab, or Visual Studio Code,
in order to execute all of the following Python scripts.

a. The following command was used to activate the conda environment:
$ conda activate POTFUL

b. The POTFUL (v v1.0.1) package was loaded:

from POTFUL import POTFUL
POT = POTFUL()

c. All of the auxiliary files were loaded using the following command:

POT.Load_Auxiliary_Files(WGCNA_COLOR_MAP=“Auxiliary_File/WGCNA_COLOR_MAP.csv”,
TF_Targets=“Auxiliary_File/masterTF-target.txt”,
TF_Family=“Auxiliary_File/Arabidopsis_TF and family.csv”)

d. The pre-analyzed (WGCNA and GRN files) files for both datasets were loaded, the
uncut, and 3hpc, using the following command:

# Uncut
POT.Load_Files(Sample_name=“Uncut”,

NODE_File=“2_WGCNA_data/WGCNA_GSE74488_Uncut/Nodes_Uncut.txt”,
EDGE_File=“2_WGCNA_data/WGCNA_GSE74488_Uncut/Edges_Uncut.txt”,
GRN_File=“3_GRN_data/GSE74488_Uncut_arboreto_regnet.tsv”)

# 3hr decapitated root samples
POT.Load_Files(Sample_name=“3hpc”,

NODE_File=“2_WGCNA_data/WGCNA_GSE74488_3hpc/Nodes_3hpc.txt”,
EDGE_File=“2_WGCNA_data/WGCNA_GSE74488_3hpc/Edges_3hpc.txt”,
GRN_File=“3_GRN_data/GSE74488_3hpc_arboreto_regnet.tsv”)

# Uncut

Critical: The datasets were verified to have loaded correctly, and their index num-
bers were printed for future reference (i.e., 0: Uncut and 1: 3hpc) using the following
Python script:
Samples = POT.Samples
for i in range(len(Samples)):

print(i, Samples[i])
0 Uncut
1 3hpc

e. As part of the enrichment analysis, POTFUL uses Enrichr API (GSEApy); to be able
to do so using WIGCNA modules, a GMT (Gene Matrix Transposed file format
(*.gmt)) file was created. In the WGCNA module *.gmt file, each row consists of three
components, first the name of the WGCNA module (e.g., turquoise, tan, etc.), then
the description (e.g., WGCNA3hpc, WGCNAunct, etc.), and finally the list of all of
the genes in the module. A *.gmt file was created for both samples for enrichment
analysis using the following function for each dataset:

POT.WGCNA_Bucket_GMT()
GMT_base/POTFUL-Uncut.gmt 8921
GMT_base/POTFUL-3hpc.gmt 4756

Note: We verified that the GMT files were created and ready to load using the follow-
ing command:
for i in range(len(Samples)):

print((POT.File[Samples[i]][‘GMT’]))
# GMT_base/POTFUL-Uncut.gmt
# GMT_base/POTFUL-3hpc.gmt
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f. Using the following Python script, a bar chart of the numbers of the genes in each
WGCNA module for each dataset was created (Figure 1a,b):

fig = POT.Plots[Samples[0]][‘WGCNA_BarPlot’]
fig.show()
# Figure 1a
fig = POT.Plots[Samples[1]][‘WGCNA_BarPlot’]
fig.show()
# Figure 1b

Note: The “fig” is a Plotly figure object that can be further modified accordingly to
export a publication quality image, as described below:
fig.update_layout(autosize=False, width=350, height=400,

xaxis_title=“WGCNA Module”, yaxis_title=“Number of genes”,
plot_bgcolor = ‘rgba(0, 0, 0, 0)’,
font=dict(family=“Times New Roman”, size=10, color=“black”))

fig.update_xaxes(showline=True, linewidth=2, linecolor=‘black’, mirror=True)
fig.update_yaxes(showline=True, linewidth=2, linecolor=‘black’, mirror=True)

fig.write_image(“POTFUL_OUT/Uncut.png”, scale=2)
fig.write_image(“POTFUL_OUT/Uncut.svg”, scale=2)

g. Using Fisher’s exact test, the p-value was calculated (hypergeometric test), indicat-
ing whether the overlap between the two module gene lists is significant. As the
background parameter, the nodes of both co-expression networks that were being
compared were used. For assigning significance color codes and significance asterisks,
only ‘Adjusted p-value’ is considered by default. An enrichment analysis of mod-
ules was performed of one sample concerning another sample using the following
command:

POT.WGCNA_Module_Enrichment(Samples[0], Samples[1])

Note: The results of the module enrichment analysis can be accessed as a Python
(Pandas) dataframe using the following command:

print(POT.Data[“Enrichment_Dotplot”])

h. Using the following Python command, the enrichment dot plot was generated, and
a high-quality image was exported. Every dot in the enrichment dot represents the
significance of the enrichment, i.e., green (***), gold (**), and yellow (*). In contrast,
the plus (+) symbol represents not significantly enhanced sets.

fig = POT.Plots[“Enrichment_Dotplot”]

fig.update_layout(
autosize=False,
width=490,
height=500,

font=dict(
family=“Arial”,
size=12,
color=“black”))

fig.write_image(POT.OutDir+f”3hpc__UncutEnri_dot.png”, scale=2)
fig.write_image(POT.OutDir+f”3hpc__UncutEnri_dot.svg”)
# Figure 1c

Note: Each WGCNA module of samples on the y-axis (uncut) was compared to sam-
ples on the x-axis (3hpc). The order of samples in the “WGCNA_Module_Enrichment”
function was changed to do the comparison in the other direction, i.e., (uncut vs. 3hpc)
(i.e., POT.WGCNA_Module_Enrichment(Samples[1], Samples [0])). Additionally, the
“WGCNA_Module_Enrichment” function only accepts two samples.
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4.6. Co-Expression and GRN Sample Overlap

Duration: 5 min

a. The TF–target pairs that did not belong to the known curated TF–target pairs were
filtered out using the following Python command for each sample:

# Uncut
POT.TF_reg(Samples[0], Filter=1)
# 3hpc
POT.TF_reg(Samples[1])

Note: We could choose whether to do this step or not. We included this choice to help
deal with large numbers of TF–target pairs created by prediction tools like GENI3. The
purpose of removing some pairs is to make the analysis smoother, especially when there
are many of pairs to go through.

b. Using the following Python command, the remaining GRN-weighted network was
matched with the co-expression network to keep only those pairs that are co-expressed
and involved in regulation:

# Uncut
POT.merge_reg_coexp(Samples[0])
# 3hpc
POT.merge_reg_coexp(Samples[1])

Note: The network of node pairs that are co-expressed and are TF–target pairs is called
the co-expressed–GRNs.

c. Network centrality analysis was performed on the co-expressed–GRN using the
following command (see Appendix C, Problem 4):

# Uncut
POT.network_centrality(Samples[0])
# 3hpc
POT.network_centrality(Samples[1])

Note: Although this step was optional, it is recommended.

d. The GraphML file was generated, and the network visualized using the following
command (see Appendix C, Problem 3):

# Uncut
POT.generate_graphml_out(Samples[0])
# 3hpc
POT.generate_graphml_out(Samples[1])

e. The CERN was plotted and exported using the following command:

# Uncut
POT.Graph_vis(Samples[0])
POT.Plots[Samples[0]][‘Network_Viz’] .show(POT.OutDir+’Uncut.html’)
# Figure 1d

# 3hpc
POT.Graph_vis(Samples[1])
POT.Plots[Samples[1]][‘Network_Viz’] .show(POT.OutDir+’3hpc.html’)
# Figure 1e

f. The co-expressed–GRNs of both samples were compared and plotted to check for any
overlapping nodes, using the following command:
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POT.netowork_overlap(Samples[0], Samples[1])

# There are 20 nodes overlapping between pair of Graphs
(‘AT5G41920’, ‘AT1G58340’, ‘AT1G18330’, ‘AT2G42150’, ‘AT3G03200’, ‘AT3G04030’,
‘AT1G51220’, ‘AT5G62320’, ‘AT2G45660’, ‘AT1G75390’, ‘AT5G42070’, ‘AT4G08940’,
‘AT3G10113’, ‘AT3G01530’, ‘AT1G75820’, ‘AT1G75388’, ‘AT2G18380’, ‘AT4G36900’,
‘AT5G46590’, ‘AT2G45420’)

POT.Plots[‘Overlap_Network_Viz’].show(‘Overlap.html’)
# Figure 1f

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12203618/s1, Table S1: Co-expression–GRN uncut and 3 h
post-decapitation overlap. Table S2: Co-expression–GRN for control, salt, and drought. Figure S1:
WGCNA modules of co-expression network and module to module comparisons. Bar plot displaying
the number of nodes in each WGCNA co-expression network module (a–f). Comparative module-
to-module enrichment analysis of drought and salt co-expression networks in shoot (g) and root (h)
samples. Significant and high-priority enriched pairs are highlighted with red dotted squircles. In the
enrichment dot-plot, three colors of dots/circles represent the significance levels of enrichment: green
for p < 0.001, gold for p < 0.01, and yellow for p < 0.05; Figure S2: WGCNA module-to-module control
vs shoot and root comparison. Comparative module-to-module enrichment analysis of drought
and salt co-expression networks in shoot (g) and root (h) samples with the control co-expression
network (a–d). Significant and high-priority enriched pairs are highlighted with red dotted squircles.
Within the enrichment dot-plot, the significance levels of enrichment are indicated using three distinct
colors of dots/circles: green for p < 0.001, gold for p < 0.01, and yellow for p < 0.05; Figure S3:
Co-Expressed-Regulatory Network (CERN) comparison. Network overlap of CERNs with respect to
control, drought, and salt sample types. Exclusive nodes are shown in either green or gold, while
common nodes are shown in yellow. The network is plotted using the Gephi tool. References [30,52]
are cited in the supplementary materials.
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Appendix A

POTFUL analysis is explained in a comprehensive set of online tutorials (https://
nilesh-iiita.github.io/POTFUL (13 February 2023), https://nilesh-iiita.github.io/POTFUL/
3_POTFUL_Example.html (13 February 2023)). The tutorials provide Python script in
Jupyter notebook format along with comments and explanations of both the input and
output. Using a Jupyter notebook or an IDE such as Microsoft Visual Studio Code, the user
can execute the code.

https://www.mdpi.com/article/10.3390/plants12203618/s1
https://www.mdpi.com/article/10.3390/plants12203618/s1
https://github.com/nilesh-iiita/POTFUL
https://nilesh-iiita.github.io/POTFUL/3_POTFUL_Example.html
https://nilesh-iiita.github.io/POTFUL/3_POTFUL_Example.html
https://doi.org/10.5281/zenodo.7901425
https://doi.org/10.5281/zenodo.7901425
https://nilesh-iiita.github.io/POTFUL
https://nilesh-iiita.github.io/POTFUL
https://nilesh-iiita.github.io/POTFUL/3_POTFUL_Example.html
https://nilesh-iiita.github.io/POTFUL/3_POTFUL_Example.html
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Appendix B

Limitations

• The protocol enables the comparison of pairs of co-expression networks in a flexible manner.
• TF–target networks are necessary for the construction of co-expressed–GRNs. POTFUL

may not be applicable for non-model plants without a robust list of TFs.
• Different cell types regulate genes differently, and the pattern changes over time. The

protocol cannot be applied to samples of different types of cells.

Appendix C

Troubleshooting
Problem 1: Microarray probe annotation
Potential Solution
The annotation of probesets is very important before inferring the GRN, since it would

be impossible to map co-expressed genes with TF–targets if the same ID system were used.
In general, annotation information is provided in the microarray data softfile (GEO). The
annotation of DNA microarray experiments can be carried out with annotation tools, an R
package, or similar tools.

Problem 2: Number of co-expression modules/clusters
Potential Solutions
For a balanced comparison, both co-expression networks should have equal or al-

most equal numbers of WGCNA modules. To adjust the number of WGCNA modules,
use the minClusterSize parameter in the cutreeDynamic R function described in the
WGCNA tutorial.

Problem 3: Visualization of Network/Graph
Potential Solutions
GraphML files generated by this protocol can be imported into external tools such as

Gephi and Cytoscape for visualization.
Problem 4: Network centrality analysis
Potential Solutions
The network centrality analysis can be performed using the POT.network_centrality()

function. By default, only three centrality analyses are set to be performed. For additionally
required centrality analyses, apply the networkx or custom function on the network, i.e.,
POT.Data[<“Sample_name”>][<“Network”>].

Appendix D

Performance
POTFUL is a protocol designed to integrate the co-expression and transcription factor

target protein networks to infer gene regulation in plants. It is implemented in Python
3, which is a popular programming language used in scientific research. The protocol is
designed to be reproducible, meaning that it can be used by other researchers to perform
similar analyses and obtain comparable results. One potential advantage of POTFUL
is that it allows researchers to integrate multiple types of data, including transcriptome
datasets and protein–protein interaction networks, in order to gain insights into gene
regulation. The protocol also incorporates statistical methods to identify significant co-
expression relationships and transcription factor target protein interactions, which can help
researchers prioritize genes and pathways for further investigation.

The POTFUL protocol can be divided into multiple steps, which includes sample
collection, high-throughput sequencing analysis, co-expression network, WGCNA mod-
ules, GRN inference, functional enrichment analysis, and visualization. The performance
constraints of POTFUL depend on several factors, such as the size of the input data, the
computational resources available, and the efficiency of the algorithms used. For example,
the POTFUL protocol requires the analysis of high-throughput sequencing data, which
can be computationally intensive, especially for larger datasets. The pipeline also relies on
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several algorithms for network inference and analysis, such as grnboost2 and WGCNA,
which can have different computational requirements depending on the size of the in-
put data. In addition, the performance of POTFUL can be affected by the computational
resources available, such as the processing power of the computer or the availability of
high-performance computing (HPC) clusters. The protocol has been tested on a range
of devices, including computers with Intel i7 processors and 16 GB of RAM, but it may
require more powerful hardware for larger datasets or more complex analyses. Finally, the
efficiency of the algorithms used in POTFUL can also affect its performance. While the
protocol relies on established algorithms and software packages, some steps may require
additional tuning or optimization for specific datasets or research questions.

References
1. Kumar, N.; Mishra, B.K.; Liu, J.; Mohan, B.; Thingujam, D.; Pajerowska-Mukhtar, K.M.; Mukhtar, M.S. Network Biology

Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in
Arabidopsis. Int. J. Mol. Sci. 2023, 24, 7349. [CrossRef] [PubMed]

2. Kumar, N.; Mishra, B.; Athar, M.; Mukhtar, S. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using
pySCENIC. Methods Mol. Biol. 2021, 2328, 171–182. [CrossRef] [PubMed]

3. Levine, M.; Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 2005, 102, 4936–4942.
[CrossRef] [PubMed]

4. Davidson, E.; Levin, M. Gene regulatory networks. Proc. Natl. Acad. Sci. USA 2005, 102, 4935. [CrossRef]
5. Mishra, B.; Kumar, N.; Mukhtar, M.S. Systems Biology and Machine Learning in Plant-Pathogen Interactions. Mol. Plant Microbe

Interact. 2019, 32, 45–55. [CrossRef]
6. von Dassow, G.; Meir, E.; Munro, E.M.; Odell, G.M. The segment polarity network is a robust developmental module. Nature

2000, 406, 188–192. [CrossRef]
7. Tyson, J.J.; Chen, K.C.; Novak, B. Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the

cell. Curr. Opin. Cell Biol. 2003, 15, 221–231. [CrossRef]
8. Yin, W.; Mendoza, L.; Monzon-Sandoval, J.; Urrutia, A.O.; Gutierrez, H. Emergence of co-expression in gene regulatory networks.

PLoS ONE 2021, 16, e0247671. [CrossRef]
9. Inoue, K.; Araki, T.; Endo, M. Correction to: Circadian clock during plant development. J. Plant Res. 2018, 131, 571. [CrossRef]
10. Mishra, B.; Sun, Y.; Howton, T.C.; Kumar, N.; Mukhtar, M.S. Dynamic modeling of transcriptional gene regulatory network

uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst. Biol. Appl. 2018, 4, 35. [CrossRef]
11. Millar, A.J. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. Annu. Rev. Plant Biol.

2016, 67, 595–618. [CrossRef] [PubMed]
12. Nohales, M.A.; Kay, S.A. Molecular mechanisms at the core of the plant circadian oscillator. Nat. Struct. Mol. Biol. 2016, 23,

1061–1069. [CrossRef] [PubMed]
13. Huang, R.C. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

Biomed. J. 2018, 41, 5–8. [CrossRef]
14. Ritonga, F.N.; Chen, S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. Plants 2020, 9, 560.

[CrossRef] [PubMed]
15. Kidokoro, S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Transcriptional regulatory network of plant cold-stress responses. Trends

Plant Sci. 2022, 27, 922–935. [CrossRef]
16. Hoang, X.L.T.; Nhi, D.N.H.; Thu, N.B.A.; Thao, N.P.; Tran, L.P. Transcription Factors and Their Roles in Signal Transduction in

Plants under Abiotic Stresses. Curr. Genom. 2017, 18, 483–497. [CrossRef] [PubMed]
17. Kumar, N.; Mishra, B.; Mukhtar, M.S. A pipeline of integrating transcriptome and interactome to elucidate central nodes in

host-pathogens interactions. STAR Protoc. 2022, 3, 101608. [CrossRef]
18. Kumar, N.; Mukhtar, M.S. Ranking Plant Network Nodes Based on Their Centrality Measures. Entropy 2023, 25, 676. [CrossRef]
19. Luscombe, N.M.; Babu, M.M.; Yu, H.; Snyder, M.; Teichmann, S.A.; Gerstein, M. Genomic analysis of regulatory network

dynamics reveals large topological changes. Nature 2004, 431, 308–312. [CrossRef]
20. Kumar, N.; Mukhtar, S. Building Protein-Protein Interaction Graph Database Using Neo4j. Methods Mol. Biol. 2023, 2690, 469–479.
21. Mishra, B.; Kumar, N.; Mukhtar, M.S. Network biology to uncover functional and structural properties of the plant immune

system. Curr. Opin. Plant Biol. 2021, 62, 102057. [CrossRef] [PubMed]
22. Serin, E.A.; Nijveen, H.; Hilhorst, H.W.; Ligterink, W. Learning from Co-expression Networks: Possibilities and Challenges. Front.

Plant Sci. 2016, 7, 444. [CrossRef] [PubMed]
23. Cortijo, S.; Bhattarai, M.; Locke, J.C.W.; Ahnert, S.E. Co-expression Networks From Gene Expression Variability Between

Genetically Identical Seedlings Can Reveal Novel Regulatory Relationships. Front. Plant Sci. 2020, 11, 599464. [CrossRef]
[PubMed]

24. Stuart, J.M.; Segal, E.; Koller, D.; Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules.
Science 2003, 302, 249–255. [CrossRef] [PubMed]

https://doi.org/10.3390/ijms24087349
https://www.ncbi.nlm.nih.gov/pubmed/37108512
https://doi.org/10.1007/978-1-0716-1534-8_10
https://www.ncbi.nlm.nih.gov/pubmed/34251625
https://doi.org/10.1073/pnas.0408031102
https://www.ncbi.nlm.nih.gov/pubmed/15788537
https://doi.org/10.1073/pnas.0502024102
https://doi.org/10.1094/MPMI-08-18-0221-FI
https://doi.org/10.1038/35018085
https://doi.org/10.1016/S0955-0674(03)00017-6
https://doi.org/10.1371/journal.pone.0247671
https://doi.org/10.1007/s10265-018-1015-z
https://doi.org/10.1038/s41540-018-0071-2
https://doi.org/10.1146/annurev-arplant-043014-115619
https://www.ncbi.nlm.nih.gov/pubmed/26653934
https://doi.org/10.1038/nsmb.3327
https://www.ncbi.nlm.nih.gov/pubmed/27922614
https://doi.org/10.1016/j.bj.2018.02.003
https://doi.org/10.3390/plants9050560
https://www.ncbi.nlm.nih.gov/pubmed/32353940
https://doi.org/10.1016/j.tplants.2022.01.008
https://doi.org/10.2174/1389202918666170227150057
https://www.ncbi.nlm.nih.gov/pubmed/29204078
https://doi.org/10.1016/j.xpro.2022.101608
https://doi.org/10.3390/e25040676
https://doi.org/10.1038/nature02782
https://doi.org/10.1016/j.pbi.2021.102057
https://www.ncbi.nlm.nih.gov/pubmed/34102601
https://doi.org/10.3389/fpls.2016.00444
https://www.ncbi.nlm.nih.gov/pubmed/27092161
https://doi.org/10.3389/fpls.2020.599464
https://www.ncbi.nlm.nih.gov/pubmed/33384705
https://doi.org/10.1126/science.1087447
https://www.ncbi.nlm.nih.gov/pubmed/12934013


Plants 2023, 12, 3618 14 of 15

25. Rao, X.; Dixon, R.A. Co-expression networks for plant biology: Why and how. Acta Biochim. Biophys. Sin. 2019, 51, 981–988.
[CrossRef]

26. Liseron-Monfils, C.; Ware, D. Revealing gene regulation and associations through biological networks. Curr. Plant Biol. 2015, 3,
30–39. [CrossRef]

27. Li, Y.; Pearl, S.A.; Jackson, S.A. Gene Networks in Plant Biology: Approaches in Reconstruction and Analysis. Trends Plant Sci.
2015, 20, 664–675. [CrossRef]

28. Kumar, N.; Mishra, B.; Mehmood, A.; Mohammad, A.; Mukhtar, M.S. Integrative Network Biology Framework Elucidates
Molecular Mechanisms of SARS-CoV-2 Pathogenesis. iScience 2020, 23, 101526. [CrossRef]

29. Proost, S.; Mutwil, M. PlaNet: Comparative Co-Expression Network Analyses for Plants. Methods Mol. Biol. 2017, 1533, 213–227.
[CrossRef]

30. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef]

31. Dai, R.; Xia, Y.; Liu, C.; Chen, C. csuWGCNA: A combination of signed and unsigned WGCNA to capture negative correlations.
bioRxiv 2019, 288225. [CrossRef]

32. Efroni, I.; Mello, A.; Nawy, T.; Ip, P.L.; Rahni, R.; DelRose, N.; Powers, A.; Satija, R.; Birnbaum, K.D. Root Regeneration Triggers
an Embryo-like Sequence Guided by Hormonal Interactions. Cell 2016, 165, 1721–1733. [CrossRef] [PubMed]

33. Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney,
D.L.; et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020, 583, 459–468. [CrossRef]
[PubMed]

34. Mishra, B.; Kumar, N.; Shahid Mukhtar, M. A rice protein interaction network reveals high centrality nodes and candidate
pathogen effector targets. Comput. Struct. Biotechnol. J. 2022, 20, 2001–2012. [CrossRef] [PubMed]

35. Iyer-Pascuzzi, A.S.; Jackson, T.; Cui, H.; Petricka, J.J.; Busch, W.; Tsukagoshi, H.; Benfey, P.N. Cell identity regulators link
development and stress responses in the Arabidopsis root. Dev. Cell 2011, 21, 770–782. [CrossRef] [PubMed]

36. Cejudo, F.J.; Sandalio, L.M.; Van Breusegem, F. Understanding plant responses to stress conditions: Redox-based strategies. J. Exp.
Bot. 2021, 72, 5785–5788. [CrossRef] [PubMed]

37. Nia, A.M.; Chen, T.; Barnette, B.L.; Khanipov, K.; Ullrich, R.L.; Bhavnani, S.K.; Emmett, M.R. Efficient identification of multiple
pathways: RNA-Seq analysis of livers from 56Fe ion irradiated mice. BMC Bioinform. 2020, 21, 118. [CrossRef]

38. Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Inferring regulatory networks from expression data using tree-based
methods. PLoS ONE 2010, 5, e12776. [CrossRef]

39. Rocklin, M. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the 14th Python in
Science Conference, Austin, TX, USA, 6–12 July 2015; p. 136.

40. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
41. Aibar, S.; Gonzalez-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts,

P.; Aerts, J.; et al. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods 2017, 14, 1083–1086. [CrossRef]
42. Marbach, D.; Costello, J.C.; Kuffner, R.; Vega, N.M.; Prill, R.J.; Camacho, D.M.; Allison, K.R.; Consortium, D.; Kellis, M.; Collins,

J.J.; et al. Wisdom of crowds for robust gene network inference. Nat. Methods 2012, 9, 796–804. [CrossRef] [PubMed]
43. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a

biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [CrossRef]
44. van Dam, S.; Vosa, U.; van der Graaf, A.; Franke, L.; de Magalhaes, J.P. Gene co-expression analysis for functional classification

and gene-disease predictions. Brief. Bioinform. 2018, 19, 575–592. [CrossRef] [PubMed]
45. Amar, D.; Safer, H.; Shamir, R. Dissection of regulatory networks that are altered in disease via differential co-expression. PLoS

Comput. Biol. 2013, 9, e1002955. [CrossRef]
46. Bhar, A.; Haubrock, M.; Mukhopadhyay, A.; Maulik, U.; Bandyopadhyay, S.; Wingender, E. Coexpression and coregulation

analysis of time-series gene expression data in estrogen-induced breast cancer cell. Algorithms Mol. Biol. 2013, 8, 9. [CrossRef]
[PubMed]

47. Palaniswamy, S.K.; James, S.; Sun, H.; Lamb, R.S.; Davuluri, R.V.; Grotewold, E. AGRIS and AtRegNet. a platform to link
cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol. 2006, 140, 818–829. [CrossRef] [PubMed]

48. O’Malley, R.C.; Huang, S.C.; Song, L.; Lewsey, M.G.; Bartlett, A.; Nery, J.R.; Galli, M.; Gallavotti, A.; Ecker, J.R. Cistrome and
Epicistrome Features Shape the Regulatory DNA Landscape. Cell 2016, 166, 1598. [CrossRef]

49. Yu, C.P.; Lin, J.J.; Li, W.H. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci. Rep. 2016,
6, 25164. [CrossRef]

50. Kulkarni, S.R.; Vaneechoutte, D.; Van de Velde, J.; Vandepoele, K. TF2Network: Predicting transcription factor regulators and
gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res. 2018, 46, e31.
[CrossRef]

51. Jin, J.; He, K.; Tang, X.; Li, Z.; Lv, L.; Zhao, Y.; Luo, J.; Gao, G. An Arabidopsis Transcriptional Regulatory Map Reveals Distinct
Functional and Evolutionary Features of Novel Transcription Factors. Mol. Biol. Evol. 2015, 32, 1767–1773. [CrossRef]

52. Kilian, J.; Whitehead, D.; Horak, J.; Wanke, D.; Weinl, S.; Batistic, O.; D’Angelo, C.; Bornberg-Bauer, E.; Kudla, J.; Harter, K. The
AtGenExpress global stress expression data set: Protocols, evaluation and model data analysis of UV-B light, drought and cold
stress responses. Plant J. 2007, 50, 347–363. [CrossRef] [PubMed]

https://doi.org/10.1093/abbs/gmz080
https://doi.org/10.1016/j.cpb.2015.11.001
https://doi.org/10.1016/j.tplants.2015.06.013
https://doi.org/10.1016/j.isci.2020.101526
https://doi.org/10.1007/978-1-4939-6658-5_12
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1101/288225
https://doi.org/10.1016/j.cell.2016.04.046
https://www.ncbi.nlm.nih.gov/pubmed/27212234
https://doi.org/10.1038/s41586-020-2286-9
https://www.ncbi.nlm.nih.gov/pubmed/32353859
https://doi.org/10.1016/j.csbj.2022.04.027
https://www.ncbi.nlm.nih.gov/pubmed/35521542
https://doi.org/10.1016/j.devcel.2011.09.009
https://www.ncbi.nlm.nih.gov/pubmed/22014526
https://doi.org/10.1093/jxb/erab324
https://www.ncbi.nlm.nih.gov/pubmed/34378048
https://doi.org/10.1186/s12859-020-3446-5
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nmeth.2016
https://www.ncbi.nlm.nih.gov/pubmed/22796662
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1093/bib/bbw139
https://www.ncbi.nlm.nih.gov/pubmed/28077403
https://doi.org/10.1371/journal.pcbi.1002955
https://doi.org/10.1186/1748-7188-8-9
https://www.ncbi.nlm.nih.gov/pubmed/23521829
https://doi.org/10.1104/pp.105.072280
https://www.ncbi.nlm.nih.gov/pubmed/16524982
https://doi.org/10.1016/j.cell.2016.08.063
https://doi.org/10.1038/srep25164
https://doi.org/10.1093/nar/gkx1279
https://doi.org/10.1093/molbev/msv058
https://doi.org/10.1111/j.1365-313X.2007.03052.x
https://www.ncbi.nlm.nih.gov/pubmed/17376166


Plants 2023, 12, 3618 15 of 15

53. WGCNAfaq. WGCNA Package: Frequently Asked Questions. 2017. Available online: https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/faq.html (accessed on 13 February 2023).

54. Hayes, S.M.S.; Sachs, J.R.; Cho, C.R. From complex data to biological insight: ‘DEKER’ feature selection and network inference. J.
Pharmacokinet. Pharmacodyn. 2022, 49, 81–99. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html
https://doi.org/10.1007/s10928-021-09792-7
https://www.ncbi.nlm.nih.gov/pubmed/34791577

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Choosing Plant Materials and Growing Conditions for High-Throughput Sequencing Analysis 
	High-Throughput Sequencing Analysis Data 
	Co-Expression Network and WGCNA Modules 
	Inference of Gene Regulatory Network 
	WGCNA Module Enrichment 
	Co-Expression and GRN Sample Overlap 

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

