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Abstract: Nuclear fusion is essential for the sexual reproduction of various organisms, including
plants, animals, and fungi. During the life cycle of flowering plants, nuclear fusion occurs three times:
once during female gametogenesis and twice during double fertilization, when two sperm cells
fertilize the egg and the central cell. Haploid nuclei migrate in an actin filament-dependent manner to
become in close contact and, then, two nuclei fuse. The nuclear fusion process in plant reproduction
is achieved through sequential nuclear membrane fusion events. Recent molecular genetic analyses
using Arabidopsis thaliana showed the conservation of nuclear membrane fusion machinery between
plants and the budding yeast Saccharomyces cerevisiae. These include the heat-shock protein 70 in the
endoplasmic reticulum and the conserved nuclear membrane proteins. Analyses of the A. thaliana
mutants of these components show that the completion of the sperm nuclear fusion at fertilization is
essential for proper embryo and endosperm development.

Keywords: nuclear fusion; female gametogenesis; fertilization; membrane fusion; flowering plants;
budding yeast

1. Introduction

The nucleus contains the genome and functions as the site of essential cellular processes
such as DNA replication, transcription, and RNA processing. During the fertilization of
various organisms, including animals, plants, and fungi, two nuclei from each of the parents
fuse to produce the nucleus of the offspring. This nuclear fusion process, or karyogamy, is
essential for reproduction. The nuclear compartment is surrounded by the nuclear envelope,
which consists of the inner and outer nuclear membranes. The nuclear membranes play
various important roles, including the nucleocytoplasmic transport of macromolecules
through the nuclear pore complexes. However, nuclear membranes are barriers to nuclear
fusion because they prevent the mixing of materials inside the nuclei.

Nuclear fusion during fertilization is achieved by overcoming the barrier function of
the nuclear membranes. In mammalian fertilization, the male and female pronuclei fuse
during the first embryonic cell division. The nuclear envelope disassembles by nuclear
envelope breakdown (NEBD) when the cells enter the mitotic phase. This allows the mixing
of the male and female genomes (Figure 1A) [1]. On the other hand, in many organisms,
including plants and fungi, nuclear membranes stay intact during nuclear fusion. In these
cases, nuclear fusion is achieved through the fusion of the nuclear membranes of two nuclei
(Figure 1B) [2,3].

Recent genetic analyses of A. thaliana and live-cell imaging technology have identified
the proteins involved in nuclear fusion during plant reproduction. The identified proteins
revealed surprising conservations of nuclear fusion mechanisms between yeast and plants.
This review aims to provide an overview of the nuclear fusion machinery functioning in
plant reproduction and its evolutionary conservations between fungi and land plants.
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Figure 1. Nuclear fusion in sexual reproduction. (A) In mammals, the fusion of pronuclei (red and 
blue inside) takes place during the first embryonic cell division. Mixing of the male and female ge-
nomes is achieved through the nuclear envelope breakdown (NEBD). (B) In many organisms, in-
cluding plants and fungi, the nuclear envelope stays intact during nuclear fusion. The sequential 
fusions of nuclear membranes, fusion of the outer nuclear membrane (ONM fusion), and fusion of 
the inner nuclear membrane (INM fusion) result in the production of a diploid nucleus. 

2. Nuclear Fusion in the Sexual Reproduction of Budding Yeast 
The mechanism of nuclear fusion during sexual reproduction has been best charac-

terized using budding yeast Saccharomyces cerevisiae. Yeast genetics have identified the 
genes and proteins involved in nuclear fusion. In the sexual phase, the haploid yeast cells 
of the opposite mating types (MATa and MATα) mate to produce diploid cells (Figure 2A). 
The haploid cells respond to mating pheromones and exit the mitotic cell cycle [4]. The 
two cells produce a mating-specific projection and come into contact. Then, the two cells 
fuse to produce a zygote containing two haploid nuclei. The process of nuclear fusion, 
called karyogamy, is the final step of yeast mating [2]. Karyogamy consists of two consec-
utive steps: nuclear congression and nuclear membrane fusion [5]. Yeast mutants defective 
in karyogamy (Kar−) have been isolated and characterized [2]. The zygotes of the mutants 
defective in the nuclear congression step have the two haploid nuclei positioned far apart 
in the cells [5]. The mutants defective in the nuclear membrane fusion step produce zy-
gotes in which the two haploid nuclei are juxtaposed but do not fuse [5–7]. Genetic and 
biochemical analyses of karyogamy mutants have identified the components involved in 
the nuclear membrane fusion process [8,9]. 

Figure 1. Nuclear fusion in sexual reproduction. (A) In mammals, the fusion of pronuclei (red and
blue inside) takes place during the first embryonic cell division. Mixing of the male and female
genomes is achieved through the nuclear envelope breakdown (NEBD). (B) In many organisms,
including plants and fungi, the nuclear envelope stays intact during nuclear fusion. The sequential
fusions of nuclear membranes, fusion of the outer nuclear membrane (ONM fusion), and fusion of
the inner nuclear membrane (INM fusion) result in the production of a diploid nucleus.

2. Nuclear Fusion in the Sexual Reproduction of Budding Yeast

The mechanism of nuclear fusion during sexual reproduction has been best character-
ized using budding yeast Saccharomyces cerevisiae. Yeast genetics have identified the genes
and proteins involved in nuclear fusion. In the sexual phase, the haploid yeast cells of the
opposite mating types (MATa and MATα) mate to produce diploid cells (Figure 2A). The
haploid cells respond to mating pheromones and exit the mitotic cell cycle [4]. The two
cells produce a mating-specific projection and come into contact. Then, the two cells fuse
to produce a zygote containing two haploid nuclei. The process of nuclear fusion, called
karyogamy, is the final step of yeast mating [2]. Karyogamy consists of two consecutive
steps: nuclear congression and nuclear membrane fusion [5]. Yeast mutants defective in
karyogamy (Kar−) have been isolated and characterized [2]. The zygotes of the mutants
defective in the nuclear congression step have the two haploid nuclei positioned far apart in
the cells [5]. The mutants defective in the nuclear membrane fusion step produce zygotes in
which the two haploid nuclei are juxtaposed but do not fuse [5–7]. Genetic and biochemical
analyses of karyogamy mutants have identified the components involved in the nuclear
membrane fusion process [8,9].

2.1. Nuclear Congression

In the nuclear congression process, two haploid nuclei became in close contact in a
microtubule-dependent manner [2]. The microtubule from the spindle pole bodies (SPBs),
the sole microtubule-organizing center of budding yeast embedded in the nuclear mem-
brane, interconnects the two nuclei, which allows the nuclei to approach each other. Kinesin
family motor proteins, Cik1 and Kar3, function during this nuclear movement [10]. Mps3 is
a member of the Sad1-UNC-84 homology (SUN) protein family localized in the half-bridge
structure of the nuclear membrane adjacent to the core SPB [11,12]. Mps3 interacts with
Mps2, an integral membrane protein localized in the outer nuclear membrane, to connect
the SPB with the nuclear membrane [13]. Mutants of these proteins are defective in the nu-
clear congression process. Actin cables also function during the nuclear congression process.
Kar9 mediates spindle positioning by connecting microtubules to actin cables [14,15].
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2.2. Nuclear Membrane Fusion

In the second step, two haploid nuclei fuse to produce a diploid nucleus. In budding
yeast, the nuclear membrane stays intact throughout the cell cycle. Nuclear fusion, therefore,
must be achieved through the fusion of nuclear membranes, the outer and the inner
membranes of the two haploid nuclei. BiP/Kar2, an Hsp70 molecular chaperone in the
endoplasmic reticulum (ER) [16], and its partner ER-resident J-domain-containing co-
chaperones (J proteins), Jem1/Kar8 [6] and Sec63 [17], were found to facilitate nuclear
fusion in karyogamy. Sec63 forms a complex in the ER membrane with Sec71/Kar7 and
Sec72 [18]. An electron microscopy examination showed that the Sec63 complex is required
for the fusion of the outer nuclear membrane, whereas Jem1/Kar8 functions after the fusion
of the outer nuclear membrane [19]. These results suggest that BiP/Kar2 functions in the
outer and inner nuclear fusion steps using different J proteins as partners.
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sperm, respectively. Sperm nuclear fusions take place in the fertilized egg and central cells. pn, polar 
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Figure 2. Nuclear fusion in yeast mating and A. thaliana lifecycle. (A) In the sexual phase, two
haploid cells of the opposite mating types produce a mating projection. A zygote is produced by
the fusion of two haploid cells (Plasmogamy). In the zygote, two haploid nuclei move to close
contact (Nuclear congression) and fuse (Nuclear membrane fusion). (B) Three nuclear fusion events
in the reproduction of flowering plants. An eight-nucleated and seven-celled female gametophyte
is produced from a haploid megagametophyte. The central cell contains polar nuclei that fuse to
form a diploid secondary nucleus in A. thaliana and other species. During double fertilization, two
sperm cells released from a pollen tube fertilize the egg and central cells, producing the embryo and
endosperm, respectively. Sperm nuclear fusions take place in the fertilized egg and central cells. pn,
polar nuclei; ec, egg cell; sc, synergid cell; cc, central cell; ac, antipodal cell; scn, secondary nucleus;
PT, pollen tube; and sn, sperm nuclei.

Kar5 is a mating-process-specific integral membrane protein that is located adjacent
to the SPB [20]. Functional Kar5 orthologs have been identified in zebrafish, the malaria
parasite, green algae, and land plants [21–24]. Kar5 is a member of a conserved protein
family functioning in the nuclear membrane fusion process. An electron microscopy
examination of the kar5 mutant zygote suggested that Kar5 is required after outer nuclear
membrane fusion and may function in coupling the inner and outer nuclear membranes [25].
Kar5 interacts with the proteins required for the nuclear membrane fusion process. Prm3 is
a pheromone-induced peripheral membrane protein on the cytoplasmic face of the outer
nuclear membrane, which is required for the outer nuclear membrane fusion step [26]. Kar5
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recruits Prm3 adjacent to the SPB. The SPB localization of Kar5 is dependent on Mps3 [25].
Mps3 was identified as a Jem1-interacting protein, and the mps3 mutant is defective in the
nuclear membrane fusion process [12]. These results suggest that Jem1 functions during
nuclear membrane fusion by regulating the assembly of Mps3 and, possibly, Kar5 in the
SPB as a partner to BiP.

3. Nuclear Fusion in Plant Reproduction

During the life cycle of flowering plants, nuclear fusion occurs three times. The
first nuclear fusion event occurs during the female gametophyte development [27,28].
Most angiosperm species, including Arabidopsis thaliana, have a Polygonum-type female
gametophyte consisting of one egg cell, two synergid cells, one central cell, and three
antipodal cells. A single megaspore produced by meiosis undergoes three rounds of
nuclear division cycles, producing an eight-nucleate cell. The subsequent nuclear migration
and cellularization result in a seven-celled female gametophyte. The central cell contains
two polar nuclei. In A. thaliana and other species, the polar nuclei fuse during female
gametogenesis to form the secondary nucleus (Figure 2B) [27,28]. The other two nuclear
fusion events occur during double fertilization, a process during which two sperm cells
released from a pollen tube fertilize two female gametes, an egg, and central cells, producing
an embryo and the surrounding endosperm [29,30].

3.1. Nuclear Migration

While the nuclear congression step in yeast karyogamy requires microtubules, actin
cables play essential roles in the nuclear migration process of a plant reproduction. The
disruption of actin filaments in developing female gametophytes influence nuclear migra-
tion and alter the final positions of the nuclei [31,32]. The sperm nuclei that have entered
the female gametes move toward each female nucleus with the dynamic movement of the
actin cables [33]. In in vitro fertilized rice zygotes, the continuous convergence of the actin
meshwork toward the egg cell nucleus mediates the migration of the sperm nucleus [34,35].
The disruption of the actin cables in either the egg or the central cell prevents sperm cell
nucleus migration. In A. thaliana, the involvement of the Rho-GTPase of Plants 8 (ROP8)
and class XI myosin in the F-actin dynamics and the sperm nuclear migration in the central
cell was reported [36]. A successful sperm nuclear fusion was observed in the female
gametophyte of a null allele of PORCINO that encodes a subunit of TUBULIN FOLDING
COFACTOR C, suggesting that microtubules are dispensable for male gametes’ nuclear
migration [33].

3.2. Nuclear Membrane Fusion

More than 40 genes were identified through the screening of A. thaliana mutants
defective in polar nuclei fusion. Since many of the identified genes encode proteins
localized in the mitochondria, plastids, plasma membrane, and extracellular region, the
nuclear fusion defects in these mutants seemed to be the result of indirect effects [37]. The
mutants of transcription factors such as AGL32 and AGL61 showed a polar nuclear fusion
defect probably due to defects in their central cell differentiation [38,39]. Recent analyses
revealed the conservation of nuclear fusion factors between budding yeast and A. thaliana.
These include molecular chaperones in the ER and conserved nuclear membrane proteins
(Table 1).

Table 1. Nuclear fusion factors conserved between Saccharomyces cerevisiae and Arabidopsis thaliana.

Saccharomyces cerevisiae Arabidopsis thaliana

BiP BiP/Kar2 BiP
ER-resident J proteins Sec63, Jem1/Kar8 ERdj3A, ERdj3B, P58IPK

GEX1/Kar5 family Kar5 GEX1
SUN protein Mps3 SUN proteins
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3.2.1. Molecular Chaperones in the ER

A. thaliana has orthologs of proteins involved in nuclear membrane fusion during yeast
karyogamy. The analyses of the mutants of these orthologs showed striking conservations in
the mechanisms of nuclear membrane fusion between yeast and plant sexual reproduction.
The A. thaliana genome encodes three BIP genes (BIP1, BIP2, and BIP3). BIP1 and BIP2
encode proteins that are 99% identical to each other and are expressed ubiquitously [40].
The female gametophytes harboring the bip1 bip2 double mutations are defective in polar
nuclei fusion [41]. The BiP-deficient female gametophytes contain two unfused polar nuclei
in close contact, indicating that the defect is in the membrane fusion step. The third BIP
gene, BIP3, encodes a less well-conserved BiP paralog (80% identical to BiP1 and BiP2) and
is expressed only under ER stress conditions in most tissues [40]. BiP3 expression from the
BIP1 promoter fully complemented the polar nuclear fusion defect of the bip1 bip2 mutant
female gametophyte [42,43], indicating that BiP3 has functions that are comparable with
those of BiP1 and BiP2.

A. thaliana has orthologs of the ER-resident J proteins of yeast [44], and the soluble J
proteins ERdj3A, ERdj3B, and P58IPK were shown to function during polar nuclear fusion
as partners to BiP [45]. The double mutant female gametophytes lacking P58IPK and ERdj3A
or ERdj3B were defective in the polar nuclear fusion. An electron microscopy examination
showed that the mutant ovules lacking P58IPK and ERdj3A were defective in the fusion of
the outer nuclear membrane. In contrast, in the mutant ovules lacking P58IPK and ERdj3B,
the outer nuclear membrane appeared connected via the ER but the inner nuclear mem-
brane remained unfused. These results indicate that P58IPK/ERdj3A and P58IPK/ERdj3B
function at distinct steps of the polar nuclear membrane fusion process as partners to BiP.
BiP and ER-resident J proteins likely function during the nuclear fusion process by regulat-
ing the conformation or assembly of the proteins required for nuclear membrane fusion.
Candidates for such proteins are the nuclear membrane proteins discussed below. BiP and
ER-resident J proteins also function during the sperm nuclear fusion at fertilization. The
central cell of the bip1 bip2 or erdj3a p58ipk double mutant female gametophytes fertilized
using wild-type pollen were defective in the sperm nuclear fusion step [46]. By contrast,
the central cells of the erdj3b p58ipk double mutant female gametophytes were not defective
in the sperm nuclear fusion step.

3.2.2. Nuclear Membrane Proteins

Recently, two types of nuclear membrane proteins, SUN proteins and GEX1, were
shown to function during the nuclear fusion process in A. thaliana [24,47]. SUN proteins
are integral membrane proteins of the inner nuclear membrane containing a conserved
SUN domain. SUN proteins interact with Klarsicht/ANC-1/Syne-1 Homology (KASH)
proteins in the outer nuclear membrane through the SUN domain, forming the linkers
of the nucleoskeleton and cytoskeleton (LINC) complexes [48]. The A. thaliana genome
encodes five SUN protein genes. SUN1 and SUN2 are classical SUN proteins with the SUN
domain at the C-terminus. SUN3, SUN4, and SUN5 are mid-SUN proteins with internal
SUN domains. The expression of a dominant-negative mutant of SUN proteins (SUNDN)
in A. thaliana pollen was shown to cause the delocalization of the KASH protein, WIP1,
from the envelope of the vegetative nucleus, causing defects in the nuclear movement in the
pollen tube [49]. The expression of SUNDN in developing female gametophytes resulted in
a polar nuclear fusion defect, indicating the roles of SUN proteins in this process [47]. The
expression of a SUNDN variant that does not interact with KASH proteins did not cause
this polar nuclear fusion defect, suggesting the involvement of a SUN–KASH interaction
during polar nuclear fusion. Female gametophytes expressing SUNDN contained unfused
polar nuclei in close contact, indicating the observed inhibition at the membrane fusion step.
The identification of the KASH proteins functioning in this process awaits further analyses.

The A. thaliana gamete-expressed 1 (GEX1) is a functional ortholog of yeast Kar5. The
GEX1 gene was identified by screening the genes expressed in sperm cells [22]. GEX1 is a
nuclear membrane protein in the egg and central cell. Time-lapse live-cell imaging using
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GFP-GEX1 showed that GEX1 expression was detectable first in the central cell, shortly
before the polar nuclei were in close contact, and, then, in the egg cell. GEX1-deficient
mature female gametophytes were found to contain two unfused polar nuclei in close
proximity within the central cell. Electron microscopy showed that the outer membrane of
the polar nuclei was connected via the endoplasmic reticulum, whereas the inner membrane
remained unfused [24]. The nuclear membrane fusion defect was similar to that observed
in the yeast kar5 mutant zygotes [25]. The sperm nuclear fusion events were defective in the
fertilized egg and central cell following the fertilization of the gex1 female gametophytes
with gex1 pollen. These results indicate that GEX1 is required for all three nuclear fusion
events observed in A. thaliana reproduction.

The GEX1/Kar5 family proteins have been identified as key factors in nuclear fusion.
The Danio rerio (zebrafish) Brambleberry (Bmb) is a nuclear membrane protein essential for
pronucleus fusion in the zygote and in karyomere fusion during early embryogenesis [21].
The GEX1 orthologs of Chlamydomonas reinhardtii and Plasmodium berghei are nuclear mem-
brane proteins required for sexual reproduction [23]. Although Kar5, Bmb, and GEX1 differ
widely in size and degree of sequence identity, they all contain a well-defined Cys-rich
domain (CRD) within their N-terminal region, followed by coiled-coil domains (Figure 3A).
While GEX1 contains three transmembrane domains in the C-terminal region, Kar5 and
Bmb contain two transmembrane domains. GEX1 orthologs have been identified in various
land plants, including eudicots, monocots, basal angiosperms, lycophytes, and bryophytes
(Figure 3B) [22,50]. All land plant GEX1 orthologs contain the CRD in their N-terminal
region, followed by two or three putative coiled-coil regions and three transmembrane
domains [24]. However, sequence identities are not high even between angiosperm GEX1
orthologs; the sequence identity between Arabidopsis GEX1 and Oryza sativa GEX1 ortholog
is lower than 50%. Despite the relatively low sequence identities, the expression of the
GEX1 orthologs of O. sativa, as well as of Brassica rapa from the Arabidopsis GEX1 promoter,
rescued the polar nuclear fusion defect of the gex1 mutant [51]. In B. rapa and rice, fusion
starts during female gametogenesis but is not completed before fertilization [52,53]. The
completion of polar nuclear fusion in the gex1 female gametophytes expressing BrGEX1 or
OsGEX1 supports that the variation in the times of nuclear fusion completion is not due to
differences in the activities of GEX1 orthologs.
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three transmembrane domains (black boxes). Kar5 and Bmb have two transmembrane domains.
(B) Phylogenetic analysis of GEX1 in Viridiplantae. The maximum-likelihood phylogenetic analysis
was performed using the amino acid sequences of GEX1 in Viridiplantae. The species and accession
numbers of the GEX1 sequences are shown. Saccharomyces cerevisiae Kar5 protein was included as
an outgroup. Numbers at nodes indicate bootstrap values calculated from 1000 replicates. The tree
is drawn to scale, with branch lengths reflecting the number of substitutions per site. Scale bar,
0.3 substitutions per site.

4. Roles of Nuclear Fusion in Seed Development

The bip1 bip2 and erdj3a p58ipk double mutant female gametophytes displayed aberrant
endosperm proliferation after fertilization with wild-type pollen [41,45]. Live imaging
analyses of endosperm development showed that the aberrant endosperm proliferation
was not due to the polar nuclear fusion defect but to the sperm nuclear fusion defect upon
fertilization. The fertilized bip1 bip2 and erdj3a p58ipk double mutant female gametophytes
contained an unfused sperm nucleus in the central cell. Triple nuclear fusion between
the unfused sperm nucleus and polar nuclei was achieved during the first endosperm
nuclear division. However, the fusion of the sperm nucleus with condensed chromatin
resulted in aberrant endosperm nuclear divisions and delayed expression of paternal genes.
Aberrant endosperm proliferation was also observed after the fertilization of gex1 female
gametophytes with gex1 pollen [24].

In contrast, the endosperm proliferated normally after the fertilization of the erdj3b
p58ipk double mutant female gametophytes with wild-type pollen [45]. In the fertilized
central cell of the erdj3b p58ipk double mutant female gametophytes, the sperm nucleus
fused with one of the unfused polar nuclei. The unfused polar nuclei fused during the
first endosperm nuclear division through nuclear envelope breakdown [46]. Normal seed
development was also reported after the fertilization of the fiona mutant female gameto-
phytes containing unfused polar nuclei with wild-type pollen [54]. Normal endosperm
development was observed in rice, wheat, and maize, producing female gametophytes with
unfused polar nuclei [55–57]. The fusion of polar nuclei can be omitted in the formation of
triploid endosperm.

Sperm nuclear fusion at fertilization seems to be essential for embryo development.
The sperm nuclear fusion was defective in the egg cell after the fertilization of the gex1
female gametophytes with gex1 pollen [24]. Aberrant embryo development was observed
in the resulting gex1 mutant seeds [24,50]. Analyses of the gex1 mutant seeds suggested that
the first asymmetric cell division occurred after fertilization. However, embryo develop-
ment was delayed and arrested between the two- and eight-celled embryo stages [24]. This
is in good contrast to the fact that embryo development proceeded from the globular to the
heart stages after the fertilization of the erdj3a p58ipk double mutant female gametophytes
with wild-type pollen, in which sperm nuclear fusion occurred in the egg cell [45].

5. Concluding Remarks

Eukaryotes have evolved unique mechanisms to promote nuclear fusion efficiently
during sexual reproduction. The GEX1/Kar5 family proteins are nuclear membrane pro-
teins expressed during the reproduction phase that are conserved between plants, animals,
and fungi. The proteins of this family are key factors for nuclear membrane fusion since
their deficiency resulted in nuclear fusion defects. The acquisition of this protein family
could be one of the critical steps for the establishment of sexual reproduction in eukary-
otes. The GEX1/Kar5 family proteins most likely function during the nuclear membrane
fusion process alongside other proteins. Analyses using yeast and A. thaliana revealed the
involvement of ubiquitously expressed proteins such as BiP, ER-resident J proteins, and
SUN proteins in nuclear fusion. The involvement of these proteins in the nuclear fusion
of other organisms is yet to be analyzed. Other proteins may function during the nuclear
membrane fusion step alongside these identified proteins. Future studies will reveal the
mechanisms of nuclear membrane fusion at the molecular level.
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